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1. Abstract

MultiDisciplinary Optimization (MDO) problems represent one of the hardest and broadest domains of
continuous optimization. By involving both the models and criteria of different disciplines, MDO prob-
lems are often too complex to be tackled by classical optimization methods. We propose an approach
for taking into account this complexity using a new formalism (NDMO - Natural Domain Modeling for
Optimization) and a self-adaptive multi-agent algorithm. Our method agentifies the different elements of
the problem (such as the variables, the models, the objectives). Each agent is in charge of a small part
of the problem and cooperates with its neighbors to find equilibrium on conflicting values. Despite the
fact that no agent of the system has a complete view of the entire problem, the mechanisms we provide
make the emergence of a coherent solution possible. Evaluations on several academic and industrial test
cases are provided.

2. Keywords: Multi-Agent System, Multidisciplinary Optimization, Integrative Design

3. Introduction

In their review about multidisciplinary optimization (MDO), Sobieszczansky-Sobieski and Haftka
propose to define it as methodology for the design of systems in which strong interaction between disciplines
motivates designers to simultaneously manipulate variables in several disciplines [1]. Designers have to
simultaneously consider different disciplines (such as, for example, aerodynamics, geometrics and acoustics
for an aircraft engine) which are often not only complex by themselves but also strongly interdependent,
causing the classical optimization approaches to struggle handling them.

Formally, MDO problems are continuous optimization problems where the goal is to find the values of
a set of inputs that maximize (or minimize) several objectives while satisfying several constraints (both
often regrouped under the term optimization criteria). These problems tend to be complex to solve as
they can involve calculus-heavy, interdependent models and contradictory criteria.

Currently, MDO problems require specific strategies to be solved, and a major part of the research in
the field has been focusing on providing these strategies. These approaches often involve reformulating
the problem, requiring techniques to maintain coherency among variables shared by different disciplines
and specific ordering of local optimizations on sub-parts of the problem. Thus an important part of the
burden is still on the shoulders of the engineers.

In this paper, we propose an original approach using a Multi-Agent System (MAS) [2] for solving this
kind of optimization problem in the most generic way while keeping the need to reformulate the problem
at a minimum. This system is composed of autonomous agents which allow to model each discipline
independently. They interact and cooperate with each other in order to solve discipline interdependencies.
Inside the MAS, each discipline may be easily distributed and may evolve without impacting the global
system.

As an MDO problem implies different disciplines, several engineers (one per discipline for instance)
may have to intervene in the global optimization process of the problem. We propose that each engineer
may directly interact with the system during the solving process in order to change, to test, to adapt or
to add elements to the parts of the problem inherent to its discipline. This implies offering the engineers
an easy way to modify their own constraints of the problem, to set specific values to some variables or
change their definition domains and to automatically take these changes into account. We call this vision
of MDO Integrative and Interactive Design as stated by the ID4CS project™.

*Integrated Design for Complex Systems, national french project regrouping 9 academic and industrial partners, including



Our main focus is to design the self-adaptation capabilities of the proposed system as a potentially
infinite feedback loop between the system and its environment, which is typical of self-adaptive and self-
organizing complex systems. As explained in [3], by using the emergence phenomena in artificial systems,
our aim is to obtain a system able to cut through the search space of any problem far more efficiently
than by simply dividing the problem and distributing the calculus.

In the next part (section 4), we begin by reviewing existing optimization methods, both from MDO
and MAS sides, and argue that they are not adapted to solve the issues we propose to tackle. We then
present in section 5 a new generic agent-based modeling for continuous optimization problems, called
Natural Domain Modeling for Optimization (NDMO). Using NDMO we describe in section 6 an adaptive
multi-agent algorithm for solving continuous optimization problems. We present in section 7 the results
of our algorithm on different test cases, and finish by perspectives about future improvements based on
the current work.

4. Existing methods

4.1. MDO methods

Classical MDO methods delegate the optimization in itself to standard optimization techniques, which
must be chosen and applied by the engineer, according to his knowledge of the problem and his skills.
The functioning of these methods can vary greatly. For example Multi-Disciplinary Feasible Design,
considered to be one of the simplest methods [4], consists only in a central optimizer taking charge of
all the variables and constraints sequentially, but gives poor results when the complexity of the problem
increases [5]. Other approaches, such as Collaborative Optimization [6] or Bi-Level Integrated System
Synthesis [7], are said bi-level. They introduce different levels of optimization [8], usually a local level
where each discipline is optimized separately and a global level where the optimizer tries to reduce
discrepancies among the disciplines. However these methods can be difficult to apply since they often
require to heavily reformulate the problem [9],and can have large computation time [5].

One of the major shortcomings of these classical methods is that they require a lot of work and
expertise from the engineer to be put in practice. To actually perform the optimization process, one
must have a deep understanding of the models involved as well as of the chosen method itself. This is
mandatory to be able to correctly reformulate the models according to the formalism the method requires,
as well as to work out what is the most efficient way to organize the models in regard to the method.
Since by definition MDO involves disciplines of different natures, it is often impossible for one person
to possess all the required knowledge, needing the involvement of a whole team in the process. More-
over, answering all these requirements implies a lot of work before even starting the optimization process.

4.2. Multi-Agent Systems for Optimization

While multi-agent systems have already been used to solve optimization problems, the existing works
concern their application to Combinatorial Optimization, mainly in the context of the DCOP (Distributed
Constraint Optimization Problem) formalism, which usually applies to constraint optimization problems
where the definition domains of the design variables are discrete and finite.

In DCOP, the agents try to minimize a global cost function (or alternatively, maximize a global satis-
faction) which depends on the states of a set of design variables. Each design variable of the optimization
problem is associated to an agent. The agent controls the value which is assigned to the variable. The
global cost function is divided into a set of local cost functions, representing the cost associated with the
conjoint state of two specific variables. An agent is only aware of the cost functions which involve the
variable it is responsible for.

While some works successfully used DCOP in the context of continuous optimization [10], this for-
malism is not adequate to handle the type of problems we propose to solve here. DCOP problems are
supposed to be easily decomposable into several cost functions, where the cost values associated to the
variables states are supposed to be known. This major assumption does not stand for MDO problem,
where the complexity of the models and their interdependencies cause this information to be unavailable
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Figure 1: Illustration of a Turbofan engine (CC SA-BY K. Aainsqatsi)

in most cases. Trying to model such MDO problems with DCOP would result in a system where most
agents are related to every other agent, with unknown cost functions.

Moreover, the existing agent-based optimization techniques for DCOP often present similar short-
comings to MDO methods, in the sense that they require a strong expertise to be efficiently applied [11].

5. Problem Modeling with NDMO

In answer to the previous shortcomings, we propose a generic approach called Natural Domain Mod-
eling for Optimization (NDMO) that relies on a natural or intrinsic description of the problem (i.e. close
to the reality being described).

To illustrate how an optimization problem is modeled, we use a simplified Turbofan optimization
problem. On Figure 1, an illustration of the principle of the turbofan can be seen. In this figure, the
bypass ratio is the ratio between the air drawn in by the fan not entering engine core (which is bypassed)
and the air effectively used for the combustion process. The pressure ratio is the ratio between pressure
produced by the compressors and the pressure it receives from the environment.

In order to identify the elements of a generic continuous optimization model, we worked with experts
from several related fields: numerical optimization, mechanics as well as aeronautics and engine engineers.
As a result, we identified five classes of interacting entities: models, design variables, output variables,
constraints and objectives.

In Figure 2a, the analytic expression of this optimization problem is given, while in Figure 2b, the
problem is presented as a graph of the different entities. The design variables of this problem are pi_c
and bpr, which indicate respectively the compressor pressure ratio and the bypass ratio of the engine.
The turbofan model produces three outputs: T'dm0, s and fr, representing respectively the thrust, fuel
consumption and thrust ratio of the engine. In this problem we try to maximize the thrust and minimizing
the fuel consumption while satisfying some feasibility constraints.

Let’s now see in more details the roles of each of these fives entities: model, variable, output, constraint
and objective.

Models. In the most general case, a model can be seen as a black box which takes input values (which
can be design variables or output variables) and produces output values. A model represents a technical
knowledge of the relations between different parts of a problem and can be as simple as a linear function or
a much more complex algorithm requiring several hours of calculation. Often some properties are known
(or can be deduced) about a model and specialized optimization techniques can exploit this information.
In our Turbofan example, a model entity is the Turbofan function which calculate the three outputs
using the values of bpr and pi_c.
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Figure 2: Turbofan problem.

Design Variables. These are the inputs of the problem and can be adjusted freely (within their
defining boundaries). The goal is to find the set(s) of values for these variables that maximize the
objectives while satisfying the constraints. Design variables are used by models to calculate their outputs
and by constraints and objectives to calculate their current value. A design variable can be shared among
several models, objectives and constraints. Keeping with our example, bpr and pi_c are the two design
variables of our optimization problem.

Output Variables. These values are produced by a model, and consequently cannot be changed freely.
As for the design variables, the output variables are used by models to calculate their outputs and by
constraints and objectives to calculate their current value. In our example, T'dm0, s and fr are output
variables produced by the Turbofan model.

Constraints. These are strict restrictions on some parts of the problem, represented as functional
constraints defined by equalities and/or inequalities. These can be the expression of a physical constraint,
or a requirement concerning the problem. Regarding the Turbofan, the two constraints are s <= 155
and fr >=4.

Objectives. The goals to be optimized. In the general case, different objectives are often contradictory.
The two objectives of the Turbofan problems are to maximize T'dm0 and to minimize s.

An interesting and important point is that both models, constraints and objectives involve compu-
tation. Often the most heavyweight calculus is encapsulated inside a model and the calculi concerning
criteria tend to be simple equations, but this is neither an absolute requirement nor a discriminating
characteristic.

The NDMO modeling aims to provide the most complete and natural representation of the problem.
This modeling preserves the relations between the domain entities and is completely independent of the
solving process. Since we now have a way to model optimization problems as graphs of entities, we now
present the multi-agent algorithm proposed to solve them.

6. A Multi-Agent System for MDO

In complement to this modeling of the problem, we propose for NDMO a multi-agent system and
associated solving behaviors where each domain entity is associated with an agent. Thus, the multi-agent
system is the representation of the problem to be solved with the links and communication between
agents reflecting its natural structure. It is worth underlining the fact that this transformation (i.e. the



agentification) can be completely automatic as it is fully derived from the analytical expression of the
problem.

The solving process relies on two continuous simultaneous flow of information: downward (from
design variables to criteria) with new values computed by models, and upward (from criteria to design
variables) with change-value requests that drive the movements of the design variable in the search space.
Intuitively, by emitting requests, criteria agents are ”pulling” the different design variables, through the
intermediary agents, in multiple direction in order to be satisfied. The system thus converges to an
equilibrium between all these "forces”, especially in the case of multiple contradicting criteria, which
corresponds to the optimum to be found.

The functioning of the system can be divided into two main tasks: problem simulation and collective
solving.

Problem simulation can be seen as the equivalent of the analysis of classical MDO method. The agents
behavioral rules related to problem simulation concern the propagation of the values of design variables
to the models and criteria based on the value. For this part, the agents will exchange inform messages
which contains calculated values. The "message flow” is top-down: the initial inform messages will be
emitted by the variable agents and will be propagated down to the criteria agents.

Collective solving concerns the optimization of the problem. The agent behavioral rules related to col-
lective solving are about satisfying the constraints while improving the objectives. For this part, the
agents will exchange request messages which contains desired variations of values. The "message flow”
is bottom-up: the initial request messages will be emitted by the criteria agents and propagated up to
variable agents.

Methodologically, by studying how the system handles specific problems with specific characteristics,
we defined different cooperation mechanisms that enable the system to work for all problems with these
characteristics. In its current state, the system described here can find the optimum solution only for
some classes of problem using the realized mechanisms. Most of these mechanisms are presented in section
7.

We now detail the general behaviors of our five agent types: model, variable, output, constraint and
objective agents.

Model Agent. A model agent takes charge of a model of the problem. It interacts with the agents
handling its inputs (which can be variable or output agents) and the output agents handling its outputs.
Its individual goal is to maintain the consistency between its inputs and its outputs. To this end, when
it receives a message from one of its inputs informing it of a value change, a model agent recalculates the
outputs values of its model and informs itsoutput agents of their new value. On the other part, when a
model agent receives a message from one of its output agents it translates and transmits the request to
its inputs.

To find the input values corresponding to a specific desired output value, the model agent uses an
external optimizer. This optimizer is provided by the engineer based on expert domain-dependent knowl-
edge regarding the structure of the model itself. It is important to underline that the optimizer is used
only to solve the local problem of the model agent, and is not used to solve the problem globally.

Variable Agent. This agent represents a design variable of the problem. Its individual goal is to find
a value which is the best equilibrium among all the requests it can receive (from models and criteria for
which it is an input). The agents using the variable as input can send to it request asking to change its
value. When changing value, the agent informs all agents linked to it of its new value.

To find its new value, the variable agent uses an exploration strategy based on Adaptive Value Trackers
(AVT) [12]. The AVT can be seen as an adaptation of dichotomous search for dynamic values. The main
idea is to change value according to the direction which is requested and the direction of the past requests.
While the value varies in the same direction, the variation delta is increased so the value varies more and
more. As soon as the requested variation changes, it means that the variable went past the good value,
so the variation delta is reduced.

This capability to take into account a changing solution allows the wvariable agent to continuously
search for an unknown dynamic target value. This capability is also a requirement for the system to be
able to adapt to changes made by the engineer during the solving process.

Output Agent. The output agent takes charge of an output of a model. Output agent and variable
agents have similar roles, except output agents cannot directly change their value. Instead they send a
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Figure 3: Alexandrov problem

request to the model agent they depend on. In this regard, the output agent act as a filter for the model
agent it depends on, selecting among the different requests the ones it then transmits.

As we will see in the next section, the output agent is distinct from the wvariable agent in the way
that it can be involved in cycles. A cycle is a situation of interdependent models (that is, models which
depend of each other to calculate their outputs).

Constraint Agent. The constraint agent has the responsibility for handling a constraint of the prob-
lem. When receiving a message from one of its inputs, the agent recalculates its constraint and checks
its satisfaction. If the constraint is not satisfied, the agent sends change value requests to its inputs.

It should be noted that, to estimate the input values required to satisfy the constraint on its computed
value, this agent employs the same technique as the model agent (i.e. an external optimizer).

Objective Agent. The objective agent is in charge of an objective of the problem. This agent sends
requests to its inputs aiming to improve its objective, and recalculates the objective when receiving value
changed messages from its inputs.

This agent uses an external optimizer to estimate input values which would improve the objective, as
the model and constraint agents.

The most important point is that each agent only has a local strategy. No agent is in charge of the
optimization of the system as a whole, or even of a subset of the other agents. Contrary to the classical
MDO methods presented earlier, the solving of the problem is not directed by a predefined methodology,
but by the structure of the problem itself. The emerging global strategy is unique and adapted to the
problem.

These basic mechanisms are in themselves not sufficient to handle some of the specificities of com-
plex continuous optimization problems such as MDO. We introduced several specific mechanisms used
in conjunction with the previously presented behaviors. The mechanisms have been designed to handle
specific challenges related to complex continuous optimization, such as conflicting objectives, cycle han-
dling, hidden dependencies etc. The exact working of these mechanisms is of little interest here and will
not be detailed. The interested reader can refers to [13] for more detailed explanations.

7. Experiments
In this section we present three test cases, Alexandrov Problem, Turbofan Problem and Viennetl,

on which our system has been applied, and the experimental results we obtained. In each test case, the
MAS consistently converges towards the best (or one of the best) solution.
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Figure 4: Alexandrov agents behavior

7.1. Alexandrov Problem

Our first test case is inspired from an academic example
taken in literature by Alexandrov and al [8]. This simple ex-
ample presents some of the commons characteristics of MDO
problems, such as interdependent disciplines and multiple cri-
teria. In the original article, the example was used to illus-
trate some properties of Collaborative Optimization, which
we presented earlier, in terms of reformulation. While the
paper only gave the structure of the problem, we adapted
it with meaningful values and equations. The mathemati-
cal formulation of the problem and the corresponding agent
graph can be seen in Figure 3. Interestingly, the NDMO rep-
resentation is quite similar to the one adopted by the original
authors of the problem.

On Figure 4, the behavior of the design variables agents
11, 12 and s, as well the evolution of the objective, can be ob-
served on one instance of the problem with random starting
points. On Figure 5, we show the evolution of the objective
over 100 iterations with starting points for each design vari-
able randomly drawn over the interval [-100; 100]. We can
see how the system converges towards the same optimum de-
spite the wildly different initial conditions.

7.2. Other Experiments

o value

0 20 40 60 80
number of evaluations of o

Figure 5: Convergence of the Alexandrov
objective for 100 random starting points



Table 1: Summary of experiments results for the tests cases

nb. evaluations to best average distance to best

10% | 50% 90% 0% (start) 30% 60% 100% (end)
Alexandrov | 29 52 79 13109.169 | 803.126 5.685 0.059
Turbofan_ol | 16 38 50 67.654 14.971 0.743 0.313
Turbofan_02 | 10 23 35 23.876 1.853 0.143 0.101
viennet_ol 4 17 31 8.514 0.300 0.025 0.021
viennet_o2 4 15 30 9.412 0.320 0.02 0.02
viennet_o3 5 14 27 10.622 0.063 | 4.40E-004 | 1.68E-004

We now briefly present results we obtained on two other test cases, the Turbofan problem and Vi-
ennetl. For each case, the system was executed 100 times with random starting points for each design
variable.

Turbofan Problem. The turbofan problem we introduced in Figure 2 is a based on a real-world opti-
mization problem, albeit simplified for demonstration purpose, concerning the conception of a turbofan
engine.

As stated before, the problem concerns two design variables pi_c and bpr. pi_c is defined inside the
interval [20-40] and bpr inside [2-10]. The model produces three variables Tdm0, s and fr. The problem
has two objectives, maximizing T'dm0 and minimizing s, under the constraint s < 155 and fr > 4. The
main interest and difficulty of this problem is the existence of two contradictory objectives. As we can
see on Figure 6, the system consistently converges toward the same optimal solution.
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Figure 6: Convergence of the Turbofan objectives for 100 random starting points

Viennetl. The Viennetl test case is part of a series of problems proposed in [14] to evaluate multi-
criteria optimization techniques. This problem involves three objectives. Its analytical formulation is:

Minimize ol = 2° 4+ (y — 1)%, 02 = 2% + (y + 1)? and 03 = (z — 1)* + > + 2

where x,y € [—4; 4]

Figure 7 illustrates the convergence of the system towards a valid solution.

A summary of these results are presented on Table 1. The first group of values represents the number
of evaluations which was needed for respectively 10%, 50% and 90% of the instances to find the best
solution. The second group represent the average distance to the best solution (trucated at 1073) among
all instances at different times (0% being the start 100% being the end of the solving in the worst case).
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Figure 8: Preliminary aircraft design test case as represented in our prototype

8. Conclusion

We have presented a generic model of numerical optimization problem and an agent-based optimization
algorithm. While classical methods often have difficulties to handle complex MDO problems and require
the use of specific methodologies, we distribute the problem among the agents in order to keep a low
local complexity.

One of our concerns has been to facilitate the work of the engineer and allow him to express his
problem in a way which is the most natural to him, instead of restricting him to a specific formulation.
By analyzing the different concepts involved in the expression of an MDO problem, we extracted several
atomic roles upon which we based the relations between the entities of our system. With these low-level
entities, we are able to propose a new formalism we name NDMO. This new formalism can reconstruct a
great variety of problems while mirroring their original formulation. Using this formalism, we proposed
an agent-based optimization algorithm integrating MDO-specific mechanisms.

We have exposed here the results of preliminary experiments using simple but representative prob-
lems in order to validate the soundness of our approach. Obviously these test cases are a first step to
demonstrate the validity of the MAS we propose. We continue to work with our industrial partners in
order to show the scalability of our approach on more complex real world-based problems. As an example
of the problems we are currently studying, the figure 8 represents a preliminary aircraft design problem
(as visualized by our prototype tool) which involves sixteen disciplines and a hundred variables.



Our goal is to make a system that grows not only with the complexity of the problem but also with
the needs of the engineer. This is why our approach can, by design, easily be interfaced with any local
optimization method. In the same idea, one of our next goals is to integrate into our system the capability
to handle and propagate uncertainties among the different parts of the problem. Another line of research
is about efficiently and interactively exploring the Pareto front of a problem.
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