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Abstract—The adoption of deep learning models has brought
significant performance improvements across several research
fields, such as computer vision and natural language processing.
However, their “black-box” nature yields the downside of poor
explainability: in particular, several real-world applications re-
quire – to varying extents – reliable confidence scores associated
to a model’s prediction. The relation between a model’s accuracy
and confidence is typically referred to as calibration. In this
work, we propose a novel calibration method based on gradient
accumulation in conjunction with existing loss regularization
techniques. Our experiments on the Named Entity Recognition
task show an improvement of the performance/calibration ratio
compared to the current methods.

Index Terms—calibration, ner, uncertainty, noise injection

I. INTRODUCTION

For classification tasks, the output layer of a neural network
typically performs a softmax over the computed logits in
order to provide per-class decision probabilities. Nonethe-
less, these likelihoods are not necessarily correlated with
the model’s prediction confidence, a fact that can lead to
misconceptions from the final user’s point of view [9, 29]. The
relation between the classifier’s likelihoods and their actual
confidence level is typically referred to as the calibration
of the model. The Expected Calibration Error (ECE) [9] is
one of the most popular calibration measures experimented
with in various use cases, e.g. Question-Answering (QA) [12,
24], Computer Vision (CV) [23, 24] and Natural Language
Processing (NLP) in general [13, 16].

Current literature presents two popular techniques for model
calibration applied during training/fine-tuning of the entire
model: Noise Injection (NI) [31] and Loss Regularization (LR)
[14, 26, 38]. Commonly, these techniques are applied on a
pretrained foundation model [2] such as BERT [5] in NLP
applications.

In this work, we propose a novel calibration method applied
only on the network’s head without perturbing the foundation
model’s weights. Our approach is based on a gradient accu-
mulation technique with a dedicated training objective and
on the loss regularizer introduced by Xin et al. [38]. The

Figure 1. The gradient accumulation method general idea: the first step is
a forward pass on the dataset element, the second step is the training of the
classifier on noise data.

proposed method is summarized in Figure 1. We evaluate
the proposed method in terms of calibration and inference
performance on the following well-established Named Entity
Recognition (NER) datasets: Conll2003 [33], Wikiann [27],
NCBI Disease [6], WNUT17 [27] and GUM [40].1

This work can give new perspectives on the calibration of
fine-tuned models for NLP applications. This could lead to a
better understanding of a model’s outputs and ultimately to a
higher trust level in the systems relying on these models.

Our contributions are as follows:
• A novel method for model calibration on token classifi-

cation (e.g. NER) tasks based on gradient accumulation
and a custom training objective, depicted in Figure 1.

• A benchmark of existing calibration techniques combined
with our gradient accumulation method on several NER
datasets.

• An open framework for extending this method to other
classification tasks.

In the following, we first introduce important concepts
regarding calibration and NER in Section II. Then, we go

1We publicly release the source code and scripts to reproduce this work at:
https://github.com/DeVinci-Innovation-Center/ijcnn2022



over several recent advancements in model calibration in
Section III. We then introduce the proposed Gradient ac-
cumulation method and explain the motivations behind its
design choices and its implementation in Section IV. Finally,
in Section V we showcase the results achieved by our method
and compare them to several baselines.

II. BACKGROUND

This section introduces the foundation of our method and
details the specific use case we target throughout this paper.

A. Calibration

Calibration is a measurement of the discrepancy between the
accuracy and confidence of a model’s output. Several metrics
have been proposed and used to measure calibration, such
as reliability diagrams [9, 25] or the Brier score [39] which
has been adjusted over time [15]. More recently, the research
community has converged to adopt the Expected Calibration
Error has as the metric of choice for the measurement of
calibration [18, 20, 21, 35]. The ECE [9] uses bins to sort
a model’s outputs by confidence and measure the average
difference between the accuracy and confidence of samples
in each bin.

Formally, with N bins Bn containing samples within a
certain confidence range, the ECE is defined as:

ECE =

N∑
n=1

|Bn|
n
|acc(Bn)− conf(Bn)| (1)

Where |Bn| is the number of samples in the Bn bin. A per-
fectly calibrated model would be very confident (i.e. it would
associate high probability to its output) when its prediction
is correct, and conversely return probabilities close to 1

N on
wrong predictions. The accuracy function is the fraction of
correctly classified samples in the Bn bin. The confidence
score represents the average confidence of samples in the
bin Bn. Various methods have been introduced to measure
such confidence. The ECE uses the max softmax value as
the confidence of a sample. The methods used to calibrate
a model often rely on the introduction of perturbations which
make the model more robust, less affected by a dataset shift,
and less susceptible to miscalibration; unfortunately, these are
found to also often impact the performance. This motivates
our approach: to prevent performance drop, calibration should
be learned by the classification head of a NLP pipeline.

Miscalibration can have a direct negative impact on the
explainability and user experience of the downstream process.
To tackle this problem several sources of miscalibration have
been identified such as model capacity [9], dataset qual-
ity [32] or out of domain training samples. Another source
of miscalibration is the one-hot label encoding that tends to
build overconfident output distribution even in case of low
confidence.

B. Named Entity Recognition

NER is a popular token classification task: each token
from the input text is classified as belonging to predefined
categories; typically, entities are single words or groups of
words referring to e.g. locations, persons, dates.

Various NLP pipelines rely, more or less explicitly, on this
task. In QA [10], tokens and entities can be seen respectively
as the words and their relation to the answer. In Document
Representation [28], NER can be used to retrieve the text in
proximity of entities of interest (e.g. persons, organizations).

Under the popular BIO schema, illustrated in Figure 2, the
tokens are classified as the Beginning, the Inside, or being
Outside of a specific entity. Naturally, in most NER datasets,
the O label is over-represented, and thus the label distributions
are heavily unbalanced; this makes NER tasks a challenging
use case for calibration problems.

Figure 2. Sample text with NER token annotations using the BIO schema.

C. Transformer Integration

Nowadays, the Transformer architecture [36] and BERT [5]
are considered as foundation models for task-specific fine-
tuning or building more complex architectures. These language
models provide dense contextual representations of the input
text which have proven highly effective on several downstream
tasks; nonetheless, they are found to be sensitive to miscali-
bration, especially in out of domain applications [4]. For this
reason, a complementary calibration is necessary to make the
model usable in the wild: the input samples from real world
use cases can be out of the training distribution, and in these
cases an appropriately calibrated model should output results
reflecting the unknown nature of the sample.

Most recent applications leverage these representations with
a Multi Layer Perceptron (MLP), using it as the classification
head [13, 12]. In this work, we adopt the same setup to
evaluate our proposed method.

III. RELATED WORK

The current literature addresses the calibration issue mainly
through Loss Regularization (LR) and Noise Injection (NI).

A. Loss Regularization

Loss Regularization (LR) is a family of techniques relying
on a complementary loss term to regularize the weights or
obtain a model with specific properties. LR has been used
to tackle the calibration problem. For instance, the AVUC
loss [14] penalizes samples whose accuracy and confidence do
not match. The loss is computed from the number of correctly
and incorrectly classified samples, as well as the number
of strongly (high probability) and weakly (low probability)
classified samples. The objective is to have all the accurate
samples strongly classified and all inaccurate samples weakly



classified. The loss works for any classification task, but it
lacks in stability and can hinder the training process.

Another approach to improve calibration with LR is to use
Out Of Domain (OOD) examples. Mitrose et al. [22] compared
in and out of domain examples using the cosine distance and
used it as a regularization loss. Taking inspiration from the
ECE, Tomani et al. [34] suggested an adversarial loss term.
A different training procedure is suggested by Noh et al. [26]
where examples are processed several times by the model with
a different a dropout mask to produce different gradients which
are then averaged. These approaches do not directly address
the calibration problem, but have been used in recent literature
to calibrate models [30].

Xin et al. [38] introduce a simple and effective loss, based
on the uncertainty difference between samples selected by their
loss value. For each sample xi and xj , their respective loss
values ei and ej , and an uncertainty measure g(x) the loss
Lreg is applied during training:

Lreg =
∑

1<i,j<n

∆i,j1[ei > ej ] (2)

∆i,j = max(0, g(xi)− g(xj))
2 (3)

This loss is effective but has the downside of working on pairs
of samples which puts the time complexity of the loss atO(n2)
where n is the batch size which can increase the training time
under certain conditions.

B. Noise Injection
Noise Injection (NI) relies on the alteration of a model’s

inputs or internal neuron activations via the addition or mul-
tiplication of noise. NI has been used to improve a model
generalization capability or to prevent adversarial attacks [8].

The idea of modifying input data to improve a model
accuracy was applied with great success to the domain of
image classification [31]. The concept is more difficult to apply
to the NLP field but attempts have been made using synonyms
or word replacement approaches [7].

Other NI techniques focus on modifying the data flow inside
the model regardless of the input data. This is mainly used to
tackle the overfitting problem [41] as the data signal can’t
create a single path to the output, eliminating trivial solutions
and preventing overfitting. NI is also used to increase the
model accuracy and general performance. In the context of
adversarial attacks, the noise is used to improve the robustness
of models so small perturbations do not have significant
negative impact on the results [11].

These different results have also been studied for their
regularization properties. Gaussian Noise Injection (GNI) [19]
has been shown to have regularizing properties that improve
calibration; these results have been further studied and applied
to different tasks [3].

IV. GRADIENT ACCUMULATION PROPOSAL

Our proposed method addresses the miscalibration induced
by the one-hot label encoding and the out of domain applica-
tion.

A. Requirements

To address the miscalibration issue, we consider our pro-
posal should meet the following requirements:

• The method should not require a model adaptation, ad-
ditional implementations, nor adaptation of the language
model. The proposed method could potentially be used to
train any network, and not to redo the training on data, nor
to redesign/re-implement the network. The method should
therefore be agnostic to the used model to guarantee its
generalization and exploitation to other tasks.

• The method should have a low training overhead. This
ensures the training time stays within reason, even on
large scale datasets. The idea is that the overhead training
should help to better calibrate the classifier head for the
application domain at training time.

• The Gaussian noise sample training must only be applied
to the classifier head. Applying this method to the entire
model could hinder the performance of the pre-trained
model and precipitate performance loss at the expanse of
calibration.

B. General Principle

In order to meet the previous requirements, we propose a
straightforward method which consists in accumulating on the
classification head the training gradients for each sample with
those from a Gaussian noise sample. This technique helps the
system to maintain calibrated probabilities on the one-hot label
vector for out of domain samples.

We consider this technique as a model regularization based
on uniform labels for the loss function, which can be seen as
a complementary training objective on out-of-domain data.

To resume, we accumulate the gradient from a training
sample on one-hot vector, representing a data point with
absolute certainty, with a Gaussian noise sample with uniform
labels -which contains no information. This contrast between
an absolutely certain and absolutely uncertain data point is
averaged by the gradient accumulation, explaining the im-
provement of the calibration.

C. Implementation

As previously explained, we train the classification head
on synthetic noise data with equiprobable target labels. The
classifier is trained on the dataset at hand and synthetic data
sequentially.

First, a sample is fed-forward to the entire model: Language
Model (LM) and classification head, then a backpropagation
step computes gradients for the entire model on that sample.
Finally, synthetic data is injected in the classification head
with equiprobable labels as targets. We then perform another
backpropagation step, accumulating the gradients. This ac-
cumulates the gradients for the normal forward pass with a
sample from the dataset and the gradients from the synthetic
data on the classification head. We summarize this procedure
in Figure 1.

This implementation choice stems from the requirements
explained in Section IV-A. The simple and effective idea



behind this method is to have a label for negative, impossible
to classify examples. These samples serve as counter examples
to one-hot encoded labels of the dataset. Since it is hard to
create noise text data that would match a real-world use case,
we prefer to train the head classifier on noise data rather than
the whole model. Because we want only the classifier to learn
calibration data, we chose to feed noise to the classification
head and not the entire model.

More formally, given a dataset (xi, yi) ∈ D with yi being
the target vector for N classes. We define a model as a LM
x 7→ LM(x) composed with a classifier z 7→ C(z) The z
component is a vector with the same dimension as the output
of the LM. We note it M = x 7→ C(LM(x)). We define ẑ as
a gaussian noise vector with the same dimension as the output
of the LM.
From these elements we obtain the two different losses:

Ltask = MSE[M(xi), yi] (4)

Lcalib = λ(
1

N
−max[C(ẑ)])2 (5)

Ltask is the loss associated to the classification task, Lcalib

is the loss used when training the classification head on
noise input. We use the Mean Square Error (MSE) loss in
our experiments but other loss functions compatible with
classification tasks can be used. λ is a hyperparameter, chosen
before training.

Algorithm 1 Training procedure for one step
Input A model M and dataset point (xi, yi) ∈ D
Output A model M with accumulated gradients ∇LM

and ∇C for its Language Model (LM) and classification
head.

1: Do a forward pass: ŷi =M(xi)
2: Compute Ltask

3: Apply backpropagation onM using Ltask. This computes
∇task for LM and C

4: Generate gaussian noise input ẑ ∼ N (0; 1)
5: Compute C(ẑ) then Lcalib

6: Apply backpropagation on C computing ∇calib.
Now, the LM has gradients ∇LM = ∇task and C has
gradients ∇C = ∇task +∇calib

7: ∇C ← ∇C

2
8: Return M

The training procedure for a single element of the dataset
is described in the Algorithm 1. The model is trained on its
task and noise at the same time and gradients for both the
task and noise passes are accumulated on the classification
head. Since we accumulate two gradients on the classifier but
only one on the LM, we divide ∇C by 2 in step 7. We repeat
this step for all the samples in the dataset. Effectively, at the
classification head, each sample from the dataset will have a
negative counterpart sampled from a Gaussian distribution. At
the end of the training process, we will have simultaneously
trained the classifier on both tasks by the same amount.

D. Combination with abstention
Our method can be combined with previous work, specifi-

cally the Abstention regularization loss showcased by Xin et
al. [38]. Combining the two methods requires doing multiple
passes of the same sample from the dataset and accumulating
the gradients, on the classification head only, for the different
passes. With the Abstention method, this implies backpropa-
gating the regularization loss on the classification head only.
Effectively, we are adapting the Abstention mechanism on
an NER task. This adaptation is possible because the two
methods work on classification tasks: the Abstention method
was originally used on sentence classification. To adapt it to
a NER context, we compute Lreg on each token and use the
mean value of these losses as the new regularization. Since
we do an additional backpropagation step for the Abstention
pass, we divide the gradient of the classification head by 3
instead of 2 in the Algorithm 1 when this method is used. The
classification head gradients become the mean of the dataset
sample pass, the abstention pass and the pass with our method.

V. RESULTS

In this section, we test our method on multiple datasets
and compare it to different baselines. We first explain the
experimental conditions in which we ran the experiments.
We introduce a new metric to reflect the performance over
calibration ratio which is an important aspect of the calibration
objective. Finally, we present our results and compare them to
the current state of the art.

A. Experimental Setup
Several datasets are commonly used as a baseline for the

NER task. The Conll2003 dataset [33] is widely used in
the community and is a popular choice for Deep Learning
approaches, as it comprises several hundreds of annotated
news articles. The NCBI Disease dataset [6] is a NER dataset
in the medical domain, to enable disease named entity recog-
nition based on a large, manually annotated corpus of medical
publications. It is regularly used as a baseline in NER applied
to the medical field. The Wikiann dataset [27] was originally
designed for cross-lingual name tagging and is based on
a large corpus from Wikipedia. We do not use the cross-
lingual aspect of the dataset and only use the English article
for NER. The GUM dataset [40] contains a rich and varied
ensemble of annotation types and is a challenging dataset
because of this diversity. Finally, the WNUT 2017 dataset [1]
is a NER dataset on emerging and rare entities, this feature
is the reason why we chose to include this dataset in spite
of the very low performance of all models (F1 30-58%), the
rare and unseen characteristic of the data is the key element
measure by the ECE metric, this is effectively, in the author’s
opinion the dataset which leverages the method the best and
is the closest thing to a real-world application. These different
datasets are available online and can be downloaded using the
HuggingFace Dataset library2 increasing the reproducibility of
our work.

2https://huggingface.co/docs/datasets/



Table I
SUMMARY OF RESULTS WITH A CLASSIFICATION HEAD OF DEPTH = 1 AND VARYING WIDTH (w)

Method
ConLL2003 NCBI Disease Wikiann GUM Wnut17

F1↑ ECE↓ APCR↑ F1↑ ECE↓ APCR↑ F1↑ ECE↓ APCR↑ F1↑ ECE↓ APCR↑ F1↑ ECE↓ APCR↑

Baseline
w = 64 .938 .012 74.83 .850 .014 51.18 .839 .069 10.13 .624 .194 2.01 .541 .045 6.46
w = 128 .939 .012 75.12 .857 .014 52.69 .835 .069 10.00 .612 .204 1.83 .557 .046 6.75
w = 200 .936 .013 68.91 .857 .012 53.35 .830 .070 9.75 .617 .203 1.87 .564 .044 7.17
w = 256 .936 .013 69.25 .849 .014 49.46 .831 .070 9.84 .610 .199 1.86 .544 .045 6.45

AVUC
w = 64 .834 .006 106.88 .477 .011 19.13 .557 .037 8.29 .250 .061 1.02 .309 .028 3.39
w = 128 .845 .010 71.07 .520 .014 18.72 .564 .049 6.38 .317 .049 2.03 .441 .028 6.83
w = 200 .845 .007 101.13 .517 .012 21.17 .563 .040 7.92 .320 .043 2.38 .444 .026 7.67
w = 256 .846 .007 98.13 .523 .013 21.21 .562 .039 7.94 .334 .041 2.67 .462 .026 8.12

Abstention (ABS)
w = 64 .932 .013 65.58 .860 .013 55.64 .826 .072 9.44 .604 .204 1.78 .409 .053 3.13
w = 128 .938 .011 75.03 .854 .013 53.59 .831 .070 9.84 .612 .199 1.87 .346 .051 2.31
w = 200 .931 .013 62.97 .849 .014 50.09 .828 .071 9.63 .602 .203 1.78 .404 .048 3.40
w = 256 .931 .013 63.45 .857 .013 54.57 .833 .069 9.96 .618 .204 1.87 .516 .053 4.98

∇Acc. (Ours)
w = 64 .932 .013 65.44 .848 .014 49.67 .835 .069 10.08 .609 .199 1.86 .582 .044 7.69
w = 128 .934 .013 65.60 .858 .013 55.13 .839 .066 10.57 .612 .198 1.89 .561 .043 7.24
w = 200 .937 .012 68.16 .842 .014 50.28 .833 .069 10.01 .609 .200 1.84 .564 .044 7.16
w = 256 .943 .012 73.15 .850 .013 52.61 .836 .068 10.17 .619 .197 1.94 .569 .043 7.47

∇Acc. (Ours) + ABS
w = 64 .930 .008 104.52 .868 .010 74.98 .829 .065 10.57 .614 .184 2.05 .542 .040 7.22
w = 128 .933 .013 64.67 .858 .013 53.84 .825 .072 9.44 .614 .200 1.88 .522 .046 5.86
w = 200 .934 .008 97.58 .844 .011 62.35 .830 .065 10.58 .624 .185 2.10 .487 .042 5.63
w = 256 .932 .008 106.31 .844 .009 73.45 .832 .063 10.98 .623 .187 2.07 .497 .042 5.87

To validate our method, we use different metrics: first, we
want the model to retain its performance; consistently with the
literature on NER, we use the F1 score defined as:

F1 = 2
recall ∗ accuracy
recall + accuracy

The accuracy and recall are measured at the token level of
the NER task, the F1 score represents the performance of the
NER model to classify tokens and not word compounds. The
F1 is a scalar metric between 0 and 1, the higher the better.
The measure of the calibration of the classifier is made with
the ECE metric [9], as previously detailed in the Section II;
the ECE represents the discrepancy between the accuracy and
softmax output of the classifier. The ECE is a scalar metric
between 0 and +∞. A perfectly calibrated model will yield
an ECE of 0. As we will detail in the Section V-B, calibration
can be achieved at the expense of the model performance. To
reflect this phenomenon, we introduce a new metric which
accounts for both the model’s performance and the calibration
value. The Adjusted Performance to Calibration Ratio (APCR)
is defined as:

APCR =
F12

ECE

The APCR is a ratio between the performance and calibration
of a model. To better reflect the performance drop of models,
we adjusted the metric and used the square of the F1 score.
Since the performance drop can be significant and invalidate
a result as the model becomes unusable in practice, we want
a metric that reflects this implication strongly. The APCR
provides a preview of the overall performance of the method.
The APCR metric is a scalar ⩾ 0, higher values are better.

APCR is not defined when ECE = 0, however, perfectly
calibrated models do not arise in practice. We consider the
ECE to be strictly positive in this paper.

We conduct our experiments in different settings to validate
our approach: the raw setting represents a training of the
model without any regularization and is used as the baseline
for all the different results. The AVUC setting only uses
the AVUC [14] regularization. As described in the original
paper, we backpropagate the loss on the entire model, LM
and classification head. The Abstention setting refers to the
approach introduced by Xin et al. [38], applied as described
in the original paper. The ∇Acc. setting refers to our method
as described in Section IV and finally the ∇Acc.+Abstention
setting refers to the combination of our approach and the
Abstention method and is implemented as described in Sec-
tion IV-D.

Since our method is applied to the classification head
specifically, it is important to test different architectures and
capacities. We conducted our experiments on a MLP with
different depth and width. The width is the number of neurons
in a single layer and the depth is the number of layers in
the MLP. The classification head is usually a single layer
perceptron (depth=1), which is the adopted setting in the
Table I. We chose values between 64 and 256 for the classifier
width and values between 1 and 6 for its depth. The method’s
behavior for depth over 1 are reported on Figure 4.

Finally, we provide details on the hyperparameters used.
In our experiments, the LM is BERT-base from the Hug-
gingFace [37]. We measure the ECE on the test fraction of
each dataset with the netcal [17] library while the F1 score is
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Figure 3. Performance VS Calibration of several methods on the Conll2003
dataset: each model’s ECE and F1 score are plotted to visualize the perfor-
mance/calibration trade-off between the different methods. The calibrated and
performant models are on the top left.

computed by the internal metrics provided by HuggingFace.
We choose λ = 2.5−2 for all experiments for the loss scaler.
The learning rate is linearly decreased over the training by a
scheduler, starting at 5e−5. The vector size of z is 768 for
all experiences. For all training we chose a batch size of 3.
Training is performed on a Nvidia Tesla V100 on 10 epochs.

B. Performance vs. Calibration

Model calibration plays an important role in explainability
and improves the user’s trust in the predictions, but the model’s
performance remains a primordial metric. If the performance
drops significantly, the model becomes unusable regardless of
its calibration. In practice, we notice a trade-off between the
performance of the model and the calibration measured by the
ECE. The reason for this trade-off can stem from the potency
of the method or the strength applied to the regularizer, i.e the
loss scale.

The most potent calibration methods can impact the model’s
performance the most. Therefore, the ECE metric on its own
is not enough to get information about the model’s usability
in a real world setting as the method could have had a
detrimental effect on the model’s performance. For this reason,
we introduced the APCR metric, to have a joint estimation of
the model’s performance and interpretability by end users.

C. Discussion

The results of our experiments are reported in Table I.
The last two rows depict our method and its combination
with the Abstention mechanism [38], respectively. We obtain
satisfactory results on all datasets and architectures: the APCR,
representing the trade-off between performance and accuracy,
is better 12 times out of 20. The F1 score is also equal or
better in 12 case out of 20. As we expected, the ECE metric
is better only in 4 cases out of 20. As presented, the AVUC

Figure 4. ECE Calibration for different methods on the Ncbi Disease dataset
w.r.t classifier depth. The classifier width remains 128 throughout, we increase
the depth of the classifier.

metric yields better calibration but models that are ill-suited for
a real world application due to their performance. This shows
our method gives a better trade-off and models better suited for
real world application. Even though we provided motivation
for our APCR metric, we can observe the raw ECE value is not
always better and that our method does not strongly constrain
the model’s calibration. We can also observe the impact of
the AVUC regularization on the model’s performance, which
despite yielding better calibration, severely hinders the model’s
accuracy.

Because the classifier head is initialized with Gaussian noise
and the weights of the language model are trained with nor-
malization components such as Batch Normalization, we chose
uniform Gaussian noise as our noisy input for the classification
head. The two training objectives pull the gradient in different
directions: the first pass trains the classifier for the given
task, the second pass trains the classifier to give equiprobable
outputs for noisy inputs. We chose to inject the noise only
at the classification head because the calibration of the model
is determined only by the final layers, the language model
gives high dimensional representations and only the classifier
is responsible for the calibration of the model.

To illustrate our results, we plotted the Performance vs.
Calibration of several methods for the Conll2003 dataset in
Figure 3. We can observe the trade-off with a set of techniques
more accurate but less calibrated and on the other side, better
calibrated but less performant methods. The combination of
our method and Abstention appears to be the best trade-off
between performance and calibration.

We experimented with different kinds of classification head
architectures: Table I shows results with different width of
a 1 layer MLP, while Figure 4 depicts the evolution of the
calibration w.r.t the depth of an MLP of width 128. We observe
that all methods have a tendency to converge when the depth
increases, except the AVUC method, which seems to degrade.
This could be interpreted as the calibration information being
insufficient for the model capacity, or the model capacity



getting too important for the task, leading to overfitting.

VI. CONCLUSION

We presented a novel gradient accumulation method for
calibrating NER models in order to address the miscalibration
issue. To address this issue and to gain in generalization, the
method should be agnostic to the trained model and network’s
architecture, only have a low training overhead, and exploit
synthetic noise data only for the network head training. Our
proposal consists in training a classifier on domain data and
synthetic Gaussian noise data, and then combining accumulat-
ing the gradients.

We tested this method on several NER datasets. The com-
parison with the initial model (baseline) showed that our
proposal, with and without Abstention, improves, most of the
time, the calibration in terms of ECE, and the performance
in terms of F1 score. To analyze the performance/calibration
trade-off of a model, we introduced the APCR metric com-
bining F1 scores and ECE. According to this metric, our ap-
proach provided globally a better balance between calibration
and performance than the current state-of-the-art approaches.
Therefore, the experimentation has shown that our approach
yields results more suitable for real-world applications.

Future works include testing the method on a wider variety
of tasks such as sentiment classification, language generation
and on other foundation-based architectures. Further investi-
gation is needed on the impact of the loss scale on the APCR.
The impact of other parameters such as the loss or learning
rate used can be further analyzed in future works.
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