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We consider three-dimensional turbulence from which vortex stretching is removed.
Using direct numerical simulations, we show that in this system a dual cascade is observed,
consisting of a forward enstrophy cascade and an inverse helicity cascade. In the inverse
cascade range the energy spectrum scaling is proportional to k−7/3, with k being the wave
number. In the forward cascade range the spectrum is proportional to k−3 with a logarithmic
correction.
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I. INTRODUCTION

The dynamics of two-dimensional (2D) and three-dimensional (3D) turbulent flows are very
different. In 3D turbulence, energy is transferred mostly from the largest towards the smallest scales,
with a spectrum proportional to k−5/3 in the inertial subrange [1] (k being the wave number), and
helicity is transferred in the same direction in scale space [2,3]. In 2D turbulence, energy and
enstrophy exhibit a dual and counterdirectional cascade, i.e., energy flows towards large scales
and enstrophy flows towards smaller ones. The inertial ranges corresponding to those inverse and
forward cascades scale as k−5/3 and k−3, respectively [4,5].

An important difference between 2D and 3D flows can also be noted on the level of the governing
equations. Formally, in both cases the dynamics of the vorticity ω is governed by the curl of the
Navier-Stokes equations,

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν�ω, (1)

where ∇ · u = 0, ω = ∇ × u, u is the velocity, and ν is the kinematic viscosity. In the case of a
two-dimensional flow, with velocity evolving in the plane perpendicular to the z axis, the vorticity
is given by ω = ωez. In this case the vorticity is always perpendicular to the velocity gradients, so
that the first term on the right-hand side of Eq. (1) is trivially zero. In two-dimensional flows the
vortex stretching, the physical mechanism associated with this term, is thus equal to zero.

Vortex stretching is therefore often associated with the direct, forward energy cascade, and a
vast body of literature has reported on the role of vortex stretching in 3D turbulence dynamics
[6–16]. Studies on the importance of the vortex-stretching term, dissociating it from the influence
of strain self-amplification, have given insights into the precise dynamical features associated with
vortex stretching [10,11]. Further studies have reported on the decomposition of the stretching term
into local and nonlocal contributions [12,13,15,16]. In these investigations, the dynamics of the
Navier-Stokes equations are considered using either experiments [17], numerical simulation [13,18],
or mathematical analysis [19], in order to understand how the interaction of strain and vorticity acts
in a 3D flow.
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An alternative way to investigate the flow features associated with a given mechanism is to
change the governing (Navier-Stokes) equations and to numerically or theoretically assess the
modified equations and compare them with realistic flows. This method was used to investigate
axisymmetric turbulence, a system in between two and three space dimensions [20–23]. In this
system the vortex stretching is not zero, but its form is modified, leading to distinct behavior
compared with 3D turbulence, with cascades towards both small and large scales [24–26].

In recent work this approach (modifying the governing equations) was extended to understand
the role of vortex stretching in 3D turbulence, by removing the ω · ∇u term from Eq. (1). The first
study of this system [27] allowed the discovery of an important difference between 2D turbulence
and 3D turbulence without vortex stretching: In both systems, enstrophy is conserved; however,
in the 3D system, energy is not conserved, and there is therefore no clear cascade of energy in
that system. Subsequently, we showed [28] that helicity is a conserved quantity for 3D turbulence
without vortex stretching. In this latter study, we assessed using statistical mechanics the truncated
inviscid system and showed that the equilibrium distribution is importantly modified in the largest
flow scales if helicity is present in the system. Following the reasoning of Kraichnan [4,29], this
suggests that the system might have a tendency to transport helicity to large scales, unlike normal
3D turbulence.

The main motivation of the present investigation is to investigate this possibility of a dual
cascade, by assessing the spectral dynamics and its associated fluxes in 3D turbulence without
vortex stretching, using direct numerical simulations (DNSs). Indeed, in the previous investigations,
inviscid relaxation was investigated by DNSs [28], and the forward enstrophy cascade was observed
in closure theory [27]. The features of the present investigation are thus (i) validation by DNSs of
the enstrophy cascade observed in closure theory, (ii) assessment and refinement of the scaling of
the energy spectrum in the enstrophy cascade inertial range, (iii) the verification of a dual-cascade
mechanism in the presence of helicity, and (iv) the proposition and assessment of scaling arguments
for the inertial range of the inverse helicity cascade.

The rest of this paper is organized as follows. In Sec. II, we will predict the cascade directions
and scaling of energy and helicity spectra in turbulence without vortex stretching. In Sec. III, we
will present the numerical setup. Then, in Sec. IV we report on the assessment of the theoretical
results. Finally, Sec. V concludes this investigation.

II. ANALYTICAL CONSIDERATIONS

In this section, we first recall recent results on the dynamics of inviscid turbulence without vortex
stretching, obtained using statistical mechanics [28]. These results suggest a dual-cascade mecha-
nism and give a prediction of the cascade directions of the two inviscid invariants in a turbulent
system without vortex stretching: enstrophy and helicity. Then, using dimensional analysis, we
propose predictions for energy and helicity spectra in the inertial ranges for a steady system.

A. Results from statistical mechanics

In Ref. [28] we considered the statistical mechanics of the incompressible Euler equations with-
out vortex stretching,

∂ω

∂t
+ u · ∇ω = 0, (2)

with ∇ · u = 0. It was shown that this system conserves enstrophy W and helicity H defined as

W = 1

2
〈‖ω‖2〉, H = 1

2
〈u · ω〉. (3)

In contrast, kinetic energy, defined as

E = 1

2
〈‖u‖2〉, (4)
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FIG. 1. Absolute equilibrium energy spectra as predicted by statistical mechanics [28]. The ratio b/a is
associated with the amount of helicity in the system. In the absence of helicity (b = 0), the energy distribution
is flat, corresponding to enstrophy equipartition. The presence of helicity, an invariant of the system, leads to a
peaked energy distribution at the large scales.

is not conserved by Eq. (2). When projecting the dynamics of (2) on a truncated set of Fourier modes
in three dimensions, the equilibrium energy, enstrophy, and helicity distributions can be determined
[28], following the methods of Lee [30] and Kraichnan [4]. The so-obtained analytical predictions
are

E (k) = 8πak2

a2k2 − b2
, (5)

H (k) = 8πbk2

a2k2 − b2
, (6)

with k being the wave number and a, b being Lagrange multipliers determined by the values of the
enstrophy, the helicity, and the range of considered wave vectors. Note that the spectra are defined
such that ∫

E (k)dk = E ,

∫
H (k)dk = H. (7)

The enstrophy spectrum W (k) is related to the energy spectrum by the relation

W (k) = k2E (k). (8)

The equilibrium energy distribution [Eq. (5)] is shown in Fig. 1 for cases with and without helicity.
This equilibrium energy distribution of the inviscid system allows us to formulate predictions of
the cascade directions in the nonequilibrium (turbulent) case. The underlying idea is that a damped-
driven system will evolve to approach the statistically most probable state, i.e., the equilibrium state.

We showed that excellent agreement was observed [28] between the equilibrium distributions
(5) and the results of numerical integration of Eq. (2). The important feature of these equilibrium
distributions with respect to the present investigation is that the presence of helicity leads to
a modification of the energy distribution at the largest scales allowed by the system. Indeed,
comparing the energy spectra in Fig. 1 with and without helicity, we observe the presence of a
peak at k = 1, the smallest wave number. This shows that helicity, and the associated energy, has
a tendency to concentrate in these scales. If helicity is injected in small scales, then we expect that
nonlinear interactions will lead to a flux of helicity towards the large scales. The opposite is expected
for enstrophy. Indeed, the equilibrium enstrophy spectrum is shown to be given by W (k) ∼ k2 for
large k (and also for small k in the absence of helicity). If a dissipation mechanism is present at
large wave numbers and enstrophy is initially concentrated at small wave numbers, the nonlinear
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interactions are expected to have a tendency to redistribute the enstrophy towards large k in an
attempt to restore equilibrium.

Note that these reasonings follow closely the ideas of Kraichnan on 2D turbulence [4], which
suggested the existence of a dual cascade, with energy and enstrophy being transferred in opposite
directions, and those for helicity transfer in classical 3D turbulence [29], suggesting a unique,
forward cascade. In the present case we expect a similar picture to that in the 2D case, with
enstrophy and helicity being transferred in opposite directions in scale space, and this will be
checked numerically in Sec. IV.

B. Inertial range scaling

For turbulent systems with excitations on a wide range of scales, power spectra exhibit commonly
self-similar ranges, where the considered quantity (e.g., the energy density) varies as a power law of
the wave number. The most famous example is the inertial range of the kinetic energy spectrum in
3D turbulence, which scales as E (k) ∼ ε2/3k−5/3. This expression can be obtained by dimensional
analysis, once we assume that the energy dissipation rate ε and the wave number k are the quantities
determining the dynamics in the inertial range. As a matter of fact, ε appears in this expression since
it is equal, at high Reynolds numbers and in a steady state, to the flux of energy through scale space
from the injection scale to the dissipation range. In the present system, if a dual-cascade scenario is
confirmed, the quantities determining the scaling of the energy, helicity, and enstrophy spectra will
be the fluxes of enstrophy and helicity.

Let us consider the vorticity equation without vortex stretching, where we add an external force
f , acting at a given intermediate length scale k f , and damping mechanisms d, which act dominantly
at large and small length scales, characterized by kμ and kν , respectively:

∂ω

∂t
+ u · ∇ω = f − d. (9)

The left-hand side of this expression represents the nonlinear advection of vorticity. This term
conserves the enstrophy and helicity of the system. Energy is not conserved and can be produced
or destroyed by the interaction, somewhat like enstrophy which can be generated in classic three-
dimensional turbulence. Therefore, if kμ and kν are far enough removed from the forcing scale k f ,
enstrophy and helicity should either pile up around k f or be transferred to smaller or larger scales.

Following the reasoning in Sec. II A, we suppose that in a homogeneous turbulent flow governed
by Eq. (9) at a sufficiently high Reynolds number, the statistics of the energy density in the inertial
ranges have universal forms. For the forward enstrophy cascade and the inverse helicity cascade
ranges, these universal forms are expected to be uniquely determined by the flux of enstrophy �W (k)
and helicity �H (k), respectively. These fluxes are defined as

�W (k) = −
∫

	k

Re
[
N̂(k) · ω̂∗(k)

]
dk, (10)

�H (k) = −
∫

	k

Re
[
N̂(k) · û∗(k)

]
dk, (11)

where F[·] and ·̂ indicate Fourier transforms and Re[·] represents the real part of the quantity in
brackets. 	k is the spherical domain in Fourier space consisting of all wave vectors with ‖k‖ � k.
The vorticity advection nonlinearity is indicated by

N̂(k) = F[−(u · ∇ )ω]. (12)

By dimensional analysis, this hypothesis leads to the predictions for the inverse cascade range
kμ � k � k f ,

E (k) ∼ �H (k)2/3k−7/3, (13)
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H (k) ∼ �H (k)2/3k−4/3, (14)

and analogously for the forward cascade range k f � k � kν ,

E (k) ∼ �W (k)2/3k−3, (15)

H (k) ∼ �W (k)2/3k−2. (16)

Expression (15) can be refined introducing logarithmic corrections, introduced by Kraichnan for
inertial range scaling in 2D turbulence [31]. We recall the arguments of Kraichnan here.

It is expected that the flux of enstrophy in the forward cascade range is constant for large wave
numbers. Physically, local transfer can be represented by an amount of enstrophy around a wave
number k, which is transferred to smaller scales on a timescale τ (k),

�W (k) ∼ k3E (k)

τ (k)
. (17)

The typical timescale in the inertial range is associated with straining of the structures at scale k by
structures at lower wave numbers. Such a straining time is of the order

τ (k) ∼
(∫ k

k f

p2E (p)d p

)−1/2

. (18)

Inserting a power law proportional to p−3 for the energy spectrum in expression (18) introduces
directly a logarithmic dependence of τ (k) on the wave number. This leads therefore to a dependence
of Eq. (17) on the wave number. Multiplying Eq. (15) by [ln(k/k f )]γ and substituting it into
expressions (17) and (18), we find that for γ = −1/3, the flux becomes independent of the wave
number. All these arguments, originally proposed for 2D turbulence, can be transposed directly to
the current system, so that we expect that Eq. (15) can be refined to

E (k) ∼ �W (k)2/3k−3[ln(k/k f )]−1/3. (19)

We expect the helicity spectrum in the enstrophy cascade range also to be affected by this correction.
All these scaling laws will be assessed using direct numerical simulation in Sec. IV. Note that we

will not consider the helicity-free case in this paper. Indeed, for the mirror-symmetric case, H (k) is
trivially zero. Furthermore, in the absence of the inverse helicity cascade, the scales kμ � k � k f

will display an equipartition of enstrophy, associated with an energy spectrum E (k) ∼ k0. This
equilibrium scaling was assessed in Ref. [27] using closure and in Ref. [28] using DNS for the
truncated inviscid system.

III. NUMERICAL METHOD AND SETUP

In Sec. IV, the results of numerical simulations are presented in order to assess the scaling
properties of turbulence without vortex stretching. In the present section we detail the numerical
setup we have used.

A. Forcing and damping of the system

The governing equation for the vorticity dynamics, Eq. (9), needs the specification of the forcing
and damping terms. For the forcing term f we choose an injection mechanism which keeps the
energy constant in a narrow wave number range around wave number k f . Note that this forcing
method is widely used in investigations of 3D turbulence [32,33]. A convenient property of this
type of forcing, with respect to the present investigation, is that it not only injects energy into the
system, but also injects enstrophy and helicity.
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The damping mechanism d is somewhat more involved since we expect the establishment of a
dual cascade. Let us first focus on the damping at the small scales of the system. The most obvious
choice for the small-scale damping of a turbulent system is to use viscous dissipation. However,
since we are concentrating on inertial range scaling without focusing too much on the dissipation
range, we will attempt to reduce the size of the latter by using hyperviscosity. For classical 3D
turbulence, we can increase the extent of the inertial range by an order of magnitude using this
approach [34].

Similarly, when an inverse cascade is established, a damping term is required at the largest scales
of the system, to be able to attain a steady state. Again, to limit the extent of the range influenced
directly by this damping, we do not use a linear friction, but rather a hypofriction [35,36].

The equation that will be considered is

∂ω̂

∂t
+ F[(u · ∇ )ω] = f̂ − νk2β ω̂ − μk−2αω̂, (20)

with ∇ · u = 0. The left-hand side of this equation is the Fourier transform of the Euler equa-
tions without vortex stretching [Eq. (9)], and we discussed the equilibrium statistical mechanics
of this system in Sec. II A. The terms on the right-hand side of this system allow us to consider the
nonequilibrium features, by introducing forcing, the first term on the right-hand side, and damping at
small and large scales, associated with the last two terms, respectively. Normal viscous dissipation
corresponds to β = 1, and linear large-scale damping is obtained for α = 0. In order to restrict
the direct influence of the damping terms to a smaller wave number range, we use the values
α = 1 and β = 4, unless stated differently. The parameters ν and μ represent the hyperviscosity
and hypofriction rate, respectively.

Using Eq. (20), we can define the dissipation of enstrophy as

εW = εν
W + ε

μ
W (21)

=
∫

2(νk2β + μk−2α )k2E (k)dk. (22)

We distinguish two contributions: εν
W , associated with the hyperviscous damping, and ε

μ
W , associated

with the large-scale friction. Similarly, we define the contributions to the dissipation rate of helicity,

εH = εν
H + ε

μ
H (23)

=
∫

2(νk2β + μk−2α )H (k)dk. (24)

In the case of asymptotically large scale separation, kμ � k f � kν , we expect that the forward
helicity flux and inverse enstrophy flux are negligible. In this case we will therefore have, for k f �
k � kν in a steady state,

�W (k) ≈ εν
W (25)

and, for kμ � k � k f ,

�H (k) ≈ −ε
μ
H . (26)

In the present simulations we will verify to what extent these asymptotic relations are satisfied.

B. Characteristic length scales and measures of scale separation

The predictions in Sec. II B are supposed to be valid in inertial ranges, i.e., ranges of scales
which are well separated from those scales where source and sink terms act. In order to observe
clear scaling ranges, scale separation is thus required between the forcing scale k f and the damping
scales kμ, kν . In studies of three-dimensional turbulence, an inertial range k f � k � kν of about one
decade in wave number can be observed in state-of-the-art numerical simulations. Dual cascades
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need scale separation for two simultaneous ranges of wave numbers kμ � k � k f and k f �
k � kν , and the physical constraints to observe clear dual-cascade behavior with well-developed
scaling ranges for both cascades, simultaneously, require very large simulations. For instance, in 2D
turbulence, resolutions of (16 384)2 grid points were needed to observe a hint of a dual cascade [37].
Whereas, in 3D turbulence, simulations on grids of 1012 grid points are nowadays possible [38],
such simulations are extremely demanding with respect to numerical resources. It is therefore more
convenient to investigate the two cascade ranges separately in individual simulations, by placing the
forcing scale either close to kμ or close to kν . This will be carried out in the following, and it will be
shown that this approach allows us to accurately probe the inertial ranges of the system.

In the present simulations, the definition of a Reynolds number directly based on the values
of ν and the large-scale velocity and integral length scale is not very informative, since we use
hyperviscosity and hypofriction. In general the information associated with the Reynolds number
which is most important when scaling is investigated is the scale separation between the large and
small scales of the flow. We will therefore, instead of the classical Reynolds number, introduce a
measure for the scale separation in the different flows.

For the forward cascade of enstrophy, the wave number representing the dissipative scales in a
hyperviscous turbulence is given by [39] kν = (εν

W /ν3
h )1/(6β ). Therefore the scale separation in the

forward cascade range is represented by the ratio of this wave number and k f , the wave number
characterizing the forcing scale,

RW = kν

k f
= 1

k f

(
εν

W

ν3
h

)1/(6β )

. (27)

We will use this kind of Reynolds number to characterize the scale separation in the forward cascade
simulations.

Similarly, we can define a friction wave number kμ = (μ3/ε
μ
H )1/(6α+1). For the inverse cascade,

we will choose the forcing scale to be as close as possible to the dissipation range and the scale kμ

where the friction acts to be as close as possible to the domain size. The scale separation is then
characterized by the ratio of the forcing wave number k f and the wave number kμ. For this case we
define, therefore,

RH = k f

kμ

= k f

(
ε

μ
H

μ3

)1/(6α+1)

, (28)

which characterizes the extent of the scaling range in the inverse cascade.
The quantities RW and RH are thus not strictly Reynolds numbers, but dimensionless quantities

which measure the scale separation in the forward cascade and inverse cascade range, respectively.
We mention that in three-dimensional Navier-Stokes turbulence the Taylor-scale Reynolds number
Rλ measures the scale separation in a similar way. In the presence of normal viscous dissipation,
the ratio of the large (integral) scale L to the smallest (Kolmogorov) scale η is in that case given by
L/η ∼ R3/2

λ .

C. Numerical method and resolution

All the simulations in this paper are performed using a standard pseudospectral solver with a
third-order Adams-Bashforth time integration scheme [40], which was modified to remove vortex
stretching [28]. The Biot-Savart operator is applied to Eq. (20) to obtain an equation for the velocity
field. This velocity is kept incompressible by projecting the Fourier modes on a plane perpendicular
to the wave vector.

Our computational domain is a cubic periodic box of size L = 2π . Aliasing errors are removed
using the 2/3 rule. DNSs are executed on grids of size 1283, 2563, and 5123 to consider different
values of RW , RH and thereby assess the robustness of the observed scaling ranges.
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TABLE I. Numerical parameters for forward enstrophy cascade simulations.

Simulation cases ν β kν RW μ α Forcing

1283 1 × 10−9 19 12.67 E (1) = 103

2563 2−8 × 10−9 4 38 25.33 0 0 E (2) = 125
5123 2−16 × 10−9 75 50 k f = 1.5

The values of the numerical parameters used for the different simulations are summarized in
Tables I and II for the forward and inverse cascade simulations, respectively.

IV. NUMERICAL RESULTS

In this section we present the results of the numerical integration of Eq. (20). The choice of the
forced wave number range and the values of μ and ν allows us to study inertial ranges for either the
forward enstrophy cascade or the inverse cascade range associated with helicity transfer.

A. Forward enstrophy cascade

We start by forcing the largest scales of the system: The energy in the largest scales is kept
constant in time. In the wave number range 1 � k � 1.5 the energy is given a value E (1) = 103,
and for 1.5 < k � 2.5 the energy level is kept at a value E (2) = 125. In the simulations the flow
attains a statistically steady state where the enstrophy injected in the forcing range is in equilibrium
with the enstrophy dissipated by the hyperviscous damping term. Since no scales larger than the
forcing scale are available in our domain, no inverse cascade can be established, and no large-scale
damping is needed to allow for a steady state. The value of μ is therefore chosen to be zero in these
simulations.

In Figs. 2(a) and 2(b) we show energy and helicity spectra, respectively. The insets show their
compensated spectra. For the energy spectrum, we can observe that an inertial range is present, with
a wave-number dependence close to k−3, as was also observed in the two-point closure investigation
[27]. Similarly, for the helicity spectrum, the exponent is close to k−2.

In the inset of Fig. 2(a) we show the energy spectra premultiplied by k3. The inset illustrates
that for the largest k, before the dissipation rate is reached, the spectra are approximately flat. The
plateau is, however, absent for smaller k. We show in the same inset how a logarithmic correction
[cf. Eq. (19)] allows us to improve the agreement with the predictions for these scales.

In order to assess that these scaling ranges correspond to constant-flux solutions, we compute
the enstrophy flux, defined in Eq. (10). In Fig. 2(c), it is observed that a substantial range
of wave numbers is observed where the flux is almost constant and approximately equal to
εν

W . Since the first two modes of the system are forced, there is no space for an inverse cascade
to form.

TABLE II. Numerical parameters for inverse helicity cascade simulations. The energy in the forced-wave-
number shells is kept at a constant value E (k(1)

f ) = E (k(2)
f ) = 10−3. The forcing wave number is defined as

k f = (k(1)
f + k(2)

f )/2.

Simulation cases ν β μ α kμ RH k(1)
f ; k(2)

f

1283 256 × 10−13 1.127 13.75 15; 16
2563 10−13 4 0.45 1 0.854 35.71 30; 31
5123 1

256 × 10−13 0.648 93.36 60; 61
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FIG. 2. Spectra of energy, helicity, and flux for the forward enstrophy cascade at different values of the
scale-separation number RW . (a) Energy spectra. The inset shows compensated spectra k3E (k), and the dotted
line in the inset indicates the logarithmic correction [see Eq. (19)]. (b) Helicity spectra. Inset: compensated
spectra |k2H (k)|. (c) Flux of enstrophy, normalized by the hyperviscous dissipation of enstrophy εW .

(a) (b)

FIG. 3. Visualizations of the no-vortex-stretching system forced at large scales for the 5123 case (RW =
50). (a) Energy. (b) Enstrophy.
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FIG. 4. Wave-number spectra for the inverse helicity cascade regime at different values of the scale-
separation number RH . (a) Energy spectra, (b) helicity spectra, and (c) helicity flux spectra. The insets in
(a) and (b) show compensated spectra (k/k f )7/3E (k) and (k/k f )4/3|H (k)|/|H (k f )|, respectively.

In Fig. 3, enstrophy and energy are visualized for the simulation at the largest resolution. The
energy plot shows large-scale structures at the forcing scale. The enstrophy shows more fine-grained
filamentary structures.

B. Inverse helicity cascade

After the confirmation of the predictions for the forward cascade of enstrophy in the last section,
we now turn to the assessment of the inverse cascade, associated with helicity conservation. We
consider the same numerical scheme but change the forcing range to higher wave numbers. We
carry out simulations at resolutions of 1283, 2563, and 5123 associated with three values of the
scale-separation parameter RH . The corresponding forcing scales are now k f = 15.5, 30.5, and 60.5,
respectively, for the three considered resolutions.

For all simulations, hyperviscosity and hypofriction are used to render the system stationary. The
numerical parameters are given in Table II. Energy and helicity spectra during the steady state are
shown in Figs. 4(a) and 4(b), respectively. We can observe that in the inertial range, the spectral
exponent approaches the predictions of Sec. II B, in particular, for the largest resolution considered
here.

The physical picture is further confirmed in Fig. 4(c), which shows the helicity fluxes, normalized
by the hypofriction dissipation rate. It is observed that the flux attains the value of the large-scale

094601-10



CASCADES OF ENSTROPHY AND HELICITY IN …

(a) (b)

FIG. 5. Visualizations of the no-vortex-stretching system forced at small scales for RW = 93. (a) Kinetic
energy. (b) Helicity.

dissipation ε
μ
H for k < k f . For the largest resolution a constant flux is observed for more than one

decade in wave numbers.
The spatial kinetic energy distribution and helicity distributions are visualized in Fig. 5. We

observe that the mean value of the helicity is not zero, but no outstanding large-scale helical features
are observed. Clearly, the large-scale friction does prevent the system from generating energetic,
helical structures at the box scale.

V. CONCLUSIONS

We have in this paper illustrated the cascades of enstrophy and helicity, as well as their associated
spectral scalings in isotropic three-dimensional turbulence without vortex stretching. Confirming the
predictions from statistical mechanics [28], we showed that enstrophy cascades from large scales
towards small scales, where it is dissipated, while helicity is transferred from small scales towards
large scales.

In the inertial range of the forward cascade, energy and helicity spectra follow E (k) ∝ k−3 and
|H (k)| ∝ k−2 for k � k f , associated with a conserved enstrophy flux towards large k. Closer to
the forcing scale, logarithmic corrections allow us to describe the deviation of the spectral energy
distribution from the dimensional prediction.

For the inverse cascade, we observe the scalings E (k) ∝ k−7/3 and |H (k)| ∝ k−4/3 for wave
numbers in the range between the friction wave number and the forcing wave number. It is shown
that these wave number ranges are associated with a constant (conserved) flux of helicity towards
small k.

An interesting perspective of the present investigation would be the assessment of the chirality
of the flow structures. Indeed, it is observed that in our simulations the relation between helicity
and energy spectra is nearly |H (k)| = kE (k). Formulations of energy and helicity using the helical
decomposition [29] allow us to show that |H (k)| = kE (k) corresponds to homochiral modes. In
flows where only a certain class of chiral modes is retained, a dual cascade is observed, with an
energy spectrum proportional to k−7/3, associated with helicity conservation [41]. The interesting
feature is that in that particular case, the helicity is transferred to small scales as opposed to the
inverse helicity cascade in the present system.

Another feature of this system which deserves further research is the long-time evolution of the
system in the absence of large-scale damping. Indeed, in the absence of friction or other forms of
large-scale damping, helicity will pile up, as energy does for two-dimensional turbulence. How such
a condensate manifests itself and changes the dynamics of the present system is an open question.
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Furthermore, since the system resembles two-dimensional turbulence in certain aspects, the
characterization of flow structures using statistical mechanics [42,43] might be an interesting
direction for investigation.
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