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ON BRAIDS AND LINKS UP TO LINK-HOMOTOPY

EMMANUEL GRAFF

Abstract. This paper deals with links and braids up to link-homotopy, studied from the viewpoint
of Habiro’s clasper calculus. More precisely, we use clasper homotopy calculus in two main directions.
First, we define and compute a faithful linear representation of the homotopy braid group, by using
claspers as geometric commutators. Second, we give a geometric proof of Levine’s classification of
4-component links up to link-homotopy, and go further with the classification of 5-component links in
the algebraically split case.

1. Introduction

The notion of link-homotopy was introduced in 1954 by J.W. Milnor in [Mil54], in the context of
knot theory. It is an equivalence relation on links that allows continuous deformations during which
two distinct components remain disjoint at all times, but each component can self-intersect. Any knot
is link-homotopic to the trivial one, but for links with more than one component this equivalence re-
lation turns out to be quite rich and intricate. Since Milnor’s seminal work, link-homotopy has been
the subject of numerous works in knot theory see e.g. [Gol74; Lev88; Orr89; HL90], but also more
generally in the study of embedding and link-maps (self-immersed spheres) [FR86; Kir88; Kos90;
ST19] in codimension 2 - in particular knotted surfaces in dimension 4 [MR85; BT99; AMW17]. In
this paper we are interested in the study of link-homotopy for braids and links.

The homotopy braid group has been studied by many authors. In [Gol74] Goldsmith gives an
example of a non trivial braid up to isotopy that is trivial up to link-homotopy; she also gives a
presentation of the homotopy braid group. A representation of the homotopy braid group is given by
Humphries in [Hum01]. He uses it to show that the homotopy braid group is torsion-free for less than
6 strands. Finally the pure homotopy braid group has been studied by Habegger and Lin in [HL90]
as an intermediate object for the classification of links up to link-homotopy. As further developed
below, our first main result is another linear representation of the homotopy braid group (Theorem
3.25), which we prove to be faithful (Theorem 3.33) and which is computed explicitly in Theorem 3.28.

We also adress the problem initially posed by Milnor in [Mil54], of classifiying links in the 3-sphere
up to link-homotopy. Milnor himself answered the question for the 2 and 3-component case. Fur-
thermore, Habegger and Lin [HL90] proposed a complete classification; they solved the problem for
any number of components, in terms of partial conjugations. This is a subtle algebraic equivalence
relation on pure braids, where two equivalent braids correspond to link-homotopic links. A more
direct algebraic approach had been proposed by Levine [Lev88] just before the work of Habegger–Lin
in the 4-component case. Our second main result, is a new geometric proof of Levine’s classification of
4-component links up to link-homotopy (Theorem 4.10), which we further generalize in Theorem 4.12
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2 EMMANUEL GRAFF

to algebraically split 5-component links (that is, 5-component links with vanishing linking numbers).

The notion of clasper was developed by Habiro in [Hab00]. These are surfaces in 3–manifolds with
some additional structures, on which surgery operations can be performed. In [Hab00], Habiro de-
scribes the clasper calculus up to isotopy, which is a set of geometric operations on claspers that yield
equivalent surgery results. It is well known to experts how clasper calculus can be refined for the study
of knotted objects up to link-homotopy (see for example [FY09; KM20]). This homotopy clasper cal-
culus, which we review in Section 2, will be the key tool for proving all the main results outlined above.

The rest of this paper consists of three sections.
In Section 2, we review the homotopy clasper calculus: after briefly recalling from [Hab00] Habiro’s

clasper theory, we recall how a fundamental lemma from [FY09], combined with Habiro’s work,
produces a set of geometric operations on claspers having link-homotopic surgery results.

Section 3 is dedicated to the study of braids up to link-homotopy. We start by reinterpreting braids
in terms of claspers. In Section 3.1 we define comb-claspers, a family of claspers corresponding to
braid commutators. They are next used to define a normal form on homotopy braids, thus allowing
us to rewrite any braid as an ordered product of comb-claspers. In Section 3.2 after a short algebraic
interlude, we give a presentation of the pure homotopy braid group (Corollary 3.22), using the work of
[Gol74] and [MK99] as well as the technology of claspers. Finally, we define and study in Section 3.3
a representation of the homotopy braid group which is in a sense the linearization of the homotopic
Artin representation. We give its explicit computation in Theorem 3.28 (see also Example 3.30 for
the 3-strand case) and show its injectivity in Theorem 3.33. Moreover, from the injectivity of the
representation follows the uniqueness of the normal form and thus the definition of the clasp-numbers,
a collection of braid invariant up to link-homotopy. Note that our representation has lower dimension
than Humphries one. The correspondence between the two representations has not been established
yet, but we wonder if our representation could open new leads on the torsion problem for more than
six strands.

The final Section 4 focuses on the study of links up to link-homotopy. The method used is based
on the precise description of partial conjugations, which is the central algebraic tool in the above-
mentioned classification result of Habegger and Lin [HL90]; we provide them with a topological
description in terms of claspers. This new point of view allows us, for a small number of components,
to describe when two braids in normal form have link-homotopic closures. We translate in terms of
clasp-number variations the action of partial conjugations on the normal form. In this way we recover
the classification results of Milnor [Mil54] and Levine [Lev88] for 4 or less components (Theorem 4.10).
Moreover, we also classify 5-component algebraically split links up to link-homotopy (Theorem 4.12).

Acknowledgement : This work is partially supported by the project AlMaRe (ANR- 19-CE40-0001-
01) of the ANR. The author thanks P. Bellingeri and J.B. Meilhan for their great advises and helpful
discussions.

2. Clasper calculus up to link-homotopy

Clasper calculus has been developed by Habiro in [Hab00] in the context of tangles up to isotopy.
Claspers turn out to be in fact a powerful tool to deal with link-homotopy. In this section we first
define claspers and their associated vocabulary. Then we describe how to handle claspers up to
link-homotopy.
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2.1. General definitions. Let X denote an n-component ordered and oriented 1-manifold (a disjoint
union of circles and intervals), and let M denote a smooth compact and oriented 3-manifold.

Definition 2.1. An n-component tangle in M is a smooth embedding of X into M . We also denote
by θ the image of the embedding with the induced orientation.

‚ We say that two tangles are isotopic if they are related by an ambient isotopy of M that fixes
the boundary.

‚ We say that two tangles are link-homotopic if there is a homotopy between them fixing the
boundary, and such that the distinct components remain disjoint during the deformation.

Definition 2.2. A disk T smoothly embedded in M is called a clasper for a tangle θ if it satisfies
the following three conditions:

- T is the embedding of a connected thickened uni-trivalent graph with a cyclic order at each trivalent
vertex. Thickened univalent vertices are called leaves, and thickened trivalent vertices, nodes.

- θ intersects T transversely, and the intersection points are in the interior of the leaves of T .
- Each leaf intersects θ at at least one point.

Diagrammatically a clasper is represented by a uni-trivalent graph corresponding to the one to be
thickened. The trivalent vertices are thickened according to Figure 1. On the univalent vertices we
specify how the corresponding leaves intersect θ, and we also indicate how the edges are twisted using
markers called twists (see Figure 1).

Figure 1. Local diagrammatic representation of claspers.

Definition 2.3. Let T be a clasper for a tangle θ. We define the degree of T denoted degpT q as its
number of nodes plus one, or equivalently its number of leaves minus one. The support of T denoted
supppT q is defined to be the set of the components of θ that intersect T . We often consider the
number of the components rather than the components themselves.

Definition 2.4. A clasper T for a tangle θ is said to be simple if all leaves of T intersect θ exactly
once. A leaf of a simple clasper intersecting the l-th component is called an l-leaf.

Definition 2.5. We say that a clasper T for a tangle θ has repeats if it intersects a component of θ
in at least two points.

Given a clasper T for a tangle θ, there is a procedure called surgery detailed in [Hab00] to construct
a new tangle denoted θT . We illustrate on the left hand side of Figure 2 the effect of a surgery on a
clasper of degree one. Now if T has degree higher than one, we first apply the rule shown on the right
hand side of Figure 2, at each trivalent vertex: this breaks up T into a union of degree one claspers,
on which we can perform surgery.
Note that clasper surgery commutes with ambient isotopy. More precisely for i an ambient isotopy
and T a clasper for a tangle θ we have that ipθT q “ pipθqqipT q. This is an elementary example of
clasper calculus, which refers to the set of operations on unions of a tangles with some claspers, that
allow to deform one into an other with isotopic surgery result. These operations are developed in
[Hab00], and we give in the next section the analogous calculus up to link-homotopy.
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Figure 2. Rules of clasper surgery.

2.2. Clasper calculus up to link-homotopy. In the whole section, T and S denote simple claspers
for a given tangle θ. We use the notation T „ S, and say that T and S are link-homotopic when the
surgery results θT and θS are so. For example if i is an ambient isotopy that fixes θ, then T „ ipT q.
Moreover, if θT is link-homotopic to θ, we say that T vanishes up to link-homotopy and we denote
T „ H.

We begin by recalling a fundamental lemma from [FY09]; more precisely, the next result is the case
k “ 1 of [FY09, Lemma 1.2], where self C1-equivalence corresponds to link-homotopy.

Lemma 2.6. [FY09, Lemma 1.2] If T has repeats then T vanishes up to link-homotopy.

It is well known to the experts that combining Lemma 2.6 with the proofs of Habiro’s technical
results on clasper calculus [Hab00], yields the following link-homotopy clasper calculus.1

Corollary 2.7. [Hab00, Proposition 3.23, 4.4, 4.5, 4.6] We have the following link-homotopy equiv-
alences (illustrated in Figure 3).

(1) If S is a parallel copy of T which differs from T only by one twist (positive or negative), then
S Y T „ H.

(2) If T and S have two adjacent leaves and if T 1 Y S1 is obtained from T Y S by exchanging these

leaves as depicted in (2) from Figure 3, then T Y S „ T 1 Y S1 Y T̃ , where T̃ is as shown in the
figure.

(3) If T 1 is obtained from T by a crossing change with a strand of the tangle θ as depicted in (3) from

Figure 3, then T „ T 1 Y T̃ , where T̃ is as shown in the figure.
(4) If T 1 Y S1 is obtained from T Y S by a crossing change between one edge of T and one of S as

depicted in (4) from Figure 3, then T Y S „ T 1 Y S1 Y T̃ , where T̃ is as shown in the figure.
(5) If T 1 is obtained from T by a crossing change between two edges of T then T „ T 1.

❑∼❑Ø
T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  

❑∼❑
θθ θθ

T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  ~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  ❑∼❑

T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’

T2’T2’T2’T2’T2’T2’T2’T2’T2’T2’

T1  T1  T1  T1  T1  T1  T1  T1  T1  T1  

T2  T2  T2  T2  T2  T2  T2  T2  T2  T2  

~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  

(1)(1) (2)(2) (3)(3)

❑∼❑

~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  
~
T  

T1  T1  T1  T1  T1  T1  T1  T1  T1  T1  T2  T2  T2  T2  T2  T2  T2  T2  T2  T2  T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’T1  ’ T2’T2’T2’T2’T2’T2’T2’T2’T2’T2’

❑∼❑
T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  

(4)(4) (5)(5)

Figure 3. Basics clasper moves up to link-homotopy.

1See for example [KM20].
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Idea of proof. The result of [Hab00] used here are up to Ck-equivalence, that is, up to claspers of
degree up to k. The key observation is that, by construction, all such higher degree claspers have
same support as the initial ones, hence they are claspers with repeats. Lemma 2.6 then allows to
delete them up to link-homotopy. �

Remark 2.8. Lemma 2.6 combined with Corollary 2.7 give us some further results:

- First, statement p4q implies that if |supppT q X supppSq| ě 1 then we can realize crossing changes
between the edges of T and S.

- Moreover, if |supppT q X supppSq| ě 2 thanks to statement (2) we can also exchange the leaves of T
and S.

- Furthermore, statement (3) allows crossing changes between T and a component of θ in the support
of T

Indeed, in each case the clasper T̃ involved in the corresponding statement has repeats and can thus
be deleted up to link-homotopy.

Proposition 2.9. [Hab00] Let TI , TH , TX be three parallel copies of a given simple clasper that
coincide everywhere outside a three ball where they are as shown in Figure 4. Then TIYTHYTX „ H.
We say that TI , TH and TX verify the IHX relation.

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
I

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
H

T
X

T
X

T
X

T
X

T
X

T
X

T
X

T
X

T
X

T
X

Figure 4. The IHX relation for claspers.

Corollary 2.7 together with the IHX relation give us most of the necessary tools to understand
clasper calculus up to link-homotopy. The next lemma describes how to handle twists up to link-
homotopy.

Lemma 2.10. We have the following link-homotopy equivalences (illustrated in Figure 5).

(6) If T 1 is obtained from T by turning a positive twist into a negative one then T „ T 1.
(7) If T 1 is obtained from T by moving a twist across a node then T „ T 1.
(8) If T and T 1 are identical outside a neighborhood of a node, and if in this neighborhood T and T 1

are as depicted in (8) from Figure 5, then T „ T 1.

❑∼❑(8)❑∼❑(6) ❑∼❑(7)

T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  

T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  ’T  T  T  T  T  T  T  T  T  T  

Figure 5. How to deal with twist up to link-homotopy.

Proof. For statement (6), we consider the union T Y T̃ YT 1 where T̃ is another parallel copy between
T and T 1 without twist. Then thanks to (1) from Corollary 2.7 this union is either link-homotopic to
T or T 1. The proof of statement (7) is similar and, statement (8) comes from the other two. �
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Remark 2.11. Lemma 2.10 allows us to bring all the twists on a same edge and then cancel them
pairwise. Therefore we can consider only claspers with one or no twists.

3. Braids up to link-homotopy.

This section is dedicated to braids up to link-homotopy. Our main result is a representation of
the homotopy braid group, defined and studied using clasper calculus. In the next two subsections
we introduce the main tools for this result: first the notion of comb-claspers for braids, that yields
a normal form result up to link-homotopy, and next their algebraic counterpart called reduced basic
commutators.

3.1. Braids and comb-claspers. Let D be the unit disk with n fixed points tpiuiďn on a diameter
δ, and I the unit interval r0,1s. Set also I1, ¨ ¨ ¨ ,In, n copies of I, and

Ů

iďn
Ii their disjoint union. For

now on the manifold M studied is the cylinder D ˆ I.

Definition 3.1. An n-component braid β “ pβ1, ¨ ¨ ¨ ,βnq is a smooth proper embedding

pβ1, ¨ ¨ ¨ ,βnq :
ğ

iďn

Ii Ñ D ˆ I

such that βip0q “ ppi,1q and βip1q “ ppπpβqpiq,0q with πpβq some permutation of t1, ¨ ¨ ¨ ,nu associated
to β. We also require the embedding to be monotonic, which means that βip1 ´ tq P D ˆ ttu for
any t P r0,1s. We call (the image of) βi the i-th component of β. We say that a braid is pure if its
associated permutation is the identity.

We emphasize that the braids are here oriented from top to bottom.
The set of braids up to ambient isotopy, resp. link-homotopy, equipped with the stacking operation

forms a group: the braid group denoted Bn, resp. the homotopy braid group, denoted by B̃n. Elements
of B̃n are called homotopy braids. The set of pure braids up to isotopy, resp. link-homotopy, forms a
subgroup of Bn, resp. B̃n, denoted by Pn, resp. P̃n.

Remark 3.2. Braids are tangles without closed components, and with boundary and monotonic
conditions. But any tangle with the same boundary condition and without closed components is link-
homotopic to a braid (such tangles are called string links in the literature). Moreover if two braids are
link-homotopic as string links then they are also as braids (see [HL90]). Thus, when regarding braids
up to link-homotopy we can freely consider them as string links (i.e. we can forget the monotonic
condition). This is useful from the clasper point of view since clasper surgery does not respect this
condition in general.

We introduce next comb-claspers and their associated notation. Consider the usual representative
1 of the trivial n-component braid given by 1i “ tpiu ˆ I for i P t1, ¨ ¨ ¨ ,nu. Denote by pD ˆ Iq` and
pD ˆ Iq´ the two half-cylinders determined by the plane δ ˆ I, where δ is the fixed diameter on D.
In figures, we choose pD ˆ Iq` to be above the plane of the projection.

Definition 3.3. We call comb-clasper a simple clasper without repeats for the trivial braid such that:

- Every edge is in pD ˆ Iq`.
- The minimal path running from the smallest to the largest component of the support meets all

nodes.
- At each node, the edge that does not belong to the minimal path leaves ”to the left” as locally

depicted in Figure 6.
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Minimal 
 path

Edge on 
the left

Figure 6. Local orientation at each node of a comb-clasper.

An example is given in Figure 7.

The second condition of Definition 3.3 implies that every node is related (by an edge and a leaf)
to a component of 1 that is not the smallest or the largest of the support. Using that, we can order
the support of a comb-clasper: we start with the smallest component, then we order the components
according to the order in which we meet them along the minimal path, and finally, we end with the
largest one. For example in Figure 7 the ordered support is t1,2,6,4,5,8u.

Once the ordered support ti1,i2, ¨ ¨ ¨ ,ilu fixed, the only remaining indeterminacy in a comb-clasper
is the embedding of the edges in pD ˆ Iq`. This depends on the relative position of the edges, and
on the number of twists on each of them. However, up to link-homotopy the relative position of
the edges is irrelevant (by move (5) from Corollary 2.7). Besides, by Remark 2.11, we can always
suppose that a comb-clasper contains either one or no twist; moreover by Lemma 2.10 we can freely
assume that the potential twist is located on the edge connected to the il-th component. We can thus
unambiguously (up to link-homotopy) denote by pi1,i2, ¨ ¨ ¨ ,ilq the comb-clasper with such a twist and
by pi1,i2, ¨ ¨ ¨ ,ilq

´1 the untwisted one; we call them respectively twisted and untwisted comb-claspers.
For example the twisted comb-clasper p126458q is illustrated in Figure 7.

2 51 4 6 873

Figure 7. The comb-clasper p126458q.

In what follow we blur the distinction between comb-claspers and the result of their surgery up to
link-homotopy. From this point of view a comb-clasper is a pure homotopy braid and the product
pαqpα1q of two comb-claspers is the product 1pαq1pα

1q. In particular according to move (1) from
Corollary 2.7 the inverse of a comb-clasper pαq is given by pαq´1.
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Lemma 3.4. Let T be a simple clasper of degree k for the trivial braid 1, then 1T is link-homotopic
a product of comb-claspers with degree greater or equal to k.

Proof. First we use isotopies and move (3) from Corollary 2.7 to turn T into a product of clasper
with edges in pD ˆ Iq`. This step may creates claspers of higher degree (corresponding to clasper

T̃ in move (3)), in that case we also apply isotopies and move (3) on them until we get the desired
product. Moreover by the IHX relation of Lemma 2.9 we can further assume that for each factors,
the minimal path running from the smallest to the largest component meets all its nodes. Finally
we apply move (8) from Lemma 2.10 to satisfy the third condition of Definition 3.3 and recover a
product of comb-claspers. �

Definition 3.5. We say that a pure homotopy braid β P P̃n given by a product of comb-claspers
β “ pα1q

˘1pα2q
˘1 ¨ ¨ ¨ pαmq

˘1 is :

‚ stacked if pαiq “ pαjq for some i ď j implies thatHF pαiq “ pαkq for any i ď k ď j,
‚ reduced if it contains no redundant pairs i.e. two consecutive factors are not the inverse of

each other.

If β is reduced and stacked we can then rewrite β “
ś

pαiq
νi for some integers νi and with pαiq ‰ pαjq

for any i ‰ j. Moreover, given an order on the set of twisted comb-claspers, we say that a reduced
and stacked writing is a normal form of β for this order if pαiq ď pαjq for all i ď j.

We stress that the notion of normal form is relative to a given order on the set of twisted comb-
claspers. The following example will be relevant for Section 4.

Example 3.6. Given two twisted comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “ pi11 ¨ ¨ ¨ i
1
l1q we can choose

the order pαq ď pα1q defined by:

‚ maxpsupppαqq ă maxpsupppα1qq, or
‚ maxpsupppαqq “ maxpsupppα1qq and degpαq ă degpα1q, or
‚ maxpsupppαqq “ maxpsupppα1qq and degpαq “ degpα1q and i1 ¨ ¨ ¨ il ălex i

1
1 ¨ ¨ ¨ i

1
l,

where ălex denotes the lexicographic order. With respect to this order the normal form of an element
β P P̃4 is given by 12 integers tν12, ¨ ¨ ¨ ,ν1324u as follows:

β “ p12qν12p13qν13p23qν13p123qν123p14qν14p24qν24p34qν34p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 .

Theorem 3.7. Any pure homotopy braid β P P̃n can be expressed in a normal form for any order on
the set of twisted comb-claspers.

Proof. Note that the comb-clasper pijq corresponds to the usual pure braid group generator Aij P P̃n
(see Figure 9). Thus it is clear that β “

ś

pαq˘1 for some degree one comb-claspers pαq˘1.
Now we rearrange this degree one factors according to the order by moves (2) and (4) from Corollary

2.7. This introduces new claspers of degree strictly higher than one, and by Lemma 3.4 we can freely
assume that these are all comb-claspers. Next we consider, among these new comb-claspers, those of
degree two and we rearrange them according to the order. Again this introduces higher degree factors,
which can all be assumed to be comb-clasper according to Lemma 3.4. By iterating this procedure
degree by degree we eventually obtain the desired normal form. Indeed the procedure terminates
because claspers of degree higher than n are trivial in P̃n by Lemma 2.6. �

Remark 3.8. This result is to be compared with Theorem 4.3 of [Yas09], which uses a different
notion of comb-clasper, ordered according to the clasper degree.

3.2. Algebraic counterpart.
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3.2.1. Reduced group and commutators. For any a,b in a group we denote ra,bs :“ aba´1b´1.

Definition 3.9. Let G be a group normally generated by tx1, ¨ ¨ ¨ ,xnu. We define JG ŸG to be the
normal subgroup generated by elements of the form rxi,λxiλ

´1s, for all i P t1, ¨ ¨ ¨ ,nu, and for all
λ P G. We call reduced quotient, the quotient G{JG and we denote it by RG.

In what follows we work essentially with the free group Fn on n generators x1, ¨ ¨ ¨ ,xn. The reduced
quotient RFn “ Fn{J of the free group is called reduced free group, where J :“ JFn .

Definition 3.10. A commutator in x1, ¨ ¨ ¨ , xn of weight k pk ě 1 is an element of Fn defined
recursively, as follows:

‚ The commutators of weight one are x1, ¨ ¨ ¨ , xn.
‚ The commutators of weight k are words rC1, C2s where C1, C2 are commutators verifying
k “ wgpC1q ` wgpC2q where wg(C) denotes the weight of C.

Definition 3.11. We denote OccipCq “ r and we say that xi occurs r times in a commutator C if
one of the following holds:

‚ If C “ xj , then r “ 1 if i “ j and r “ 0 if i ‰ j.
‚ If C “ rC1, C2s, then r “ OccipC1q `OccipC2q.

We say that a commutator C has repeats if OccipCq ą 1 for some i. We call support of the commutator
C, the set of indices i such that OccipCq ą 0 and we denote it supppCq.

The following is a reformulation of Definition 3.9 that is used throughout the paper.

Proposition 3.12. [Lev88, Proposition 3] The subgroup J is generated by commutators in x1, ¨ ¨ ¨ ,xn
with repeats. Hence they are trivial in the reduced free group.

The notion of basic commutators was first introduced in [Hal33] and was further studied in [LS01;
Hal59; MKS04] to describe the lower central series of the free group. It was then naturally adapted
in [Lev88] to the framework of the reduced free group. In the next definition we set a well chosen set
of reduced basic commutators that differs from [Lev88], and that will follow us throughout the whole
paper.

Definition 3.13. We call set of reduced basic commutators the family denoted F of commutators
without repeats in RFn defined as follows:

F “ tri1, ¨ ¨ ¨ ,ils | i1 ă ik, 2 ď k ď lulďn .

Here, we use the notation ri1,i2, ¨ ¨ ¨ ,ils :“ rr¨ ¨ ¨ rrxi1 ,xi2s,xi3s, ¨ ¨ ¨ ,xil´1
s,xils. This is a finite set and

we can thus choose an arbitrary order on it, F “ trα1s,rα2s, ¨ ¨ ¨ , rαmsu.

Example 3.14. For two commutators rαs “ ri1 ¨ ¨ ¨ ils and rα1s “ ri11 ¨ ¨ ¨ i
1
l1s we can choose the order

given by rαs ď rα1s if:

‚ wgpαq ă wgpα1q, or
‚ wgpαq “ wgpα1q and i1 ¨ ¨ ¨ il ălex i

1
1 ¨ ¨ ¨ i

1
l,

where ălex denotes the lexicographic order. With respect to this order the normal form of an element
ω P RF3 “ xx1,x2,x3y is given by 8 integers te1, ¨ ¨ ¨ ,e8u as follows:

ω “ r1se1r2se2r3se3r12se4r13se5r23se6r123se7r132se8 .

The following theorem is a reduced version of Hall’s basis theorem [Hal59, Theorem 11.2.4]. It is
to be compared with [Lev88, Proposition 6], where a different family of reduced basic commutators
is used, see Remark 3.17.
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Theorem 3.15. For any word ω P RFn there exists a unique set of integers te1, . . . ,emu associated
to the ordered set of reduced basic commutators F “ trα1s,rα2s, ¨ ¨ ¨ , rαmsu such that

ω “ rα1s
e1rα2s

e2 ¨ ¨ ¨ rαms
em .

Proof. We first show for ω P RFn the existence of a decomposition ω “
ś

αPF rαs
eα . We recall that

two commutators commute up to commutators of strictly higher weight, and any commutator of
weight bigger than n has repeats and is then trivial. Thus it is sufficient to express any commutator
C as a product of commutators in F . To do so we use the three following relations in RFn.

(i) rX,Y s´1 “ rY,Xs “ rX´1,Y s “ rX,Y ´1s with X,Y commutators.
(ii) rX,rY,Zss “ rrX,Y s,Zs ¨ rrX,Zs,Y s´1 with X,Y,Z commutators.
(iii) rUV,Xs “ rU,XsrV,Xs with U,V commutators such that supppUq X supppV q ‰ H.

Relation (i) allows us to move the generator xi1 with i1 “ minpsupppCqq at the desired position;
we obtain C “ r¨ ¨ ¨ rxi1 ,C1s, ¨ ¨ ¨ ,Cks

˘1. Relations (i) and (ii) are used to decrease the weight of the
commutator Ci in this expression. We start with C1 “ rC

1
1,C

1
2s supposing its weight is bigger than

one, and we get:

C “ r¨ ¨ ¨ rxi1 ,rC
1
1,C

1
2ss, ¨ ¨ ¨ ,Cks

˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C

1
2s ¨ rrxi1 ,C

1
2s,C

1
1s
´1s, ¨ ¨ ¨ ,Cks

˘1

“ r¨ ¨ ¨ rxi1 ,C
1
1s,C

1
2s, ¨ ¨ ¨ ,Cks

˘1r¨ ¨ ¨ rxi1 ,C
1
2s
´1,C 11s, ¨ ¨ ¨ ,Cks

˘1

“ r¨ ¨ ¨ rxi1 ,C
1
1s,C

1
2s, ¨ ¨ ¨ ,Cks

˘1r¨ ¨ ¨ rxi1 ,C
1
2s,C

1
1s, ¨ ¨ ¨ ,Cks

¯1

Since wgpC 11q ă wgpCq and wgpC 11q ă wgpCq we know that by iterating this operation on the new
terms we can rewrite C as a product of commutators of the form r¨ ¨ ¨ rxi1 ,xi2s,C2s, ¨ ¨ ¨ ,Cks. We finish
by repeating the process on C2, . . . ,Ck.

To prove the unicity of the decomposition we work with the unit group Un of the ring of power
series in noncommuting variables X1, ¨ ¨ ¨ ,Xn. More precisely we consider its quotient Ũn in which
the monomials Xα “ Xα1Xα2 ¨ ¨ ¨Xαn vanish when they have repetition (i.e. αi “ αj for some i ‰ j).

The elements in Ũn are of the form 1 ` Q with Q a sum of monomials of degree higher than one,
and p1 ` Qq´1 “ 1 ` Q̄ with Q̄ “ ´Q ` Q2 ´ Q3 ` ¨ ¨ ¨ p´1qnQn. Now we can define the reduced

Magnus expansion M̃ . This is a homomorphism from the reduced free group RFn to Ũn, defined by
M̃pxiq “ 1`Xi. The following computation shows that M̃ respects the relations of the reduced free

group, meaning that M̃prxi,λxiλ
´1sq “ 1 for any generator xi and any λ in RFn. Indeed:

M̃pλxiλ
´1qM̃pxiq “ p1`Qqp1`Xiqp1` Q̄qp1`Xiq

“ 1` 2Xi `Q` Q̄`QQ̄`QXi `QXi ` Q̄Xi `QQ̄Xi `QXiQ̄

“ 1` 2Xi `Q` Q̄`QQ̄`QXi `XiQ`XiQ̄`XiQQ̄`QXiQ̄

“ p1`Xiqp1`Qqp1`Xiqp1` Q̄q

“ M̃pxiqM̃pλxiλ
´1q.

We next have the following:

Fact 3.16. For every rαs “ rα1, . . . ,αls P F , M̃prαsq “ 1`Xα `QlpXα1 , ¨ ¨ ¨ ,Xαlq where Ql is a sum
of monomials of degree l “ wgprαsq not starting by Xα1 , and where each variable Xαi for i P t1, ¨ ¨ ¨ ,lu
appears exactly once.
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This comes by induction on the weight l of rαs. The case l “ 1 is clear since M̃pxiq “ 1`Xi. Suppose
the result true at rank l, then

M̃prα,αl`1sq “ M̃prrαs,xαl`1
sq

“ rM̃prαsq,M̃pxαl`1
qs

“ r1`Xα `QlpXα1 , ¨ ¨ ¨ ,Xαlq,1`Xαl`1
s

with QlpXα1 , ¨ ¨ ¨ ,Xαlq as desired by the induction hypothesis. Then we develop the commutator and
we get

M̃prα,αl`1sq “ 1`XαXαl`1
`QlpXα1 , ¨ ¨ ¨ ,XαlqXαl`1

´Xαl`1
QlpXα1 , ¨ ¨ ¨ ,Xαlq ´Xαl`1

Xα

which, by identifying Ql`1pXα1 , ¨ ¨ ¨ , Xαl`1
q, proves Fact 3.16.

Returning to the proof of unicity, we take ω “
ś

αPF rαs
eα “

ś

αPF rαs
e1α two decompositions of

an element ω P RFn. We prove by induction on the weight of rαs that eα “ e1α for any commutator

rαs P F . Applying M̃ , we get

1`
ÿ

wgprαsq“1

eαX
α ` pterms of degree ě 2q “ 1`

ÿ

wgprαsq“1

e1αX
α ` pterms of degree ě 2q

hence eα “ e1α for any rαs of weight one. Suppose that eα “ e1α for any rαs of weight ă k and

compare the coefficient of monomial Xα in both M̃p
ś

αPF rαs
eαq and M̃p

ś

αPF rαs
e1αq for rαs a fixed

commutator of degree k. According to Fact 3.16, commutators of weight ą k do not contribute to
this coefficient and the only contributing weight k commutator is rαs itself with coefficient eα, resp.
e1α. Commutators of weight ă k may also contribute to this coefficient but the induction hypothesis
ensures that the contribution is the same in both expressions. This proves that eα “ e1α for any rαs
of weight k and concludes the proof. �

Remark 3.17. By focusing on the monomial Xα, this proof does not require the injectivity of the
reduced Magnus expansion [Yur08].

Definition 3.18. To the ordered set of basic commutators F “ trα1s, ¨ ¨ ¨ , rαmsu in RFn we associate
a Z-module V formally generated by tα1, ¨ ¨ ¨ , αmu. We also define the linearization map φ : RFn Ñ V
by:

φpωq “ e1α1 ` ¨ ¨ ¨ ` emαm where rα1s
e1 ¨ ¨ ¨ rαms

em is the normal form of ω.

We keep calling ”commutators” the generators of V and we define the support and the weight of α
to be those of rαs.

We stress that the normal form and the linearization map φ both depend on the ordering on F .

Lemma 3.19. The Z-module V is of rank,

rkpVq “
ÿ

0ďlďkăn

k!

l!
.

Moreover we can decompose V into a direct sum of submodules Vi generated by the commutators of
weight i. Then we obtain that:

rkpViq “
ÿ

i´1ďkăn

k!

pk ´ i` 1q!
.
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Proof. The first equality comes by counting the cardinality of F . To do so we first count the elements
rαs with first term α1 “ k. To choose α2,α3, . . . , αl with 0 ď l ă n ´ k we only have to respect the
condition that α1 ă αi. Thus they can be freely chosen in tk ` 1, ¨ ¨ ¨ ,nu and therefore:

rkpVq “
n
ÿ

k“1

n´k
ÿ

l“0

pn´ kq!

pn´ k ´ lq!
“

n´1
ÿ

k“0

k
ÿ

l“0

k!

pk ´ lq!
“

n´1
ÿ

k“0

k
ÿ

l“0

k!

l!
.

For the second equality, we follow the same kind of reasoning, but this time α1 “ k must be chosen in
t1, ¨ ¨ ¨ ,n´ i`1u, then we choose the i´1 last numbers α2, . . . ,αi without restriction in tk`1, ¨ ¨ ¨ ,nu.
We obtain:

rkpViq “
n´i`1
ÿ

k“1

pn´ kq!

pn´ k ´ i` 1q!
“

i´1
ÿ

k“0

k!

pk ´ i` 1q!
.

�

3.2.2. Braid groups. In this section we use the usual Artin braid generators σi for i P t1, ¨ ¨ ¨ ,n ´ 1u
illustrated in Figure 8 and the usual pure braid generators Aij “ σj´1σj´2 ¨ ¨ ¨σi`1σ

2
i σ
´1
i`1 ¨ ¨ ¨σ

´1
j´2σ

´1
j´1

for 1 ď i ă j ď n illustrated in Figure 9.

ni1 i+1

Figure 8. The Artin genera-
tor σi.

j-1i+1 nji1

Figure 9. The pure braid gen-
erator Aij .

The following theorem is based on the result of [Gol74].

Theorem 3.20. Let J Ÿ Bn denote the normal subgroup generated by all elements of the form
rAij ,λAijλ

´1s where λ belongs to Pn. We obtain the homotopy braid group B̃n as the quotient:

B̃n “ Bn{J.

Proof. In [Gol74], the homotopy braid group B̃n appears as the quotient Bn{J
1, where J 1 Ÿ Bn is

the normal subgroup generated by elements of the form rAij ,λAijλ
´1s where λ belongs to the normal

subgroup generated by tA1,j , ¨ ¨ ¨ ,Aj´1,ju. Our result relies on the observation that J “ J 1. Obviously
J 1 Ă J thus we only need to show that J Ă J 1. This is equivalent to showing that for any Λ P Pn, Aij
and ΛAijΛ

´1 commute up to link-homotopy. Let us remind that Aij is the surgery result 1pijq of the
comb-clasper pijq. Thus the conjugate ΛAijΛ

´1 is the surgery result of the clasper C “ ιpijq, where
ι is the ambient isotopy sending ΛΛ´1 to the trivial braid 1. Now it is clear that supppCq “ supppαq,
hence according to Remark 2.8, pijqC „ Cpijq and the result is proved. �

In order to obtain a similar result for the pure homotopy braid group we need the following.

Lemma 3.21. The subgroup JŸBn normally generated in Bn by elements of the form rAij ,λAijλ
´1s

for λ P Pn, seen as a subgroup of Pn, coincides with the normal subgroup of Pn generated by elements
of the form rAij ,λAijλ

´1s for λ P Pn.
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Proof. For k P t1, ¨ ¨ ¨ ,n´ 1u, 1 ď i ă j ď n and λ P Pn we compute:

σkrAij ,λAijλ
´1sσ´1

k “ rAi`1j ,λ1Ai`1jλ
´1
1 s if i “ k and j ‰ k ` 1

rAi`1j ,λ2Ai`1jλ
´1
2 s if j “ k

Akk`1rAi´1j ,λ3Ai´1jλ
´1
3 sA´1

kk`1 if i “ k ` 1

Akk`1rAij´1,λ4Aij´1λ
´1
4 sA´1

kk`1 if i ‰ k and j “ k ` 1
rAij ,λAijλ

´1s otherwise,

with λi P Pn for i P t1,2,3,4u. Therefore the conjugates σkrAij ,λAijλ
´1sσ´1

k are always conjugates of

rAi1j1 ,λ
1Ai1j1pλ

1q´1s in P̃n for some 1 ď i1 ă j1 ď n and λ1 P Pn and the proof is done. �

Corollary 3.22. Let J ŸPn be the normal subgroup generated by elements of the form rAij ,λAijλ
´1s

for any λ P Pn. We obtain the pure homotopy braid group P̃n as the following quotient:

P̃n “ Pn{J “ RPn.

This induces the following presentation for P̃n:

P̃n “

〈
Aij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rArs,Aijs “ 1 r ă s ă i ă j or r ă i ă j ă s
rArs,Arjs “ rArj ,Asjs “ rAsj ,Arss r ă s ă j
rAri,Asjs “ rrAij ,Arjs,Asjs r ă s ă i ă j

rAij ,λAijλ
´1s “ 1 i ă j and λ P P̃n

〉
.

Proof. The quotient statement is a direct consequence of Proposition 3.20 and Lemma 3.21. The
presentation is obtained from that of [MK99, Theorem 3.8] re-expressed in terms of commutator and

using the relation rArs,A
´1
ij s “ rArs,Aijs

´1 which holds in P̃n. �

We next recall two classical representations of braid groups that are known to be faithful (see
[Art47] and [HL90] for more details).

Definition 3.23. We call Artin representation the homomorphism ρ : Bn Ñ AutpFnq defined as
follows:

ρpσiq :

$

&

%

xi ÞÑ xi`1,
xi`1 ÞÑ xi`1xix

´1
i`1,

xk ÞÑ xk if k R ti,i` 1u.

Similarly the homomorphism ρ̃ : B̃n Ñ AutpRFnq defined by the same expressions is called the
homotopic Artin representation.

3.3. A linear faithful representation of the homotopy braid group B̃n.

3.3.1. Algebraic definition. In order to define the linear representation γ : B̃n Ñ GLpVq, we state the
following preparatory lemma.

Lemma 3.24. Let β P B̃n be a homotopy braid and Nj be the abelian group normally generated by
xj in RFn. For any reduced basic commutator rαs P Nj, if we set rα1s

e1 ¨ ¨ ¨ rαms
em a normal form of

ρ̃pβqprαsq then we have that ei “ 0 if rαis R Nπ´1pβqpjq. Here π´1pβqpjq is the image of j under the
permutation induced by β.

In other words in the image by ρ̃pβq of rαs P Nj , xπ´1pβqpjq occurs in each factor of the normal form.

Proof. The proof comes from the fact that any element ofNj is sent by ρ̃pβq to an element ofNπ´1pβqpjq.
This is clear for the Artin generators σi and so it is for any braid β. Thus we conclude using the fact
that the normal form ω “ Ce11 ¨ ¨ ¨C

em
m of any element ω P Nk, for any k contains only commutators
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in Nk. To see this we use the homomorphism of RFn defined by xk ÞÑ 1 which sends the normal form
of ω to 1. �

Recall from Definition 3.18 the linerization map φ : RFn Ñ V.

Theorem 3.25. The map
γ : B̃n Ñ GLpVq

defined for β P B̃ and rαs P F by γpβqpαq “ φ ˝ ρ̃pβqprαsq is a well defined homomorphism. Moreover
γ does not depend on the chosen order on F i.e. if we change the ordering on F then we change the
map φ but not γ.

Proof. Since φ is not a homomorphism in general, it is not clear that γ is a representation. Yet we
do have that γpββ1q “ γpβqγpβ1q for any two homotopy braids β and β1. Let rαs be a reduced basic
commutator and α its corresponding commutator in V. We choose some j P suppprαsq so that rαs is in
Nj . Set γpβ1qpαq “

ř

i αi for some commutators αi P V associated to the reduced basic commutators
rαis. Then we have that

γpββ1qpαq “ φ ˝ ρ̃pβqρ̃pβ1qprαsq “ φ ˝ ρ̃pβq
´

ź

i

rαis
¯

“ φ
´

ź

i

ρ̃pβqprαisq
¯

.

Now, using Lemma 3.24 we know that rαis is in Nπ´1pβ1qpjq for any i. Besides, Lemma 3.24 implies
that any commutator in the normal form of ρ̃pβqprαisq is in the abelian group Nπ´1pββ1qpjq for any i.
But note that for C1, . . . ,Ck a collection of basic reduced commutators such that rCi,Cjs “ 1 for any
i,j we have that φpC1 ¨ ¨ ¨Ckq “ φpC1q ` ¨ ¨ ¨ ` φpCkq. Hence φ behaves like a homomorphism on the
product

ś

i ρ̃pβqprαisq, and finally,

φ
´

ź

i

ρ̃pβqprαisq
¯

“
ÿ

i

φ
´

ρ̃pβqprαisq
¯

“
ÿ

i

γpβqpαiq “ γpβq
´

ÿ

i

pαiq
¯

“ γpβqγpβ1qpαq

and γ is a well defined homomorphism.
To prove the independence on the chosen order on F we use Lemma 3.24 again. For any β P B̃n

and any rαs P F , all the commutators in the normal form of ρ̃pβqprαsq commute with each other.
In particular if we set two orderings trα1s, ¨ ¨ ¨ ,rαmsu and trασp1qs, ¨ ¨ ¨ ,rασpmqsu on F then the two
associated normal forms:

ρ̃pβqprαsq “ rα1s
e1 ¨ ¨ ¨ rαms

em “ rασp1qs
e1
σp1q ¨ ¨ ¨ rασpmqs

e1
σpmq

satisfy ei “ e1i for any i and therefore φ ˝ ρ̃ “ φ1 ˝ ρ̃ for the two linearization maps φ and φ1 associated
to the orderings. �

Remark 3.26. The homomorphism γ is in fact injective. Since φ is clearly injective, this can be
shown using the injectivity of ρ̃, proved in [HL90]. However we will give below another proof of this
result in Theorem 3.33 using clasper calculus, which in turn reproves the injectivity of ρ̃. Furthermore
our approach by clasper calculus allows for explicit computations of the representation, as shown in
the next section.

3.3.2. Clasper interpretation. We first give a topological interpretation of the Artin, resp. homotopic
Artin, representation. We can see the free group Fn, resp. reduced free group RFn, on which Bn,
resp. B̃n, acts as the fundamental group, resp. the reduced fundamental group, of the complement
of the n-component trivial braid. Therefore an element of Fn, resp. RFn, can also be seen as the
homotopy, resp. the reduced homotopy2, class of an pn ` 1q-th component in this complement. On

2Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class of an element.
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the diagram, we place this new strand to the right of the braid and we label it by ”8”. Thus, the
generators xi of Fn (resp RFn) are given by the pure braids Ai8 shawn in Figure 10, which can
be reinterpreted with the comb-claspers pi,8q depicted in the same figure. There and in subsequent
figures, we simply represent with a circled ”8” the leaf intersecting the 8-th component.

∞ (i,∞)

ni1∞ni1 22 n-1 n-1

x
i

Figure 10. Pure braid and clasper interpretations of the generator xi.

In this context the image ρpβq of an element β P Bn, resp. B̃n, is given on a generator xi P Fn, resp.

RFn, by considering the conjugation β1pi,8qβ´1 illustrated in Figure 11. Then we apply an isotopy,

∞

β

β-1

Figure 11. Clasper interpretation of the Artin representation.

transforming β1β´1 into 1. By doing so the clasper pi,8q is deformed into a new clasper which we
are able to reinterpret as an element of Fn or RFn. More precisely in the link-homotopic case we
have a nice correspondence between the family F and the comb-claspers with 8 in their support, by
the following proposition.

Proposition 3.27. Let pαq “ pi1 ¨ ¨ ¨ in´18q and pα1q “ pi1 ¨ ¨ ¨ in´1in8q be two comb-claspers. Then
we have the relation:

pα1q „ rpαq,pin8qs “ pαq ¨ pin8q ¨ pαq
´1 ¨ pin8q

´1.

For example in Figure 12 we illustrate the equivalence p12548q „ rp1258q,p48qs.

❑∼❑

2 51 43 2 51 43

∞

∞

∞

∞

∞

Figure 12. The comb-clasper p12548q is link-homotopic to the comutator rp1258qp48qs.



16 EMMANUEL GRAFF

Proof. Consider the product of comb-claspers α ¨ pin8q ¨ α
´1 ¨ pin8q

´1 (as for example on the right
hand side of Figure 12). First we use move p2q from Corollary 2.7 to exchange the 8-th leaves of
pin8q and pαq´1; this move creates an extra comb-clasper, which is exactly pα1q. Now by Remark
2.8 we can freely move pα1q and finish exchanging the edges of pαn8q and pαq´1, thus obtaining the
product pαq ¨ pαq´1 ¨ pα1q ¨ pin8q ¨ pin8q

´1 „ pα1q. �

By iterating this proposition we obtain a correspondence between the commutators rαs P F (or α P
V) and the comb-claspers pα,8q. For example the equivalence p12548q „ rrrp18q,p28qs,p58qs,p48qs
corresponds to r1254s “ rrrx1,x2s,x5s,x4s in RFn.

In this way, we obtain an explicit procedure to compute our representation γ using clasper calculus,
as follows. As illustrated in the proof of Theorem 3.28 below, the computation of γpβqpαq with γ the

representation, β P B̃n and α P V, goes in 3 steps:

Step 1: Consider the conjugate of the comb-clasper pα,8q by the braid β.
Step 2: Use clasper calculus to re-express this conjugate as an ordered union of comb-claspers

with 8 in their support (the order comes from the order on F).
Step 3: The number of parallel copies of a given comb-clasper in this product is the coefficient

of the associated commutator in γpβqpαq.

We apply in Theorem 3.28 this procedure 3 for each generator σi P B̃n and each commutator in V.
The image of commutator pi1,i2, ¨ ¨ ¨ ,ilq :“ φpri1,i2, ¨ ¨ ¨ ,ilsq P V by the map γpσiq depends of the
position of the indices i and i` 1 in the sequence i1,i2, ¨ ¨ ¨ ,il.

Theorem 3.28. For suitable sequences I, J, K in t1, ¨ ¨ ¨ ,nuzti,i` 1u, I ‰ H, we have:

γpσiq :

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pIq ÞÑ pIq paq
pJ,i,Kq ÞÑ pJ,i` 1,Kq pbq
pi` 1,Kq ÞÑ pi,Kq ` pi,i` 1,Kq pcq
pI,i` 1,Kq ÞÑ pI, i,Kq ` pI, i,i` 1,Kq ´ pI,i` 1,i,Kq pdq
pI,i,J,i` 1,Kq ÞÑ pI,i` 1,J,i,Kq peq
pI,i` 1,J,i,Kq ÞÑ pI,i,J,i` 1,Kq pfq

pi,J,i` 1,Kq ÞÑ
ř

J 1ĎJp´1q|J
1|`1pi,J 1,i` 1,JzJ 1,Kq pgq

where in (g), the sum is over all (possibly empty) subsequences J’ of J, and J 1 denotes the sequence
obtained from J 1 by reversing the order of its elements, see Example 3.29.

Example 3.29. If J “ pJ1,J2,J3q and K “ H in (g), then γpσiq maps pi,J,i` 1q to :

´pi,i` 1,J1,J2,J3q ` pi,J1,i` 1,J2,J3q ` pi,J2,i` 1,J1,J3q ` pi,J3,i` 1,J1,J2q

´pi,J2,J1,i` 1,J3q ´ pi,J3,J1,i` 1,J2q ´ pi,J3,J2,i` 1,J1q ` pi,J3,J2,J1,i` 1q.

The proof below explains how this follows from the IHX relations of Figure 17.

Proof of Theorem 3.28. Following the procedure given above, we consider the conjugate σ´1
i pα,8qσi

and apply clasper calculus to turn it into a union of comb-claspers.
For (a) it is clear that pI,8q commutes with σi, passing over or next to it. The computation of (b)

is given by a simple isotopy of the braid shown in Figure 13.
The proofs of (c) and (d) are similar and are given in Figures 14 and 15 respectively. There, the

first equivalence is an isotopy, and the second one is given by move p2q from Corollary 2.7. For (d)
there is a further step given by an IHX relation.

3A program that computes explicitly the representation γ is available on
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∞ ∼
(J,i,K,∞) (J,i+1,K,∞)

∞∞

i i+1 i i+1

Figure 13. Computation of (b).

(i,K,∞)∼
(i,i+1)

(i,i+1) 1-

i i+1

∞ ∼

i i+1

∞

(i,K,∞)

∞

(i+1,K,∞)

i i+1

(i,i+1,K,∞)

∞

Figure 14. Computation of (c).

∼(I,i+1,K,∞) (I,i,K,∞) ∼
(i,i+1)

(i,i+1)-1

∞∞

i i+1i i+1i i+1

∞

(I,i,K,∞)

∞

∼

i i+1

∞

(I,i,K,∞)

(I,i,i+1,K,∞)

∞

∞

(I,i+1,i,K,∞)

Figure 15. Computation of (d).

For (e) and (f) we apply the same isotopy as Figure 13 on component i and i`1 thus interchanging
pI,i,J,i ` 1,Kq and pI,i ` 1,J,i,Kq. Note that we also need a crossing change between the pi ` 1q-th
component and a clasper edge, which is possible according to Remark 2.8.

Proving (g) is the last and hardest part and goes in two steps. The first step is illustrated in Figure
16: we proceed as before with an isotopy and a crossing change, then we use move (8) of Lemma 2.10.
This turn σipi,J,i` 1,K,8qσ´1

i into a new clasper which is not a comb-clasper.

(J,i,K,∞)
∞

J
∞J∼

i i+1i i+1

∞
J∼

i i+1

Figure 16. Turning σipi,J,i` 1,K,8qσ´1
i into a new clasper.
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In the second step, we use the IHX relations repeatedly to turn this new clasper into a product of
comb-claspers. This is illustrated in Figure 17 where J “ pJ1,J2,J3q. We conclude by simplifying the
twists with Remark 2.11. �

i+1 J1
J2

J3

i+1 J1
J2

J3

i+1 J1
J3 J2

i+1 J1
J3 J2

i+1 J1

J3J2

i+1 J1
J2 J3

i+1 J1
J2

J3

J3i+1 J1 J2 J3J2 i+1 J1 J2 J3i+1J1 J3 J2i+1J1J2J3 i+1 J1 J3 i+1J1J2
J3 J1i+1J2J3

J1i+1 J2

Figure 17. Iterated IHX relations.

Example 3.30. We illustrate Theorem 3.28 on the 3-component homotopy braid group B̃3. To do
so, we set p1q,p2q,p3q,p12q,p13q,p23q,p123q,p132q to be the generators of V, with the order of Example
3.14, and we compute γ on the Artin generators σ1, σ2:

γpσ1qp1q “ p2q γpσ2qp1q “ p1q
γpσ1qp2q “ p1q ` p12q γpσ2qp2q “ p3q
γpσ1qp3q “ p3q γpσ2qp3q “ p2q ` p23q
γpσ1qp12q “ ´p12q γpσ2qp12q “ p13q
γpσ1qp13q “ p23q γpσ2qp13q “ p12q ` p123q ´ p132q
γpσ1qp23q “ p13q ` p123q γpσ2qp23q “ ´p23q
γpσ1qp123q “ ´p123q γpσ2qp123q “ p132q
γpσ1qp132q “ ´p123q ` p132q γpσ2qp132q “ p123q

That gives us the following matrices:

γpσ1q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 ´1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 ´1 ´1
0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

γpσ2q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 ´1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 ´1 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The global shape of these matrices was predicted by Theorem 3.28. Indeed in general we have the
following.
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Proposition 3.31. For β P B̃n a homotopy braid, the matrix associated to γpβq in the basis F ,
endowed with the order of Example 3.14, is given by a lower triangular block matrix of the following
form:

¨

˚

˚

˚

˝

B1,1 0 ¨ ¨ ¨ 0
B2,1 B2,2 ¨ ¨ ¨ 0

...
...

. . .
...

Bn,1 Bn,2 ¨ ¨ ¨ Bn,n

˛

‹

‹

‹

‚

where Bi,i is a finite order matrix of size rkpViq “
řn
i´1

k!
pk´i`1q! which is the identity when β is pure.

Moreover B1,1 corresponds to the left action by permutation k ÞÑ π´1pβqpkq, and B2,2 corresponds to
the left action on the set tpk,jqukăj given by:

pk,jq ÞÑ

" `

π´1pβqpkq,π´1pβqpjq
˘

if π´1pβqpkq ă π´1pβqpjq
´
`

π´1pβqpjq,π´1pβqpkq
˘

if π´1pβqpjq ă π´1pβqpkq
.

Proof. The triangular shape is a direct consequence of Theorem 3.28. Indeed, the chosen order
respects the weight, and Theorem 3.28 shows that γ maps a commutator of weight k to a sum of
commutators of weight at least k. Proposition 3.19 gives the size of the square diagonal blocks Bi,i.
The fact that these diagonal blocks are the identity when β is a pure braid may need some more
explanations. We only need to show this result on the generators β “ Ai,j “ 1pi,jq. By Corollary 2.7,
conjugating pα,8q by pi,jq may only creates a clasper pα1,8q of strictly higher degree. This shows
that γpβqpαq “ pαq ` (strictly higher weight commutators) so that Bi,i is the identity. The block
matrix B1,1 describes the action on degree one comb-claspers modulo claspers of higher degree: the
claim follows on an easy verification on the generators σi. Similarly the claim on the block matrix
B2,2 amounts to focusing on degree two comb-claspers. �

In order to prove the injectivity of γ we need the following preparatory lemma.

Lemma 3.32. Let pi1, ¨ ¨ ¨ ,ilq be a comb-clasper. We have

γ
`

1pi1,¨¨¨ ,ilq
˘

pilq “ pilq ´ pi1, ¨ ¨ ¨ ,ilq,

where, on the right hand side, pi1, ¨ ¨ ¨ ,ilq now designates the corresponding commutator in V.

Proof. Consider the product pi1, ¨ ¨ ¨ ,ilqpid,8qpi1, ¨ ¨ ¨ ,ilq
´1 and re-express it with only comb-claspers

with 8 in their support. To do so, as illustrated in Figure 18, we apply move p2q from Corollary
2.7 on the leaves on the id-th component, which introduces the comb-clasper pi1, ¨ ¨ ¨ ,il,8q

´1, and we
simplify pi1, ¨ ¨ ¨ ,ilq and pi1, ¨ ¨ ¨ ,ilq

´1. �

❑∼❑∞

∞

∞

i1
i

l n1 i1
i

l n1

Figure 18. Proof of Lemma 3.32.
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We can now state the injectivity of the representation γ.

Theorem 3.33. The representation γ : B̃n ÞÑ GLpVq is injective.

Proof. Let β P B̃n be such that γpβq “ Id. First, Proposition 3.31 imposes that β is a pure braid;
indeed the bloc B1,1 must be the identity, which means that the permutation πpβq is trivial.

According to Theorem 3.7 we can consider a normal form for β:

β “
ź

pαqνα .

Let I Ă t1, ¨ ¨ ¨ ,nu be a sequence of indices with largest index m. Let also VI be the subspace of V
spanned by commutators with support included in I. We can then define the associated projection
pI : V Ñ VI , and its composition with the restriction of γ on VI , denoted by γI :“ pI ˝ γ|VI

. Note

that it corresponds to keeping only the components with index in I. It is clear using Corollary 2.7
that γpP̃nqpVzVIq Ă VzVI , thus for β1,β2 P P̃n we have that γIpβ1β2q “ γIpβ1qγIpβ2q. Moreover

γIp1
pαqq “ Id for any comb-clasper pαq with supppαq Ć I. Hence γIpβq “ γIpβ

1q for β1 defined by:

β1 “
ź

supppαqĂI

pαqνα .

Now we show by strong induction on the degree of pαq that να “ 0. For the base case we consider
I of the form I “ ti,mu. Using Lemma 3.32 we obtain:

γIpβ
1qpmq “ γI

`

1pimq
νim

˘

pmq,

“ pmq ´ νim ¨ pimq.

Because β P Kerpγq, we have that γIpβqpmq “ pmq, and this implies that να “ 0 for any pαq of degree
one. To prove that να “ 0 for any pαq of degree k we take I of length k ` 1 and using the induction
hypothesis, we get then:

β1 “
ź

supppαq“I

pαqνα .

Thus thanks to Lemma 3.32 we obtain finally:

γIpβ
1qpmq “ pmq ´

ÿ

supppαq“I

να ¨ pαq.

Because β P Kerpγq we have that γIpβqpmq “ pmq, and this implies να “ 0 for any pαq of support
I. Repeating the argument for any I Ă t1, ¨ ¨ ¨ ,nu of length k ` 1, we get that να “ 0 for any pαq of
degree k, which concludes the proof. �

Corollary 3.34. The normal form is unique in B̃n, i.e. if β “
ś

pαqνα “
ś

pαqν
1
α are two normal

forms of β for a given order on the set of twisted comb-claspers, then να “ ν 1α for any pαq.

Proof. The proof follows closely the previous one. As before for a given I Ă t1, ¨ ¨ ¨ ,nu we have
γIpβq “ γIpβ

1q for β1 defined by :

β1 “
ź

supppαqĂI

pαqνα “
ź

supppαqĂI

pαqν
1
α .

We show again by strong induction on the degree that να “ ν 1α. The base case is strictly similar,
but for the inductive step one cannot in general write β1 with only comb-claspers with support I.
However by Corollary 2.7 a comb-clasper pαq with supppαq “ I commutes with any comb-clasper pα1q
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up to comb-clasper with support not included in I. Hence γIp1
pαqq commutes with γIp1

pα1qq for any
two comb-claspers pα1q and pαq such that supppαq “ I. In particular we get:

γIpβ
1qpmq “γI

¨

˝

ź

supppαqĹI

pαqνα

˛

‚˝ γI

¨

˝

ź

supppαq“I

pαqνα

˛

‚pmq

“γI

¨

˝

ź

supppαqĹI

pαqν
1
α

˛

‚˝ γI

¨

˝

ź

supppαq“I

pαqν
1
α

˛

‚pmq.

Since comb-claspers pαq with supppαq Ĺ I have degree ă pk ´ 1q where k is the length of I, by
induction hypothesis we can simplify the first factor in each expression. By Lemma 3.32 we compute
the second term thus obtaining:

pmq ´
ÿ

supppαq“I

να ¨ pαq “ pmq ´
ÿ

supppαq“I

ν 1α ¨ pαq,

and the proof is complete. �

Remark 3.35. Corollary 3.34 shows that that the numbers να of parallel copies of each comb-clasper
in a normal form are a complete invariant of pure braids up to link-homotopy. We call those numbers
the clasp-numbers. Others well known complete homotopy braid invariants are the Milnor numbers
[HL90]. A natural question to determine the explicit relationship between these two families of
invariants. This depends on the chosen order on F since our clasp-numbers do. For an order given
degree by degree, an answer to this question appears in [Yas09, Theorem 4.3], where another clasper
family, equivalent to comb-claspers, is used.

In the following of the paper we will focus on the study of links up to link-homotopy. More
precisely we will describe in terms of clasp-numbers variation when two normal forms have link-
homotopic closures.

4. Links up to link-homotopy

The main purpose of this section is to use clasp-numbers to provide an explicit classification of
link up to link-homotopy. In this way we recover results of Milnor [Mil54] and Levine [Lev88] for 4
or less components, and extend them partially for 5 components. To do so we first revisit in terms of
claspers the work of Habegger and Lin [HL90] and more precisely the notion of partial conjugation.

4.1. Partial conjugation and the Habegger–Lin Theorem revisited. There is a procedure on
braids called closure, that turns a braid into a link in S3. The question is to determine when two
braids have link-homotopic closures. The answer appears in [HL90] using partial conjugations. To
define this notion we first recall from [HL90, Theorem 1.7 & Corollary 1.11] that for any integer n we
have the decomposition:

P̃n “ P̃n´1 ˙RF pn´ 1q

where the first term corresponds to the braid obtained by omitting a given component, and the second
term is the class of this component as an element of the reduced fundamental group of the disk with
n´ 1 punctures.

In particular if we iterate this decomposition by omitting the last component recursively, we obtain
the decomposition illustrated in Figure 19 (see Convention 4.1) :

P̃n “ RF p1q ˙ ¨ ¨ ¨ ˙RF pn´ 1q.
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Moreover the normal form in P̃n with respect to the order of Example 3.6 corresponds to this decom-
position, where each individual factor is in normal form with respect to the order of Example 3.14.

RF (1)

RF (m-1)

RF (2)

RF (3)

1 m2 3 4

Figure 19. The Habegger–Lin decomposition in terms of clasper.

Convention 4.1. In figures, a box intersecting several strands of 1 represents a
product of claspers whose leaves may or may not intersect those strands, and are
disjoint from all others strands. When each claspers in such a box intersects a
given strand, this is shown by the graphical convention shown on the right (see
Figures 19, 20, 21).

Definition 4.2. Let β P P̃n, we set β “ θω a decomposition in P̃n “ P̃n´1 ˙RF pn ´ 1q. A partial

conjugate of β is an element of P̃n of the form θλωλ´1 for some λ P RF pn´ 1q. We speak of an i-th
partial conjugation, or partial conjugation with respect to the i-th component, when the decomposition
P̃n “ P̃n´1 ˙RF pn´ 1q is obtained by omitting the i-th component.

In the following proposition we reinterpret the partial conjugation in terms of clasper.

Proposition 4.3. Let β be a pure homotopy braid. The i-th partial conjugation of β by xj is the

surgery result β∆ ¨1pijq
´1

, where ∆ and pijq´1 are degree one claspers as shown in the right-hand side
of Figure 20.

θ

w

1 nj

C

i

C’

x
j

x
j
-1

1 nji

β

Δ

(ij)-1

Figure 20. The i-th partial conjugation by x´1
j .
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Proof. We set first β “ θω the decomposition of β in P̃n “ P̃n´1 ˙RF pn´ 1q obtained by omitting

the i-th component. Through surgery, we see the factor θ P P̃n´1 as a union C of simple claspers for
the trivial braid 1, where the i-th component is disjoint from and passes over all claspers in C. The
factor ω P RF pn ´ 1q is given by a union C 1 of simple claspers for the trivial braid, all containing i
in their support. In this setting the i-th partial conjugation by xj (i.e. β ÞÑ θxjωx

´1
j ) corresponds

to the product CpijqC 1pijq´1 as shown in the left hand side of Figure 20. To prove the proposition it
suffices to slide the leaf i of pijq upwards by an isotopy (this is possible since C is disjoint from the
i-th component), and slide the leaf j downwards: by moves p2q and p4q from Corollary 2.7 this create
claspers with repeats which by Lemma 2.6 are trivial up to link-homotopy. �

We state now the main classification theorem of links up to link-homotopy from [HL90].

Theorem 4.4. [HL90, Theorem 2.13.] Let β, β1 P P̃ pnq be two homotopic pure braids. The closures
of β and β1 are link-homotopic, if and only if there exists a sequence β “ β0, β1, ¨ ¨ ¨ , βn “ β1 of
elements of P̃n such that βi`1 is a conjugate, or a partial conjugate of βi.

Hughes in [Hug05] showed that in fact partial conjugations generate conjugations, so they are
sufficient to describe link-homotopy. We reprove this result below using clasper calculus.

Proposition 4.5. Partial conjugations generate conjugations.

Proof. It suffices to show that partial conjugations generate all conjugations by any comb-clasper pijq.

Let β P P̃n, seen as the surgery on 1 along a union of simple claspers denoted C. By the procedure
given below, we decompose C into a product C „ C̃CjCiCi,j such that:

- Cij is a union of claspers each having i and j in their support,
- Ci, resp Cj , is a union of claspers, each having i, resp j, in their support, and such that the
j-th, resp i-th, component of 1 is disjoint from and passes over all clasper in Ci, resp Cj ,

- C̃ is a product of claspers that are are disjoint from and pass under the i-th and j-th compo-
nents.

n1

C̃

j

C
j

C
i

C
i j,

C

i

Figure 21. Decomposition C „ C̃CjCiCi,j .

This decomposition is illustrated in Figure 21. To obtain such a decomposition we first consider
those claspers in C that are disjoint from the i-th and j-th components, and we apply move (3) from
Corollary 2.7 to ensure that they all are behind those components. We use moves (2) and (4) from

Corollary 2.7 to obtain a decomposition C „ C̃C0 where all claspers in C0 have either i or j in their
support. Next we consider those claspers in C0 that are disjoint from the i-th component: we apply
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move (3) from Corollary 2.7 to ensure that they all are behind this component, and then use again

Corollary 2.7 to obtain a decomposition C „ C̃CjC1 where all claspers in C1 have i in their support.
Finally by the exact same way we have a decomposition C1 „ CiCij with Cj and Cij as desired.

Note that the product pC̃CjqpCiCijq corresponds to the decomposition P̃n “ P̃n´1 ˙ RF pn ´ 1q
given by omitting the i-th component. We can then apply an i-th partial conjugation by xj to obtain

C̃CjpijqCiCijpijq
´1. We then exchange the relative position of pijq with Ci using moves p2q and p4q

from Corollary 2.7, this creates a union Kij of claspers with i and j in their support, such that:

pijqCi “ CiKijpijq. (1)

We can then freely (up to link-homotopy) exchange pijq and Cij by Remark 2.8, thus obtaining the

decomposition C̃CjCiKijCij . Now we similarly use move p2q and p4q from Corollary 2.7 to exchange
Ci and Cj , which creates a union Rij of claspers with i and j in their support, such that:

CjCi “ CiRijCj . (2)

We obtain in this way the product pC̃CiqpRijCjKijCijq corresponding to the decomposition P̃n “

P̃n´1˙RF pn´1q given by omitting the j-th component. We can then perform a j-th partial conjuga-

tions by xi to obtain C̃CipijqRijCjCijKijpijq
´1 that is link-homotopic to C̃CipijqRijCjCijpijq

´1Kij

according to Remark 2.8. Then with further partial conjugations, we relocate Kij and we obtain

C̃CipijqKijRijCjCijpijq
´1. Finally using equality (1) and (2) from above we simplify the expression

as follows:

C̃CiKijpijqRijCjCijpijq
´1 „ C̃pijqCiRijCjCijpijq

´1 „ C̃pijqCjCiCijpijq
´1,

and we conclude by exchanging C̃ and pijq via an isotopy, thus obtaining the conjugate pijqCpijq´1.
�

Theorem 4.4 and Proposition 4.5 give us the following corollary.

Corollary 4.6. Two homotopic pure braids have link-homotopic closures if and only if they are related
by a sequence of partial conjugations.

By this corollary we have reinterpreted the link-homotopy classification of links as the problem of
understanding when braids are partial conjugate. To make this theorem fully efficient we need the
missing ingredient that any link can be see as a pure braid. This is the statement of the following
lemma coming from [HL90].

Lemma 4.7. Any n-component link is link-homotopic to the closure of an n-component pure braid.

4.2. Link-homotopy classification of links with a small number of components. This section
is dedicated to the explicit classification of links up to link-homotopy. The starting point of the
strategy is the work of Habegger and Lin, which allows us through Corollary 4.6 and Lemma 4.7 to
see links up to link-homotopy as pure homotopy braids up to partial conjugations. Moreover with
Corollary 3.34 we show that a braid is uniquely determined by its normal form, encoded by a sequence
of integers: the clasp-numbers. The goal is then to determine how the normal form, or equivalently
the clasp-numbers, vary under partial conjugations. By using clasper calculus, we recover in this way
the link-homotopy classification results from Milnor [Mil54] and Levine [Lev88] in the case of links
with at most 4 components. We then apply these techniques to the 5-component algebraically split
case.

In order to use Corollary 3.34, we need to fix an order on the set of twisted comb-claspers. In the
rest of the paper we fix the following order, which is inspired from Example 3.14. For two twisted
comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “ pi11 ¨ ¨ ¨ i

1
l1q we set pαq ď pα1q if:
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‚ degpαq ă degpα1q, or
‚ degpαq “ degpα1q and i1 ¨ ¨ ¨ il ălex i

1
1 ¨ ¨ ¨ i

1
l,

where ălex denotes the lexicographic order. This order is used implicitly throughout the rest of the
paper.

4.2.1. The 2-component case. As a warm up, we consider the 2-component case in order to illustrate
the techniques of this section.

Let L be a 2-component link. By Lemma 4.7, L is link-homotopic to the closure of a 2-component
pure braid β. By Corollary 3.34 there is a unique integer ν12 such that:

β „ p12qν12 .

So by Corollary 4.6 the link-homotopy class of L is uniquely characterized by the integer ν12 modulo
the indeterminacy introduced by partial conjugations.

1 2

ν12

(12)-1

1 2

ν12

Δ

Figure 22. The 1-th partial conjugation by x2 on the normal form.

Now in the two component case, move (2) from Corollary 2.7 shows that partial conjugations with
respect to the first and the second component, leave the normal form unchanged. This is illustrated
in Figure 22 for the 1-th partial conjugation by x2. The clasp-number ν12 is therefore a complete
link-homotopy invariant for 2-component links. Note that this number is in fact the linking number
between the two components, which is well known to classify 2-component links up to link-homotopy.

4.2.2. The 3-component case. Let L be a 3-component link. By Lemma 4.7 and Corollary 3.34, L is
link-homotopic to the closure of the normal form:

p12qν12p13qν13p23qν23p123qν123 ,

for some integers ν12 ,ν13, ν23 and ν123. See the left-hand side of Figure 23.
We now investigates how these numbers vary under partial conjugations. Apply for example the

1-th partial conjugation by x2. By Proposition 4.3 this corresponds to introducing the claspers ∆ and
p12q´1 as shown in the right-hand side of Figure 23, which we then put in normal form. This is done
by sliding the 1-leaf of ∆ along the first component to obtain p12q and simplify it with p12q´1. By
move p2q from Corollary 2.7, this sliding creates new claspers, but by Lemma 2.6, the only claspers
that do not vanish up to link-homotopy, are those created when ∆ crosses the leaves of p13qν13 :
more precisely, in this process, ν13 copies of t1,2,3u-supported claspers appear. Finally, according to
Remark 2.8 we can rearrange these new claspers and the normal form becomes

p12qν12p13qν13p23qν23p123qν123`ν13 .

The other partial conjugations act in a similar way, by changing ν123 by a multiple of ν12, ν13 or ν23.
Summarizing we have shown that

ν12, ν13, ν23 and ν123 mod pgcdpν12,ν13,ν23q,
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1 32

ν123

ν23

ν12

ν13

1 32

ν123

ν23

ν12

ν13

(12)-1

Δ

ν13

Figure 23. The 1-th partial conjugation by x2 on the normal form.

form a set of complete invariants for 3-component links up to link-homotopy. In fact, we recover
here Milnor invariants µ12, µ13, µ23 and µ123, that we already knew to be complete link-homotopy
invariants for 3-component links (see [Mil54]).

4.2.3. The 4-component case. Before proceeding with the link-homotopy classification of 4-component
links, we need the following technical result.

Lemma 4.8. Let C be a union of simple claspers for the trivial n-component braid denoted 1, let
l P t1, ¨ ¨ ¨ ,nu. Let T be a clasper in C with l in its support and let CT “

Ť

T 1 be the union of all
claspers in C such that supppT 1q X supppT q “ tlu. Suppose that an l-leaf f of T is disjoint from a

3-ball B containing all l-leaves of CT , then the closure of 1C is link-homotopic to the closure of 1C
1

where C 1 is obtained from C by passing f across the ball B as shown in Figure 24.

Proof. First the result is clear if T as several l-leaves, since by Lemma 2.6, T vanishes up to link-
homotopy. By Remark 2.8 the edges of any clasper in CT can freely cross those of T but f and the
l-leaves of claspers in CT cannot be freely exchanged. However according to Remark 2.8 again, the
leaf f can be freely exchanged with any l-leaf of claspers in CzCT , since their supports contain at
least l and another common component with the support of T . By using the closure we can thus slide
f in the other direction and bypass the l-leaves of claspers in CT all gathered in B. �

l

f

C
T

B

Figure 24. Illustration of Lemma 4.8
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Although the assumption of Lemma 4.8 may seem restrictive, it turns out to be naturally satisfied
for normal forms. For instance, we have the following consequence.

Proposition 4.9. Let C “ pα1q
ν1 ¨ ¨ ¨ pαmq

νm be the normal form of a pure homotopic n-component
braid and let pαq be a degree n´2 comb-clasper. Then C and C 1 “ pα1q

ν1 ¨ ¨ ¨ pαqpαiq
νipαq´1 ¨ ¨ ¨ pαmq

νm

have link-homotopic closures, for any i P t1, ¨ ¨ ¨ ,mu.

Proof. We first consider the product pα1q
ν1 ¨ ¨ ¨ pαiq

νipαqpαq´1 ¨ ¨ ¨ pαmq
νm where we just insert the

trivial term pαqpαq´1 to C. We next want to exchange pαq and pαiq
νi . This is allowed if |supppαq X

supppαiq| ě 2 by Remark 2.8, but if supppαq X supppαiq “ tlu we can only realize crossing changes
between the edges of pαq and pαiq

νi (see Remark 2.8). However in that case pαiq is a comb-clasper of
support tk,lu with k the only component not in the support of pαq, thus we can apply Lemma 4.8 to
the l-leaf of pαq, and bypass the block pαiq

νi (corresponding to CT in Lemma 4.8). �

Let us now return to the classification of links up to link-homotopy and let L be a 4-component
link. By Lemma 4.7 and Corollary 3.34, L is link-homotopic to the closure of the normal form:

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 ,

for some integers ν12, ν13, ν14, ν23, ν24, ν34, ν123, ν124, ν134, ν234, ν1234, and ν1324. See Figure 25.

1 32 4

ν123

ν124

ν234

ν34

ν23

ν12

ν14

ν13

ν24

ν1324

ν1234

ν134

Figure 25. Normal form for 4 components.

We can apply Proposition 4.9 to the degree 2 comb-claspers p123q, p124q, p134q and p234q. For
example, applying Proposition 4.9 to pαq “ p234q and pαiq “ p12q, we get that L is link-homotopic
to the closure of:

p234qp12qν12p234q´1p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123

p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 .
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By clasper calculus (Corollary 2.7 and Remark 2.8), we have p234qp12qν12p234q´1 „ p12qν12p1234qν12 .
The product of claspers p1234qν12 can be freely homotoped by Remark 2.8, thus producing the normal
form

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124p134qν134p234qν234p1234qν1234`ν12p1324qν1324 ,

whose closure is link-homotopic to L. This is recorded in first row of Table 1, which records all
possible transformations on clasp-numbers obtained with Proposition 4.9. Each row represents a
possible transformation where the entry in the column να represents the variation of the clasp-number
να. Note that an empty cell means that the corresponding clasp-number remains unchanged. Note
also that, we only need two columns because for the comb-claspers of degree 1 or 2 the associated
clasp-numbers remain unchanged.

ν1234 ν1324

ν12

ν34

ν13

ν24

ν14 -ν14

ν23 -ν23

Table 1. Some clasp-numbers variation with same closures.

Let us now describe how partial conjugations affect the clasp-numbers. As for the 3-component
case, the i-th partial conjugation by xj corresponds to sliding the i-leaf of a simple clasper of support
ti,ju (denoted ∆ in Proposition 4.3) along the i-th component. Along the way ∆ encounters leaves
and edges of other claspers that can be crossed as described by moves p2q and p4q of Corollary 2.7.
In doing this, claspers of degree 2 and 3 may appear, that we must reposition in the normal form.
Those of degree 3 commute with any clasper by Remark 2.8, but since they may not be comb-claspers
we have to use IHX relations (Proposition 2.9) to turn them into comb-claspers. Claspers of degree
2 can be repositioned using Remark 2.8 and Lemma 4.8 (the fact that Lemma 4.8 applies is clear
according to the shape of the normal form, where factors are stacked).

We detail as an example the 2-th partial conjugation by x4 denoted
§

đ

2

4
. In that case ∆ has support

t2,4u and we slide its 2-leaf along the 2-component. According to Remark 2.8, ∆ can freely cross
the edges of claspers with 4 in their support and the 2-leaves of claspers containing 2 and 4 in their
support. Thus we only consider the claspers that appear when ∆ meets the edges of p13qν13 and the
2-leaves of p12qν12 , p23qν23 and p123qν123 . Once repositioned we obtain in order the factors p1324qν13 ,
p124qν12 , p234q´ν23 and p1324q´ν123 . However according to Table 1, p1324qν13 can be removed up to
link-homotopy and thus we get the following normal form:

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124`ν12

p134qν134p234qν234´ν23p1234qν1234p1324qν1324´ν123

In the same way we compute all the partial conjugations and record them in Table 2. The entry

in row
§

đ

i

j
represents the i-th partial conjugation by xj . As in Table 1, an empty cell means that the

partial conjugation does not change the clasp-number. Moreover the νij columns are omitted because
they remain unchanged by any partial conjugation.
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ν123 ν124 ν134 ν234 ν1234 ν1324
§

đ

1

2
ν13 ν14 ν134

§

đ

1

3
´ν12 ν14 ν124

§

đ

1

4
´ν12 ´ν13 ´ν123 ν123

§

đ

2

1
´ν23 ´ν24 ´ν234

§

đ

2

3
ν12 ν24 ν124 ´ν124

§

đ

2

4
ν12 ´ν23 ´ν123

§

đ

3

1
ν23 ´ν34 ν234

§

đ

3

2
´ν13 ´ν34 ´ν134 ν134

§

đ

3

4
ν13 ν23 ν123

§

đ

4

1
ν24 ν34 ν234 ´ν234

§

đ

4

2
´ν14 ν34 ´ν134

§

đ

4

3
´ν14 ´ν24 ´ν124

Table 2. Clasp-numbers variations under partial conjugations.

There are algebraic redundancies in Table 2, i.e. some lines are combinations of other lines, which
means that some partial conjugations generate the others. So we can keep only these ones (or their
opposite), which we call ”generating” partial conjugations, and which we record in Table 3.

ν123 ν124 ν134 ν234 ν1234 ν1324

ν13 ν14 ν134

´ν12 ν14 ν124

ν23 ν24 ν234

´ν12 ν23 ν123

ν23 ´ν34 ν234

ν13 ν23 ν123

ν14 ´ν34 ν134

ν14 ν24 ν124

Table 3. Clasp-numbers variations under generating partial conjugations.

Finally, with Table 3 we reinterpret the classification of links with 4 component as follows.

Theorem 4.10. Two 4-component links, see as closures of braids in normal forms (see Figure 25),
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations
from Table 3.

Note that Levine in [Lev88] already proved similar results. The purpose of this paragraph is to
explain the correspondence between the two approaches. The strategy adopted in [Lev88] consists in
fixing the first three components and let the fourth one carry the information of the link-homotopy
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indeterminacy. Levine used four integers k,l,r,d to describe a normal form for the first three com-
ponents, and integers ei; i P t1, ¨ ¨ ¨ ,8 to describe the information of the last component. Finally in
[Lev88, Table3] he gives a list of all possible transformations on ei-numbers that do not change the
link-homotopy class. Fixing the last component corresponds in our setting to fixing the clasp-number
ν123: this is why [Lev88, Table 3] has one less column than Tables 2 and 3. Moreover the five rows of

[Lev88, Table 3] correspond to
´

§

đ

1

3

¯´1
,
´

§

đ

2

4

¯´1
,
§

đ

4

1
,
§

đ

4

3
and

´

§

đ

2

1

¯´c
˝

´

§

đ

1

3

¯´a
˝

´

§

đ

1

2

¯´b
, respectively,

and Levine’s integers correspond to clasp-numbers as follows.

k r l d e1 e2 e3 e4 e5 e6 e7 e8

ν12 ν13 ν23 ν123 ν14 ν24 ν34 ν124 ν134 ν234 ´ν1324 ´ν1234

4.2.4. The 5-component algebraically split case. This section is dedicated to the study of 5-components
algebraically split links. These are links such that the linking numbers are trivial for any couple of
components. Equivalently, algebraically split links are given by the closure of a normal form with
trivial clasp-numbers for any degree one comb-clasper.

The following proposition is the algebraically split version of Proposition 4.9.

Proposition 4.11. Let C “ pα1q
ν1 ¨ ¨ ¨ pαmq

νm be a normal form of a pure homotopic n-component
braid with νi “ 0 for any pαiq of degree one, let pαq be a degree n ´ 3 comb-clasper. Then C and
C 1 “ pα1q

ν1 ¨ ¨ ¨ pαqpαiq
νipαq´1 ¨ ¨ ¨ pαmq

νm have link-homotopic closures, for any i P t1, ¨ ¨ ¨ ,mu.

Proof. As for Proposition 4.9 we first consider the product pα1q
ν1 ¨ ¨ ¨ pαiq

νipαqpαq´1 ¨ ¨ ¨ pαmq
νm where

we simply insert the trivial term pαqpαq´1 in C. We next want to exchange pαq and pαiq
νi . This

is allowed if |supppαq X supppαiq| ě 2 by Remark 2.8, but if supppαq X supppαiq “ tlu we can only
realize crossing changes between the edges of pαq and pαiq

νi (see Remark 2.8). However in that case
pαiq is a comb-clasper of support tj,k,lu with j and k the two components not in the support of pαq,
thus we can apply Lemma 4.8 to the l-leaf of pαq, and bypass the block pαiq

νi (corresponding to CT
in Lemma 4.8). �

Returning to the classification of links up to link-homotopy and let L be a 5-component algebraically
split link. By Lemma 4.7 and Corollary 3.34, L is link-homotopic to the closure of the normal form:

C “p123qν123p124qν124p125qν125p134qν134p135qν135p145qν145p234qν234p235qν235p245qν245p345qν345p1234qν1234

p1235qν1235p1245qν1245p1324qν1324p1325qν1325p1345qν1345p1425qν1425p1435qν1435p2345qν2345p2435qν2435

p12345qν12345p12435qν12435p13245qν13245p13425qν13425p14235qν14235p14325qν14325

The strategy is similar to the 4-component case. Thanks to Lemma 4.7, we see links as braid
closures, and with Theorem 3.34 we know that any braid is uniquely determined by a set of numbers:
the clasp-numbers tναu. In this case, the algebraically split condition results in the nullity of clasp-
numbers νij (i.e. να “ 0 for all pαq of degree 1). Now, as mentioned by Corollary 4.6, the classification
of links up to link-homotopy reduces to determining how partial conjugations affect the clasp-numbers.

We first use Proposition 4.11 to simplify the upcoming computations. In that case Proposition 4.11
concerns degree 2 comb-claspers p123q, p124q, p125q, p134q, p135q, p145q, p234q, p235q, p245q, p345q.
We record in Table 4 all possible transformations on clasp-numbers obtained with Proposition 4.11.
As before, each row represents a possible transformation where the entry in the column να represents
the variation of the clasp-number να, and an empty cell means that the corresponding clasp-number
remains unchanged. Note also that, we only need columns corresponding to degree 4 comb-claspers
because the other clasp-numbers remain unchanged.
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ν12345 ν12435 ν13245 ν13425 ν14235 ν14325

ν123

ν123

ν124

ν124

ν125 ´ν125

ν125 ´ν125

ν134

ν134

ν135 ´ν135

ν135 ´ν135

ν145 ´ν145

ν145 ´ν145

ν234 -ν234 ´ν234 ν234

ν234 ´ν234 ν234 ´ν234

ν235

ν235

ν245

ν245

ν345

ν345

Table 4. Some clasp-numbers variation with same closure.

Finally, we compute the effect of all partial conjugations using Proposition 4.3, and simplify the
results keeping only the ”generating” partial conjugations, as in the 4-component case. We record the
corresponding clasp-number variations in Table 5. As for the 4-component case, Table 5 contains the
data for the classification of 5-component algebraically split. In other words we obtain the following
classification result. classification result.

Theorem 4.12. Two 5-component algebraically split links, seen as closures of braids in normal forms,
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from
Table 5.

ν1234 ν1235 ν1245 ν1324 ν1325 ν1345 ν1425 ν1435 ν2345 ν2435 ν12345 ν12435 ν13245 ν13425 ν14235 ν14325

ν134 ν135 ν145 ν1345 ν1435

ν124 ν125 ν145 ν1245 ν1425

´ν123 ν123 ν125 ν135 ´ν1235 ν1325

ν234 ν235 ν245 ν2345 ν2435

ν125 ´ν123 ´ν125 ν235 ν1235 ν1325 ´ν1325 ´ν1235

ν123 ν124 ν234 ´ν234 ν1234 ` ν1324 -ν1234

ν234 ν235 ´ν345 ν2345 ` ν2435 ´ν2435

´ν134 ´ν135 ν134 ν135 ´ν345 ´ν1345 ν1345 ´ν1435 ν1435

´ν123 ν134 ν234 ν1234 ` ν1324 ´ν1324

ν234 ´ν234 ν245 ν345 ν2345 ` ν2435 ´ν2345

´ν124 ´ν145 ν145 ´ν245 ν245 ´ν1245 ν1245 ´ν1425 ν1425

ν124 ν134 ν234 ν1234 ν1324

ν135 ν145 ´ν345 ν345 ν1345 ν1435

ν125 ν145 ν245 ν1245 ν1425

ν125 ν135 ν235 ν1235 ν1325

Table 5. Clasp-numbers variation under generating partial conjugations in the 5-
component algebraically split case.
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