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Abstract. This paper presents a Multi-Agent System (MAS) dedicated
to abnormal behaviors detection and alerts triggering in the maritime
surveillance area. This MAS uses anomalies issued from an experienced
Rule Engine implementing maritime regulation. It evaluates ships be-
havior cumulating the importance of related anomalies and triggers rel-
evant alerts towards human operators involved in maritime surveillance.
These human operators evaluate triggered alerts and confirm or invali-
date them. Invalidated alerts are sent back to the MAS for a learning step
since it self-adapts anomalies values to be consistent with human oper-
ators feedbacks. This MAS is implemented in the context of the project
I2C, an EU funded project1 dedicated to abnormal ships behavior detec-
tion and early identification of threats such as oil slick, illegal fishing, or
lucrative criminal activities (e.g. goods, drugs, or weapons smuggling).

Keywords: Maritime Surveillance, Alert, Learning, Adaptive MAS.

1 Introduction

Nowadays, maritime activity, which has grown rapidly in recent years, provides
support for numerous and various traffic (e.g. arms dealing, goods or drug smug-
gling) or illicit activities (e.g. illegal fishing). As a consequence, States having
long coastlines or vulnerable trading lanes want to have efficient maritime surveil-
lance systems helping them in identifying these criminal activities in order to
deal with the threats they represent [1].

To be efficient, a maritime surveillance system must be able to permanently
track and monitor all type of maritime activities in order to detect abnormal
behaviors, to analyse them and to early identify threatening situations. However,
currently there does not exist a system that can handle all the necessary infor-
mation needed to detect all abnormal behaviours. More precisely such a system
must provide [2]:

1 Integrated system for interoperable sensors and Information sources for common
abnormal vessel behavior detection and Collaborative identification of threat. See
www.i2c.eu for more information.
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– a permanent and all weather coverage of border maritime areas,

– a continuous collection and fusion of heterogeneous data provided by vari-
ous types of sensors deployed on coast and on mobile platforms and other
information from external sources,

– an automatic detection of abnormal ship behaviors (in track and performed
activity) and the triggering of alerts if these abnormal behaviors represent
potential threats,

– the understanding of these threats in order to allow decisional authorities to
deal with them,

– an adapted interface intended to human operators involved in maritime
surveillance.

Significant technical progresses have been made in wide maritime area coverage
by different sets of sensors [3], in heterogeneous data processing and fusion [4],
and in detection of abnormal behaviors methodologies [5] that could be usefully
integrated together to built up a new generation of maritime surveillance systems
for efficient security applications in high density traffics area [6].

The aim of I2C is to provide maritime surveillance actors with such a sys-
tem [7]. However, this paper does not report propositions to track ship behavior
or to integrate collected information into I2C. It rather focuses on automatic
detection of abnormal ship behavior and alert triggering, which is a challenging
issue in surveillance systems. The system interacts with and helps human oper-
ators in identifying suspicious behaviors among the large amount of ships they
observe (hundreds of ships) and for which it is necessary to trigger an alert.

No matter of the application area (maritime surveillance or medical [8], so-
ciological [9], network security areas [10]), we distinguish between two kinds of
systems. First, those that model authorised behaviors, using neural networks for
instance, and indicate that the observed behavior is abnormal if not described
in the model [11, 12]. However, in such systems, unknown behavior is considered
as abnormal, which is not necessarily true in our context. Secondly, there are
systems modelling domain regulations (e.g. maritime regulations) using rules
and rule engines to identify abnormal behaviors according to observed events in
the supervised areas [13–16]. This solution detects anomalies corresponding to
unexpected ship behaviors. But it is inadequate and has to be improved in the
maritime surveillance context for three main reasons. First, most of the time,
abnormal ship behavior is the result of the violation of several rules simulta-
neously, and each violation considered independently of one another is not an
anomaly and does not require alert triggering. Unfortunately, provided rule en-
gines do not deal with that. Second, maritime regulation is very complex and
moreover, alerts are sometimes ship-dependant. Therefore, it is difficult to model
this dependence using rules. Third, by using a fully rule-based approach it is im-
possible to discover new behavior of law offenders who are creative, financially
and politically motivated. The system has to be able to identify new abnormal
behaviors, and ideally it also has to be able to learn the new strategies by the
law offenders [17].
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In the project I2C, we advocate to combine a Rule Engine (RE) implement-
ing maritime regulations and an adaptive Multi-Agent System (MAS) [18–20]
responsible for ship behavior evaluation and alert triggering. The MAS evalu-
ates the ships behaviours according to the anomalies identified by the RE and
triggers alerts. In order to be able to compute this evaluation, the MAS models
anomalies and their values as agents and features learning capacity in order to
self-adapt anomaly values according to feedbacks of human operators involved
in maritime surveillance. This MAS is an important added-value in I2C since
maritime surveillance systems have to face evolving situations and law offender
behaviors are often unpredictable and have to be discovered [21]. The learning
capacity of this MAS is an important skill of I2C [22], and the major contri-
bution of the paper is the proposed self-adaptive MAS for abnormal behavior
detection.

The outline of the paper is as follows. Section 2 introduces the architecture
of the I2C system and focuses on the role of the MAS. Section 3 describes the
Operative Multi-Agent System (OpMAS), the first MAS component dedicated
to the evaluation of ships behavior and alert triggering. Section 4 presents the
Parameter Adjustment Multi-Agent System (PAMAS), the second MAS compo-
nent introduced for anomalies values modelling and learning. Section 5 illustrates
alerts triggering through an example. Finally, section 6 concludes the paper.

2 Architecture of I2C Maritime Surveillance System

This section first introduces the general architecture of I2C and then focuses on
the role of the MAS it integrates.

2.1 General Architecture of I2C

The architecture of I2C is presented in Figure 1. It integrates several components
which are sensors and databases, an intelligent traffic picture called SITU, a RE
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Fig. 1. I2C architecture
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dedicated to anomalies detection from maritime regulations and observed events
in the supervised area (e.g. ship stopped in international waters), and a MAS
responsible for alert triggering if the suspicion level of the cumulated anomalies is
too high (e.g. illegal fishing, smuggling of drugs). These alerts are then evaluated
by human operators involved in maritime surveillance. If they correspond to
threatening situations, authorities perform actions in order to deal with them
(e.g. boarding a ship after triggering a drug smuggling alert).

More precisely, SITU integrates and merges information issued from different
sources which are both sensors and databases [23] in order to provide a maritime
map representing positions of ships in real time. Information from SITU (e.g.
position of a ship, speed of a ship, black-listed ship) are then sent to the RE
whose aim is to detect anomalies which correspond to suspicious events. The RE
integrates maritime regulations described as atomic rules whose conditions refer
to information issued from SITU. For instance the following rule expresses that
a speed anomaly is detected during an excessive speed of a ship in an harbour:
IF speed>15 AND area=”Harbour” THEN Detect(Speed anomaly).

These anomalies are then sent to the MAS whose aim is to trigger relevant
alerts towards human operators involved in maritime surveillance. The human
operators validate or invalidate these triggered alerts. Validated alerts are trans-
ferred to a group of experts for identification of threats and eventual actions
(e.g. boarding of a suspicious ship). Invalidated alerts are sent back to the MAS
for learning.

2.2 Role of the Multi-Agent System

As described in the introduction, the RE that handles maritime regulations is
combined with our adaptive MAS for abnormal behavior detection and alert
triggering. The role of the MAS is threefold. First, the MAS evaluates ship
behavior as a numeric value, called SBv, measuring the importance of anomalies
identified by the RE. Second, it triggers alerts towards human operators if this
numeric value is greater than a threshold given by the human operators. Third, it
learns by self-adaptation the importance of anomalies when the human operators
invalidate triggered alerts.

3 Operative MAS to Compute Ship Behaviour

This section presents our MAS architecture and then focuses on the MAS com-
ponent dedicated to ship behavior evaluation and alert triggering.

3.1 MAS Architecture

As illustrated in Figure 2, our MAS integrates two main components: OpMAS
and PAMAS. In OpMAS, a ship-agent is created for each ship monitored by I2C
in the real world. OpMAS evaluates ships behaviors considering issued anoma-
lies from the RE. It computes for each ship-agent its corresponding SBv, i.e. a
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numeric value representing the ship behavior cumulating the importance of its
anomalies. It triggers an alert if this value is greater than a threshold defined by
a human operator. On the other side, PAMAS models the importance (value)
of anomalies through anomaly-agents and parameters-agents. PAMAS distin-
guishes three values for each anomaly, called parameters, which correspond to
the value the anomaly has when it appears (Init), the increasing value it has
while it lasts (Incr) and the decreasing value it has after its disappearance
(Decr).
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Fig. 2. OpMAS and PAMAS Components

3.2 Ship-Agents in OpMAS

Basically, each ship-agent represents a ship and it is filled with skills and abilities
in order to reach its goals. First, it integrates abilities to interact with three other
components of I2C:

– the RE in order to receive detected anomalies which will be used to evaluate
ships behavior according to their corresponding values described in PAMAS,

– PAMAS in order to ask for values of anomalies or for a learning step by
self-adaptation of anomalies values,

– human operators who receive triggered alerts from OpMAS, which after eval-
uation and if invalidated are sent back to OpMAS for a learning step.

Second, a ship-agent associates to the ship it represents a behavior (suspicion)
value, called SBv. The higher the value, the more the ship behavior is suspi-
cious. This value is computed taking into account anomalies sent by the RE and
according to the values of corresponding parameters as estimated by PAMAS.
The following function is used to compute this value:

SBv =
∑n

i=1 Init(ai) ∗Nb(′Init′, ai) + Incr(ai) ∗Nb(′Incr′, ai)−Decr(ai) ∗
Nb(′Decr′, ai)

The idea is to cumulate the importance of the different anomalies of a ship
according to the values of their parameters and taking into account how long
these anomalies last. As illustrated in Figure 3, a ship-agent also gives a graphical
representation of its behavior as a curve and it also gives the corresponding
inequality considering the threshold fixed by human operators. For instance,
Figure 3 illustrates a ship behavior involving anomaly a1 from step0 to step13,
and anomalies a1 and a2 from step14 to step19. We have the following value for
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Fig. 3. Computing ship behavior

SBv at step5: 1∗Init(a1)+5∗Incr(a1). Indeed, at step5 a1 appeared 1 time and
lasted 5 times. At step 12, a1 appeared 2 times, lasted 9 times and decreased 2
times. At step19, both a1 and a2 are combined; a1 appeared 3 times, lasted 13
times, decreased 4 times while a2 appeared 1 time and lasted 4 times. For each of
these values, the ship-agent can deduce the corresponding inequality expressing
that the value is lower than the threshold.

Third, a ship-agent interacts with other ship-agents individually using direct
messages or collectively using indirect messages. Regarding collective behavior,
some illicit ship behaviors cases are difficult to identify as they result from a
collective actions from supervised ships, each of them acting normally. Indeed,
as they act as normal, the RE does not identify any anomaly since they do not
individually contravenemaritime regulations. To deal with these particular cases,
OpMAS introduces stigmergy based detection mechanisms. As a consequence,
a ship-agent can mark its location in the environment in order to inform the
other ship-agents of an event that can be relevant to them. Just as pheromone
tracks of ants, these marks are cheap in resources and can be a useful source
of information [24]. A mark is deposed by a ship-agent with a critical value
and a diffusion value giving the lifetime of the mark. When another ship-agent
perceives a mark in its environment, it can in turn consider it as a relevant
anomaly and then uses it to update its behavior suspicion value.

Finally, regarding individual interactions, a ship-agent can ask for information
or data about another ship-agent, for example its suspicious level. A ship-agent
can also send an alert to another ship-agent in order to possibly propagate it.
Besides, it can send direct messages to another known ship-agent, either because
it is in its direct neighbourhood or because of a mark left by the agent. This
cooperation is used by the agents to determine the ones that are involved in a
given anomaly and, accordingly, the ones that have to be marked as an alert.

4 Parameter MAS to Self-adjust Parameters

This section presents PAMAS that tunes values of anomalies involved in alerts
according to human operator feedbacks. It first introduces PAMAS agents, then
explains how this tuning is performed, using a self-adjusting approach, and finally
how situation historic can be taken into account to improve the tuning.
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4.1 PAMAS Agents

To each type of anomaly sent to OpMAS by the RE, there is a correspond-
ing agent in PAMAS, called anomaly-agent. This anomaly-agent manages the
value of the anomaly as a function of three parameters, each represented as a
parameter-agent:

– the initial value, Init, of the anomaly which can be seen as the prime impor-
tance of the anomaly,

– the increment value, Incr, which is the increasing importance of the anomaly
while it lasts and,

– the decrement value, Decr, which represents the time the anomaly is kept in
memory once it has disappeared.

As these parameters are a representation of the human operators knowledge, it is
difficult to give them a value. Therefore, PAMAS provides initial values to these
parameters and then tunes them according to the human operator feedbacks in
order to reach acceptable values which correspond to a stable state of the MAS,
and consequently to trigger relevant alerts. This self-tuning is possible due to
the cooperation between anomaly-agents and parameter-agents.

4.2 Tuning Parameters

Whenever a ship-agent retrieves the values of some anomalies and combines them
to compute SBv, PAMAS expects a feedback on these values. This feedback can
be positive if OpMAS raises an alert and the operator confirms it or, if there
is no confirmation, the MAS assumes the values are good enough. However, the
feedback can also be negative if OpMAS raises an alert and the operator negates
it, or when the system did not raise an alert and the operator spots one. In
this case, PAMAS needs to tune the parameters values of the corresponding
anomalies in order to correct the mistake it did. Basically, the anomalies-agents
must lower or increase the values of anomalies according to the human operator
feedbacks and the defined threshold.

In order to do this, anomaly-agents use two mechanisms to tune themselves.
On one hand, a critical level is associated to each anomaly-agent. This critical
level is calculated depending on the importance of the anomaly in the alert, and
also on the use of this anomaly by other ship-agents. The suspicious value of a
ship is directly influenced by the anomalies in proportion to their importance.
And the constraints on an anomaly are dependent of its frequency in the behav-
iors of the other ships. Therefore, we can say that the critical level will weight
the adjustment of the anomaly in a proportional way.

On the other hand, in most cases, an alert is the combination of several anoma-
lies. Therefore, the different anomaly-agents involved have to cooperate in order
to tune their values and adjust the global value of the ship behavior according
to human operators feedbacks. This cooperation is based on the exchange of
the critical level values of the anomalies. Knowing the critical level of the other
involved anomalies, the agents can build a rank system and then update their
critical level according to the other agents.
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We can actually say that the basic adjustment of the anomaly-agents is based
on the critical level of each one, which will weight the tuning of the parameters.
Such a method, however, have a negative impact on the system. Indeed, when
an anomaly-agent tunes itself, it can reach a state where its value goes against a
past situation with no negative feedback. Then, if this situation happens again,
PAMAS will have to tune the parameter values again. This can lead to a system
that will never converge into a stable state and so will never be able to raise
relevant alerts towards human operators. As a consequence, we have improved
the learning of the MAS as explained in the next section.

4.3 Collective Learning from Past Situations

We propose to take into account past situations while PAMAS tunes itself. These
situations can be of two kinds:

– situations where the system is in a highly constraint state, meaning that
the value of at least one of the anomalies is estimated to be correct by the
system because a change of this value would change the ”alert state” of the
corresponding ship,

– situations which are known to be a negative feedback in order to avoid the
repetition of these negative feedbacks.

These situations are used to tune the values of anomaly-agents parameters. Each
anomaly-agent tunes itself according to its own critical level and the critical
levels of its neighbourhood, i.e. the other involved anomaly-agents. Basically,
the agents learn from their history to avoid the repetition of past errors and this
ensures the convergence of the system into a stable state.

In order to illustrate this idea, we take the example represented in Figure 3
and we suppose that a human operator sends a negative feedback at step19 in-
dicating that SBv should be greater than the threshold. As explained before,
this negative feedback induces a learning step from PAMAS and, more precisely,
a self-adaptation of the parameters of the anomalies a1 and a2, since these two
anomalies are involved in the considered ship. In order to improve the tuning of
these parameters, PAMAS considers the situation of step12 in addition to the
situation of step19 and it self-adjusts the values of a1 and a2 considering the two
following inequalities:

S12 : 2 ∗ Init(a1) + 9 ∗ Incr(a1)− 2 ∗Decr(a1) < threshold
S19 : 3 ∗ Init(a1) + 13 ∗ Incr(a1)− 4 ∗Decr(a1) + 1 ∗ Init(a2) + 4 ∗ Incr(a2) <
threshold

Indeed, PAMAS considers the situation of step19 as it is a negative feedback from
the human operator and the inequality used for self-adaptation of parameters
values is 3∗ Init(a1)+13∗ Incr(a1)−4∗Decr(a1)+1∗ Init(a2)+4∗ Incr(a2) >
threshold as the MAS did a mistake when calculating SBv which must be greater
than the given threshold. It also considers step12 since the system is in a highly
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constraint state. Thus, in order to deal with the situation of step19 (which is
incorrect), PAMAS will increase the value of a1, without contravening the situ-
ation of step12 (which is correct).

5 Alert Triggering Example

This section illustrates the behaviors of the OpMAS and PAMAS agents through
an example. This example considers three fishing ships A, B and C, and an un-
known ship out of the surveillance coverage. This example also considers only the
”stop in open sea” anomaly. This anomaly alone does not lead to an alert, but we
will see how the collective behavior of the agents can trigger a relevant alert.

Fig. 4. Fishing ships A, B and C; unknown ship D

5.1 Individual Behavior in PAMAS

According to Figure 5.a, at step0, the fishing ship A stops in open sea. This event
is detected by the RE which sends an anomaly to OpMAS. The corresponding
ship-agent retrieves the value of the anomaly in PAMAS and computes SBv, the
value of the behavior of the ship. The current anomaly is not enough to raise an
alert, but the suspicious level of the ship is increased and the ship-agent leaves
a mark in the environment, reporting the anomaly for others.

At step10, we can see on Figure 5.b that the fishing ship B also stops in open
sea, near where the first mark was left by the ship A. The RE sends another
anomaly to OpMAS in order to compute the value of the ship behavior. But this
time, the ship-agent uses the mark in the environment in addition of the value

Fig. 5. a) Step0 ; b) Step10 ; c) Step14
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sent by PAMAS to increase the suspicious level. Again, this is not enough to
raise an alert but another mark is left, strengthening the first one.

At step14, the third fishing ship stops near the previous locations. This time,
the value computed by OpMAS uses the value received from PAMAS as well as
the two marks previously left by the other ship-agents. This computation leads
to an increase of the suspicious level of the third ship, which is sufficient to raise
an alert on this ship.

5.2 Collective Behavior in OpMAS

We have just seen that the ship-agents in OpMAS use the anomalies sent by the
RE as well as the marks left in the environment in order to compute the suspicious
level of the ships they represent. Furthermore, the ship-agent C which is detected
as suspicious can use the information on the marks in the environment. Indeed,
we can consider that if several ships have stopped at the same location in a lim-
ited amount of time, and one has a suspicious level high enough to raise an alert,
the other ships are suspicious too. As shown in Figure 6, the ship-agent C will
contact the two other fishing ship-agents and systematically inform them about
the alert. Depending on the other available informations, the MAS can even de-
tail the alert. In our example, the three involved ships are fishing ships. The MAS
can consequently assume that the three detected stops are part of a transship-
ment operation and then spot the possible presence of a refrigerated ship, here
our unknown ship D. Finally, the alert triggered by the MAS is Illegal fishing.

Fig. 6. The alert is spread to other ships

6 Conclusion

In this paper, we have presented a Multi-Agent System (MAS) dedicated to ab-
normal behavior detection and alert raising in the maritime surveillance domain.
This work takes place in the European funded project I2C. Based on anomalies
sent by an experienced Rule Engine (RE), the MAS evaluates ships behavior
according to the importance (value) of the related anomalies and raises relevant
alerts towards human operators involved in maritime surveillance. One of the
main aspect of the MAS is its ability to learn from human operators feedbacks
and it self-adapts the values of the anomalies to be consistent with these feed-
backs. More precisely, the paper has presented the two main components of the
MAS. First, the Operative Multi-Agent System (OpMAS) which represents the
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real ships as agents, computes ship behavior values and sends alerts to human
operators. Second, the Parameter Adjustment Multi-Agent System (PAMAS) is
used to self-adapt the values of the anomalies according to the feedbacks from
the human operators and takes into account an historic of events through past
situations. This tuning allows the whole system to be consistent with the feed-
backs and improves the relevance of the alerts raised by OpMAS.

This MAS is implemented in a simulation platform which integrates several
other components in order to test and use our proposition. One component simu-
lates the rule engine and sends anomalies to the OpMAS. Another simulates the
human operators, receiving the alerts from the OpMAS and sending the needed
feedbacks. Finally, there is also a component building random intelligent scenar-
ios for each ship and managing the whole platform to maintain its relevance.
Our current preoccupation is the implementation of the tuning of the PAMAS
agents behaviour.

The next step will be the evaluation of the efficiency and the effectiveness of
the MAS with respect to the real-world data provided by I2C, i.e. with a natural
number of ships and a relevant number of anomalies.
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