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Abstract

Being able to reposition tumors from prone imaging to supine surgery stances

is key for bypassing current invasive marking used for conservative breast

surgery. This study aims to demonstrate the feasibility of using Digital Vol-

ume Correlation (DVC) to measure the deformation of a female quarter tho-

rax between two different body positioning when subjected to gravity. A

segmented multipart mesh (bones, cartilage and tissue) was constructed and

a three-step FE-based DVC procedure with heterogeneous elastic regulariza-

tion was implemented. With the proposed framework, the large displacement

field of a mixed hard/soft breast sample was recovered with low registration
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residuals and low error between the measured and the manually determined

deformations of inter-phase interfaces. The present study showed the capac-

ity of FE-based DVC to faithfully capture large deformations of hard/soft

tissues.

Keywords: Digital Volume Correlation, Elastic regularization, Hard/soft

tissues, Large displacements, Kinematic fields, X-ray tomography

1. Introduction1

According to the World Health Organization, “as of the end of 2020,2

there were 7.8 million women alive who were diagnosed with breast can-3

cer in the past 5 years, making it the world’s most prevalent cancer.” In4

breast cancer treatment, surgery is one of the most common practices [1]. In5

breast-conserving surgery, the imaging procedure (i.e., MRI) is conducted in6

prone configurations while surgery is performed in supine stance [2, 3, 4, 5].7

Thus, the surgeon has to mentally predict tumor deformations or use invasive8

markings such as harpoons or radioactive markers to follow tumor motions.9

Numerical methods may bypass the marking step, which induces additional10

uncertainties of the procedure. Biomechanical simulations may predict such11

complex tumor deformations yet require patient-specific data (e.g., material12

properties, organ geometry, loading and boundary conditions).13

Accurately characterizing large and complex deformation fields, as is14

likely to occur with soft tissues, is challenging and several studies tackled15

such problem [6, 7, 8]. Few of them presented satisfying results or only vali-16

dated surface displacement fields [9]. Most of the time, these methods solely17

rely on the finite element method combined with free-form deformers (e.g., B-18
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spline warping of images) or are lacking clinical validation. In this work, it is19

proposed to measure 3D displacement fields based on ex vivo medical images.20

Usually, women diagnosed with breast cancer undergo MRI and/or mammog-21

raphy, which are the starting point of surgical procedures [6, 8, 10]. Digi-22

tal Image Correlation (DIC), stereocorrelation or Digital Volume Correlation23

(DVC) use similar inputs and provide experimentally measured displacement24

fields of surfaces or in the bulk [11, 12]. DVC may allow for the development25

of patient-specific models to estimate tumor motions due to changes in stance26

between imaging and intra-operative configurations, and will drastically en-27

rich the surgeon’s knowledge, thereby helping procedure planning. Previous28

studies showed the possibility of using DIC and stereovision principles on29

breasts to measure surface stretches. Khatam et al. [13] manually tracked30

drawn surgical markers and then assessed surface stretches. Such approaches31

do not give access to fields in the breast bulk, especially internal strain maps.32

DVC is an experimental technique that allows for the measurement of33

displacement fields in three dimensions [14]. It is used to extract strain34

maps in solid mechanics, but mostly for stiff materials [15, 16] such as35

bones [14, 17, 18, 19, 20, 21, 22, 23] and often relies on the hypothesis of36

infinitesimal strains between two successive configurations to ensure conver-37

gence. DVC is gaining interest in the biomechanical field [24, 25, 26]. Re-38

cently, DVC was applied to study the spine [27, 28]. Several works used DVC39

to map strain fields for arteries [29], tendons [30], intervertebral disks [31, 32],40

tissue interfaces with prosthetics [33] or even the mitral valve [34]. Optical41

coherence elastography/tomography techniques (e.g., for the identification of42

elastic properties) based on DVC with 3D infinitesimal strain measurements43
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were performed ex vivo on mesoscopic (i.e., millimetric regions of interest)44

human [35] and chicken [36] breast tissues. As DVC requires high quality45

images to properly converge, the regions of interest are usually of the order46

of centimeters (due to technical limitations of setups). A breast subjected to47

gravity from prone to supine positions undergoes large deformations, which48

calls for registrations of large regions of interest via DVC. As MRIs are ex-49

pensive and uncomfortable, one envisions that only two MRI scans would be50

performed. Therefore, two main challenges arise when dealing with breasts,51

namely, the strain levels may become high between two consecutive acquisi-52

tions (i.e., they do not satisfy the small strain hypothesis) and the dimension53

of the region of interest may be large.54

The following study is a proof of concept that aims to prove the feasibil-55

ity of using DVC to measure experimental displacement fields for a breast56

subjected to its weight when imaged in two different angular configurations57

wrt. gravity. First, the image acquisition, processing and mesh generation58

procedures are described. Then, DVC and heterogeneous regularization are59

recalled. Next, a three-step DVC pipeline is discussed to measure the large60

amplitude deformations of the studied breast. Last, the results are presented61

and discussed.62

2. Material and Methods63

2.1. Image Acquisition64

A left quarter of a thorax (of size 0.27m×0.26m×0.06m) was extracted65

from a female corpse. Fifteen biomarkers were placed on the surface and66

inside the breast to provide some displacement information (Figure 1(a)).67
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These markers were placed by the medical team and assumed rigidly at-68

tached to the sample using an adhesive surface. The breast was injected69

with physiological serum to get closer to an in vivo configuration and to70

mimic its initial mechanical properties.71

The medical images were acquired at Arnaud de Villeneuve Hospital72

(Montpellier, France) by Prof. Guillaume Captier and AnatoScope company.73

The use for research purposes of body donations and removals was in ac-74

cordance with French law according to the decree of April 27, 2022. The75

patient-specific geometry was imaged via micro-computed tomography using76

an RX Solutions scanner with a 0.34mm resolution. This resolution may be77

considered as low-quality for tomographies as the X-ray scanner allows for78

values down to 15 µm. The choice of such resolution was motivated by 379

reasons. First, high-resolution acquisitions are usually lengthy (i.e., between80

3 to 4 h). Second, the cadaver tissues will quickly degrade, thereby prevent-81

ing from performing a second acquisition. Last, the present CT-scans and82

clinical MRI images have similar resolutions.83

Two different configurations were acquired, namely, −45° and −60° in84

the axial plane with no intermediate states (Figure 1(b,c)). The angles were85

reached using a inclined wooden support on which the breast was fastened86

using four plastic straps to be compatible with medical imaging procedures.87

The assembly was manually moved to go from one configuration to the other.88

The hardware parameters are reported in Appendix A. As the images were89

not acquired for DVC purposes, different (Tukey) filtering values were used90

resulting in variable gray level ranges.91
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(a) (b) (c)

Figure 1: (a) Left quarter of a female thorax (0.27m × 0.26m × 0.06m in size) injected

with a physiological serum and fastened to a wooden plate using plastic straps. Fifteen

biomarkers were placed on the surface and inside the breast.−60° (b) and−45° (c) positions

in the CT-scanner for the studied configurations.

2.2. Mesh Generation92

Based on the gray levels (Figure 2(a)) and anatomic knowledge, three93

entities (phases) were created, namely, breast tissue, bones, and cartilage. A94

growth from seeds algorithm was manually initialized (i.e., several slices in95

each X, Y, Z direction of the volume were manually “painted” so the algo-96

rithm was able to identify regions and gray levels belonging to each individual97

phase) within the 3D Slicer software [37]. The result was smoothed, thereby98

allowing for mesh generations without too small interface segments as nodes99

in different phases had to coincide on interfaces to enforce kinematic compat-100

ibility. Last, an artificial outer layer (15 voxels (vx) thick) was added to the101

tissue, see Figure 2(b). This “artificial skin” was added to help DVC register102

the external surface. Each mask was converted into a sub-mesh and the con-103

sidered mesh was the coarsest that was obtained using ScanIP Simpleware104

software. With such mesh, sub-voxel elements were avoided.105

Figure 2(c) shows the resulting volumetric meshes and screenshots of106
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Simpleware software, courtesy of Synopsys. The mesh was composed of107

41, 454 linear tetrahedra with a characteristic element length of 9.3± 2.8 vx108

(i.e., 3.2 ± 0.9 mm). To avoid too small elements, 25 of them with length109

less than 3 vx were deleted.110

(a) (b) (c)

Figure 2: Phase-based mesh construction of the −60° configuration in the axial plane. (a)

Phase segmentation (tissue in pink, bones in white and cartilage in yellow) shown on the

original scan. (b) Section of a segmented image with the different phases and the artificial

skin layer that was added. (c) Phase-based mesh (courtesy of Synopsys) is shown on the

original scan.

2.3. Regularized Digital Volume Correlation111

2.3.1. Digital Volume Correlation112

DVC relies on the conservation of gray levels upon transformations be-113

tween two scanned configurations. The cost function Φ2
c to be minimized in114

global (e.g., FE-based) DVC is generally expressed as [38]115

Φ2
c =

∑
ROI

(I0(x)− It(x+ u(x)))2 (1)

where x is the position of any voxel in the reference configuration, u(x)116

the corresponding continuous displacement vector, and ROI the Region of117
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Interest. The gray levels corresponding to the 3D image of the reference118

configuration are denoted by I0, and those of the deformed configuration It.119

In the present case, FE-based DVC was considered with 4-noded tetrahe-120

dra (i.e., T4 elements [39]). The ROI to be registered during the minimiza-121

tion procedure was defined by the considered mesh (Figure 2(c)). Conse-122

quently, the unknowns were the nodal displacements gathered in the column123

vector {υυυ} such that124

u(x) =
∑
i

υi N
T4
i (x) (2)

where NT4
i denotes the vectorial shape functions of T4 elements. A modified125

Gauss-Newton scheme was used to minimize Φ2
c with respect to the sought126

nodal displacements {υυυ} [39]127

{υυυ}⋆ = argmin
{υυυ}

Φ2
c({υυυ}) (3)

which leads to iteratively solving linear systems of equations128

[H]{δυυυ} = {h} (4)

where [H] is the DVC Hessian matrix, {h} the residual vector, and {δυυυ} the129

correction nodal displacement vector.130

2.3.2. Heterogeneous Regularization131

As noted in Section 2.1, the images were not originally acquired for DVC132

purposes. In particular, the gray level contrast was not optimal. To overcome133

this issue, mechanical regularization was considered. It consists in adding a134

penalty term to mitigate displacement fluctuations. In regularized DVC,135

equilibrium is enforced at the local level by introducing a cost function based136
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on the equilibrium gap (in the absence of body forces) [40]137

[K]{υυυ} = {fres} (5)

where [K] is the stiffness matrix, and {fres} the residual force vector. The138

principle of regularization is to supplement the minimized cost function with139

the following penalty term140

Φ2
m = ∥{fres}∥2 = {υυυ}⊤[K]⊤[K]{υυυ} (6)

One may note that the DVC Hessian matrix [H] is a 0-th order operator141

with respect to displacements (i.e., [H] depends on the shape functions NT4
i142

themselves, and not on any spatial derivative), and [K] is a second order143

operator [41]; thus [K]⊤[K] is a fourth-order operator. To have dimensional144

consistency between Φ2
c and Φ2

m, a regularization length ℓreg is defined so that145

the regularization weight wm ∝ ℓ4reg. The total cost function Φ2
tot146

Φ2
tot = Φ2

c + wmΦ
2
m (7)

was minimized iteratively [42]. Convergence was reached when L2-norm of147

the displacement corrections becomes less than 10−2 vx.148

In the present study, the ROI covered three different materials (i.e., soft149

tissue, cartilage, and bones). To account for the fact that their elastic prop-150

erties were very different, heterogeneous regularization was utilized [43]. As a151

consequence, each element e was assigned an elastic contrast Ce whose value152

was the ratio of the Young’s modulus of the phase it belonged to divided by153

that of the soft tissue. Thus, Ce > 1 corresponds to a phase stiffer than the154

soft tissue.155
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The regularization length, ℓreg, scales with the square root of the elastic156

contrast Ce [44]. For example, if Ce = 100, then the regularization length is157

ten times higher (i.e.,
√
100 factor) for the considered element in comparison158

to the tissue elements. In all the analyses reported herein, the regularization159

lengths refer to the softest phase.160

A convergence study was carried out to determine the best regulariza-161

tion length. Let us refer to the bone with the index •b, cartilage with the162

index •c, and to tissue with the index •t. The bone Young’s modulus was163

found to vary between 5 to 50 GPa [45, 46, 47], and that of cartilage in the164

range from 8 to 40 MPa [48, 49, 50]. Breasts are made of different materi-165

als such as adipose, fibroglandular, skin, or fascia tissues. In addition to a166

wide variability between patients, the differences between in vivo/ex vivo or167

compression/tension mechanical tests give a large range of Young’s moduli168

ranging between 0.2 to 28 kPa [51, 52]. Therefore, the elastic contrasts were169

set to Cb = 106, Cc = 104 and Ct = 1. Comparisons were also performed to170

results with two other contrasts, namely, Cb = 103, Cc = 102, Ct = 1 and171

Cb = Cc = Ct = 1 (i.e., homogeneous properties).172

2.3.3. DVC Steps to Measure Breast Deformation173

Regularized DVC was applied to measure breast deformation between174

−60° axial to −45° axial configurations. The analysis consists of the following175

three steps.176

For the first step, an initial evaluation of the mean deformation gradi-177

ent tensor, F, was obtained, which was based on the motion of m = 15178

biomarkers. The biomarkers were manually identified while segmenting the179

scans. For each configuration, their position was measured as the geomet-180
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ric barycenter of their segmentation. Therefore, one may consider that the181

resulting positions include some user uncertainty resulting from the segmen-182

tation procedure. This first step corresponds to current practices in which183

markers are put on the external surface of the breast, and their motions are184

sought for tumor repositioning.185

Let xm denote the position of the m-th marker in the reference configu-186

ration, and xm +um its position in the deformed configuration. Considering187

the deformation gradient tensor F, the translation vector t, and the second188

order identity tensor I, the approximated field ua reads189

ua(xm,F, t) = (F− I)xm + t (8)

where the components of F and t were obtained by least squares minimization190

[F⋆, t⋆] = argmin
F,t

∥um − ua(xm,F, t)∥2 (9)

For the second step, a better approximation of the initial displacement191

field was computed with homogeneous regularized DVC applied to the seg-192

mented images created for each configuration (Figure 3) including internal193

air. Because the histograms of the raw images were not fully conserved, using194

such images allowed the gray levels to be made identical for each segmented195

phase. This DVC step was initialized by the marker-based displacement esti-196

mate. No elastic contrast was considered to allow for the correct positioning197

of the bones. Given the fact that the three phases had uniform gray levels,198

the gray level contrast (i.e., gradient of image) was nonzero only for a very199

limited number of voxels (i.e., at interfaces between phases). This property200

leads to very steep cost functions about the optimal solution. Blurring the201

volume smoothens the cost function and induces faster convergence of the202
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Newton-based minimization scheme. Thus to improve convergence, the two203

volumes were blurred (with a Gaussian filter with a radius of 3 vx).204

(a) (b)

Figure 3: Sections of segmented volumes corresponding to (a) −60° and (b) −45° config-

urations. Phase-based images were created for the second step (i.e., cartilage in white,

bones in light gray, tissue in dark gray and air in black). The phase of confined air was

included.

For the third step, the previously measured displacement field was used205

to initialize the heterogeneous regularized DVC calculation on the original206

volumes (Figure 4), with no filtering of the gray levels. The elastic contrasts207

were set to the values given in Section 2.3.2. The regularization length was208

set according to the convergence study (Appendix B).209
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(a) (b)

Figure 4: Sections of −60° (a) and −45° (b) configurations obtained with an RX-Solutions

CT-scanner (voxel size of 0.34mm) in the axial plane. These volumes were used during

the third step of the DVC procedure.

While the gray level residuals ρ(x) = I0(x)−It(x+u(x)) of DVC analyses210

provide a quality indicator for the measured displacement field (see Equa-211

tion (1)), the Root Mean Square Error (RMSE) was used as a metric for212

evaluating the trustworthiness of surface displacements.213

RMSE2 =
1

N

N∑
i=1

(
xDVC
i − Pseg(xDVC

i )
)2

(10)

For each phase of both initial and deformed configurations, a surface (STL)214

mesh was generated from the volumetric mesh by identifying the boundary215

elements. Then, the measured displacement field was applied to the initial216

surface nodes. For each phase, the error between the assessed N deformed217

nodes from DVC xDVC and the refined mesh resulting from the segmentation218

of the deformed image Mseg was computed as the root mean square error219
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(RMSE). As the meshes did not have the same number of nodes, a projection220

operator Pseg of the DVC deformed nodes onto Mseg was assessed using an221

Iterative Closest Point (ICP) algorithm [53].222

2.3.4. Uncertainty quantification223

As pointed out above, the imaging conditions were not optimal for DVC224

purposes and thus may degrade the measurement uncertainties. Further-225

more, common practice requires at least two repeat scans to be acquired to226

quantify kinematic uncertainties a priori [38, 54]. In the present case, no227

repeat scan was performed. Thus another (a posteriori) route was followed.228

At the end of any global DVC analysis, the quality of registration is probed229

by analyzing the gray level residuals ρ, which contain information about ac-230

quisition noise and artifacts, as well as indications about the trustworthiness231

of the selected kinematic bases [55, 38]. It was thus decided to artificially232

create a new volume by applying a 0.5 vx translation along all three Carte-233

sian coordinates to the reference volume. White Gaussian noise was also234

added (Figure 5(b)), whose standard deviation σρ was that of the gray level235

residuals corresponding to the result of the DVC analysis that was deemed236

the most trustworthy in the sequel. This volume was correlated with the237

reference volume (Figure 5(a)). The displacement uncertainties correspond238

to the standard deviations of nodal displacements in each direction. Sim-239

ilarly, the strain uncertainties were assessed as the standard deviations of240

elementary strains. As regularized DVC was carried out, the fine mesh was241

not altered but the regularization length ℓreg was varied to assess standard242

uncertainties [56, 57].243
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(a) (b)

Figure 5: Sections of −60° original volume (a) and translated volume (b) corrupted with

white Gaussian noise whose standard deviation was equal to 18.3 gray levels

3. Results and Discussion244

3.1. DVC Results245

In the following results, the mean element size was equal to 10 voxels,246

and the mean spatial resolution was 17 voxels (the physical voxel size was247

0.34 mm).248

The marker-based displacement field was computed and applied to the249

mesh as an initial guess (Figure 6), which provided a good approximation250

to recover the overall shape of the sample in the deformed configuration.251

Because the biomarkers were mainly placed on the surface, the initial guess252

suffered from inaccuracy in the volume (e.g., near bones) and led to high253

RMS residual (63 gray levels).254
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(a) (b)

Figure 6: (a) Reference (−60°) and (b) deformed (−45°) meshes based on the marker

motions. The wireframe meshes are superimposed over orthoslices of their respective

volumes. The biomarkers are shown as colored disks.

This first estimate served as initialization for the DVC analysis between255

the segmented images (for which the gray level distribution was almost the256

same (Figure 7(b))). Therefore, gray level conservation was enforced. The257

regularization length was set to 35 vx to properly converge (i.e., only 48 DVC258

iterations were needed). The use of these segmented images allowed for fur-259

ther reducing the gray level residuals (Figure 7(b)). The final RMS residual260

was 10.6 gray levels (Figure 7), which is deemed low given the complexity of261

the deformation and the acquisition conditions. It is worth noting that the262

initial RMS level was equal to 62.7 gray levels, which proves that the current263

practice (i.e., first step) is not sufficient for a precise determination of the264

tumor position.265
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(a) (b)

Figure 7: (a) Gray level residuals are shown within the region of interest defined by the

considered mesh. (b) From left to right: gray level histograms of the reference volume I0,

deformed volume It, and DVC residuals ρ shown in sub-figure (a).

Figure 8 shows the measured displacement field. The tissue phase shifted266

downward, thereby creating an inframammary fold (Figure 11(d)). Thanks267

to the segmented images, this complex configuration could be recovered.268

Adding the artificial skin layer was a key step to ensure tracking of the269

interface between the tissue and air. Without such gray level contrast, the270

procedure could have converged to the wrong positions. However, this result271

is only the first approximation as no gray level contrast existed inside each272

phase (Figure 3). It is worth noting that the displacement amplitudes were273

very high in all three directions. Without good initialization, such levels are274

not accessible with only two volumes to register. The biomarkers on the275

one hand, and the artificial skin on the other hand were key to getting such276

results.277
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(a) ux (b) uy (c) uz

Figure 8: Displacement field expressed in voxels (1 vx ≡ 0.34 mm) for the DVC analysis

on the segmented images. (a) ux, (b) uy and (c) uz components plotted on the deformed

mesh.

In the final step, DVC was run with the actual 3D images when initialized278

with the displacement field shown in Figure 8 applying a contrast of Cb =279

106, Cc = 104, Ct = 1. To probe the effect of regularization, the analysis280

was started with a large regularization length (i.e., ℓreg = 40 vx). Once281

convergence was achieved, a new analysis was run with a lower regularization282

length (i.e., ℓreg = 20 vx), and so on down to 0.5 vx. The upper bound was283

selected as higher values led to bad conditioning of the DVC Hessian matrix,284

especially when heterogeneous elastic contrasts were considered.285

Figure 9(a) shows the change of the RMS gray level residual as a function286

of the regularization length. There is a very significant decrease in RMS287

residual with ℓreg, thereby indicating that results with large regularization288

lengths should not be kept. This trend can be understood from the fact289

that body forces were not negligible for the tissue. In the present case, the290

penalty term follows the hypothesis of vanishing body forces. This is not291

valid as the soft tissue deformed due to gravity contrary to the other phases,292

which are stiffer and do not deform. Therefore the penalty term should be as293
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small as possible and very small regularization should be applied. Since the294

elastic contrasts were very high for the bone and cartilage, the regularization295

in the tissue was essentially vanishing for the lower regularization lengths.296

This trend was observed for the three considered contrasts. However, when297

Cb = 106, Cc = 104, Ct = 1, the residual significantly increase before the298

other two cases. This difference is due to the large value of regularization299

length of bone and cartilage, which degrades the conditioning of the Hessian300

matrices.301

(a) (b)

Figure 9: Convergence analysis. (a) RMS gray level residuals and (b) number of iterations

of the DVC algorithm as functions of the regularization length ℓreg for three different

elastic contrast settings

To analyze convergence of the DVC algorithm, the number of iterations302

to reach convergence is displayed in Figure 9(b). As the regularization length303

was decreased, the number of iterations augmented for all the applied con-304

trast triplets. This trend was expected as less and less weight (i.e., smaller305

ℓreg) was put on the tissue phase. Given the complexity of the sought306

deformation and the fact that the gray level contrast was not very high,307
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such trend was unavoidable. For regularization lengths less than 3 vx when308

Cb = 106, Cc = 104, Ct = 1 (or 3 vx when Cb = 103, Cc = 102, Ct = 1309

and 8 vx when Cb = Cc = Ct = 1), the number of iterations became very310

high (i.e., convergence in terms of L2-norm of the displacement corrections311

less than 10−2 vx was no longer satisfied before the maximum number of312

iterations was reached).313

It is worth noting that to properly capture the inframammary fold (Fig-314

ure 11(d)), a significant number of iterations was needed when ℓreg = 4 vx315

(Figure 9(b)), which led to a solution with one of the lowest RMS residuals316

(Figure 9(a)) for the highest considered elastic contrast. Further conver-317

gence studies are shown in Appendix B.By introducing elastic contrast, it318

was also possible to lower the regularization length in the tissue (i.e., 4 vx for319

Cb = 106, Cc = 104, Ct = 1 instead of 20 vx for Cb = 1, Cc = 1, Ct = 1) to320

reach a lower final residual (18.3 instead of 20.2 gray level for homogeneous321

regularization). Introducing elastic contrast allowed for strongly penalizing322

the hard phase and limiting the regularization over the soft phase which was323

therefore freer to move. All three convergence curves (Figure 9(a)= have324

the same trend but higher contrasts allowed for significantly relaxing the325

constraints on the soft tissue.326

From these two different quantities, the results obtained for a regular-327

ization length of 4 vx with heterogeneous regularization (Cb = 106, Cc =328

104, Ct = 1) were kept. 292 iterations were required to converge. The RMS329

residuals were equal to 18.3 gray levels (Figure 10(a)). They were almost two330

times higher than those observed for the segmented volumes. However, given331

the fact that no special care was taken in the acquisition process, such levels332
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are more than acceptable. Figure 10(b) shows an almost centered distribu-333

tion of the residuals with minimal bias, even though gray level conservation334

was not fully satisfied because of the followed acquisition protocol. As the335

scans were not acquired for DVC purposes, no effort was put into keeping the336

same filter values, which resulted in slightly different gray level distributions.337

(a) (b)

Figure 10: (a) Gray level residuals for the last DVC analysis. (b) From left to right: gray

level histograms of the reference volume I0, deformed volume It, and DVC residuals ρ

shown in sub-figure (a).

Figure 11 shows the measured displacement field. Similarly to the re-338

sults achieved with the segmented volumes, the tissue moved downward and339

created an inframammary fold (Figure 11(d)). In all three directions, the340

displacement amplitudes were high (i.e., of the order of centimeters). The341

mask-based initialization allowed the DVC analysis to be started from a good342

initial guess, and the presence of gray level contrast in the phases gave more343

accurate and local information on the displacement field (as an example, see344

uz component in Figures 8(c) and 11(c)).345
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(a) (b)

(c) (d)

Figure 11: Displacement fields expressed in voxels (1 vx ≡ 0.34 mm) for the last DVC

analysis displayed on the mesh without the outer skin layer. (a) ux, (b) uy and (c) uz

components plotted on the deformed mesh. (d) uy component from another viewpoint to

highlight the displacement discontinuity around the inframammary fold (black ellipse).

The soft tissue experienced very large displacements, part of them due to346

rigid body motions (i.e., translations and rotations), but also to mechanical347

strains. In the present case, the Green-Lagrange strains
(
E = 1

2

(
F⊤F− I

))
348

are reported. They were estimated from the exact differentiation of the349

shape functions of the 4-noded tetrahedra (i.e., T4 elements) to evaluate350

the deformation gradient tensor F. Figure 12 shows that the soft tissue351

underwent large strains (including shear in particular in the inframammary352

fold) up to 25% in magnitude, which is large between two scans only.353
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(a) (b) (c)

(d) (e) (f)

Figure 12: Strain fields for the last DVC analysis displayed on the mesh without the skin

layer. (a) Exx, (b) Eyy, (c) Ezz, (d) Exy, (e) Exz and (f) Eyz components. The soft tissue

underwent large strains (including shear in particular in the inframammary fold) up to

25% in magnitude.

3.2. A posteriori uncertainty quantification354

The DVC results obtained for a regularization length of 4 vx with Cb =355

106, Cc = 104, Ct = 1 led to residuals whose standard deviation was equal356

to 18.3 gray levels. With this information, the standard uncertainties σ were357

assessed a posteriori by varying the regularization length ℓreg. Figure 13(a)358

shows that the larger the regularization length, the lower the standard dis-359

placement uncertainty. This dependence illustrates the trade-off between360

measurement uncertainty and spatial resolution (here corresponding the reg-361

ularization length) [58, 57]. The power law interpolation with exponent −1.5362

describes very well the reported results in accordance with the hypothesis363
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of white Gaussian noise [56, 58]. Similarly, the standard strain uncertainties364

also follow very closely a power law with exponent −2.5 (Figure 13(b)).365

(a) (b)

Figure 13: Standard displacement (a) and strain (b) uncertainties as functions of the

regularization length ℓreg for an elastic contrast of Cb = 106, Cc = 104 and Ct = 1. The

dashed lines show power law interpolations with exponent −1.5 for the displacements and

−2.5 for the strains.

With the selected regularization length (ℓreg = 4 vx) and elastic contrasts366

(Cb = 106, Cc = 104, Ct = 1), the standard displacement uncertainties were367

of the order of 0.1 vx, and the corresponding standard strain uncertainties368

were less than 5×10−3. These levels are deemed sufficiently low in comparison369

to the reported results (Figures 11 and 12).370

3.3. Further validation371

Last, the overall shape of the sample was well recovered (Figure 14). In372

addition to the gray level residuals, in Table 1 the RMSE (Equation 10) was373

used as a metric for evaluating the trustworthiness of surface displacements.374

The measured error was a few millimeters (between 2.2 to 3.1 mm, which375
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corresponds to a range of 6.8 to 9.4 vx). When the highest elastic contrasts376

were considered, all errors decreased about 0.1 mm in comparison to homo-377

geneous regularization, which further validates their use. As the error was378

lower than the mean element size (i.e., 10 vx) and the mean spatial resolu-379

tion (i.e., 17 vx), the measured displacement field was very realistic. It is380

worth remembering that this error included those due to the segmentation381

steps. As this multiphase sample had a complex morphology, and internal382

gray level contrast, the segmentation relied on coupling of growing from seeds383

algorithms, and smoothing with operator-dependent steps. The latter ones384

explain parts of the observed mismatches.385

Table 1: RMSE computed between

the DVC deformed surface and the

corresponding segmented surface.

The data in parentheses correspond

to homogeneous regularization and

the other ones to the highest elastic

contrasts

Phase RMSE (mm)

Soft tissue 2.2 (2.3)

Cartilage 3.1 (3.2)

Bones 2.6 (2.7)

Figure 14: Superposition of the de-

formed mesh resulting from DVC (red)

with the expected mesh obtained from

the segmentation of the deformed con-

figuration (black).

4. Conclusion386

The objective of this work was to demonstrate the feasibility of using387

DVC to measure large biomechanical deformations. More specifically, the388
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displacement field was measured for a breast subjected to gravity in two389

different positions when imaged via computed tomography. To obtain satis-390

factory results, a three-step DVC pipeline was implemented. The first step391

consisted in determining the motions of 15 biomarkers, which corresponds to392

one of the current clinical practices. It was shown that these motions were393

not sufficient to properly map the whole deformation field of the breast. The394

second step used the previous initial guess to assess the breast deformation395

with segmented volumes in which the three phases (i.e., bone, cartilage and396

soft tissue) were distinguished. An external skin was added to allow for the397

inframammary fold to be better captured. With these new motions, a final398

set of DVC analyses was performed on the original reconstructed volumes399

accounting for elastic contrasts in the three phases.400

The results of this proof of concept study highlighted the efficiency of401

the DVC technique for a breast including the inframammary fold. Elastic402

contrasts were set according to literature data. The studied breast had re-403

gions with very high elastic contrast (106 between bones and tissue, and 104404

for cartilage), which was accounted for in the regularized DVC scheme used405

herein. Few DVC iterations were needed to quickly pre-converge to a suitable406

displacement field with a low RMS residual. The convergence study wrt. the407

regularization length showed that a rather low value could be chosen to ob-408

tain accurate results. If the regularization length was too large, meaningful409

displacement fluctuations were filtered out. Conversely, when the regulariza-410

tion length was too small, then convergence issues arose. Similar trends were411

observed for two other sets of elastic contrasts presented, thereby showing412

that the higher the contrast, the lower the regularization length (i.e., having413
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a higher contrast, less regularization was applied to the soft tissue leading to414

lower registration residuals).415

The present study had several limitations. First, the tomographic acquisi-416

tions were not optimal for DVC purposes. In particular, no repeat scans were417

performed for uncertainty quantifications. As only two scans were available,418

an a posteriori route was followed to assess standard kinematic uncertain-419

ties. Furthermore, CT-scans (but MRIs) are generally not used in clinical420

applications. Therefore, further studies are needed to investigate the fea-421

sibility of the present DVC pipeline when applied to MRIs. Second, the422

experiment was carried out on an ex vivo injected cadaverous breast to be423

close to in vivo testing conditions. Therefore, this study may be extended424

to living tissues. It is hypothesized that blood flow between various acqui-425

sitions may impact the resulting gray levels and thus DVC results. This426

study also had user-dependent steps to be followed. The segmentation was427

manually assessed and the biomarker positions were assessed from their seg-428

mentation. For the patient geometry, some uncertainties and mismatches429

were observed between the gray level images and the associated segment430

(i.e., the mesh needed sufficiently regular elements and simplifications of the431

geometry, namely, smoothing and simplification of the regions were neces-432

sary). Future studies are needed to automate these steps to reduce likely433

user-impact on the results.434

Last, the results obtained herein may then be used in a calibration pipeline435

to get patient-specific material parameters. As the displacement field was436

computed for a finite element (FE) discretization, links with finite element437

simulations are straightforward. One would be able to predict the deforma-438
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tion of the organ in surgical positions. The DVC analysis may also be coupled439

with finite element analyses in cases of (self-)contact. The computed FE dis-440

placement field may then serve as initialization for DVC registrations. Its441

trustworthiness would then be probed thanks to the gray level residuals.442
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Appendix A. DVC hardware parameters460

Orientation −60° −45°

Tomograph EasyTom 150 (RX Solution) EasyTom 150 (RX Solution)

Target / Anode W (reflection mode) W (reflection mode)

Voltage 120 kV 120 kV

Current 202 µA 202 µA

Focal spot size 50 µm 50 µm

Tube to detector 610 mm 610 mm

Tube to object 430 mm 430 mm

Detector Varian 25× 20 cm Varian 25× 20 cm

Definition 1920× 1536 pixels 1920× 1536 pixels

Projection definition 1840× 728 pixels 1840× 728 pixels

Number of projections 2111 1407

Angular amplitude 360° 360°

Frame average 15 per projection 15 per projection

Frame rate 30 fps 30 fps

Acquisition duration 28 min 08 sec 18 min 40 sec

Reconstruction algorithm filtered back-projection filtered back-projection

Filter Tukey (75%) Tukey (0%)

Gray Levels amplitude 8 bits 8 bits

Volume size 768× 781× 216 voxels (after crop) 768× 781× 216 voxels (after crop)

Field of view 261.12× 265.54× 73.44 mm3 (after crop) 261.12× 265.54× 73.44 mm3 (after crop)

Image scale 0.34 mm/voxel 0.34 mm/voxel
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Appendix B. Convergence Analysis461

The deformed meshes obtained in the convergence analysis for homo-462

geneous regularization (i.e., Cb = Cc = Ct = 1, see red dotted curve of463

Figure 9(a)), are displayed in Figure B.15 when the regularization length464

was relaxed from an initially very high value (ℓreg = 500 vx) to a very small465

one (ℓreg = 5 vx). In the last case, virtually no regularization was applied466

to the soft tissue. As shown in Figure 9(a), the RMS residuals decreased467

with the regularization length. Figure 9(b) shows that a high regulariza-468

tion may help to converge quickly but tends to an unsatisfactory solution for469

which the lower fold cannot be captured. When the regularization length was470

lowered, the fold was better recovered until a minimum length was reached471

(i.e., about 10 vx in the present case, see Figure B.15(e)). For low regulariza-472

tion lengths, the minimization procedure no longer converged (Figure 9(b))473

to a trustworthy solution. It is worth remembering that the main cause of474

the soft tissue to deform was due to gravity. Since mechanical regularization475

was based on minimizing the equilibrium gap, its weight should not be too476

high to avoid nonphysical solutions. The results shown hereafter illustrate477

this phenomenon.478
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(a) ℓreg = 500 vx (b) ℓreg = 200 vx

(c) ℓ=100 vx (d) ℓreg = 50 vx

(e) ℓreg = 20 vx (f) ℓreg = 5 vx

Figure B.15: Evolution of the deformed mesh with the regularization length. Segmentation

results are in a black wireframe and the DVC results are in red. (a) ℓreg = 500 vx,

(b) ℓreg = 200 vx, (c) ℓreg = 100 vx, (d) ℓreg = 50 vx, (e) ℓreg = 20 vx and (f) ℓreg = 5 vx.
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