N

N

A Natural Formalism and a Multi-Agent Algorithm for
Integrative Multidisciplinary Design Optimization
(Workshop @ AAMAS 2013)

Tom Jorquera, Jean-Pierre Georgé, Marie-Pierre Gleizes, Nicolas Couellan,
Victor Noél, Christine Régis

» To cite this version:

Tom Jorquera, Jean-Pierre Georgé, Marie-Pierre Gleizes, Nicolas Couellan, Victor Noél, et al.. A
Natural Formalism and a Multi-Agent Algorithm for Integrative Multidisciplinary Design Optimiza-
tion (Workshop @ AAMAS 2013). International Workshop on Optimisation in Multi-Agent Systems
@ Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013),
May 2013, Saint Paul, Minnesota, United States. pp.1-18. hal-03792676

HAL Id: hal-03792676
https://hal.science/hal-03792676
Submitted on 3 Oct 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03792676
https://hal.archives-ouvertes.fr

A Natural Formalism and a Multi-Agent
Algorithm for Integrative Multidisciplinary
Design Optimization

Tom Jorquera®, Jean-Pierre Georgé!, Marie-Pierre Gleizes', Nicolas Couellan?,
Victor Noél!, and Christine Régis!

! IRIT (Institut de Recherche en Informatique de Toulouse)
Paul Sabatier University, Toulouse, France
2 IMT (Institut de Mathématiques de Toulouse)
Paul Sabatier University, Toulouse, France
{jorquera,george,gleizes,vnoel,regis}@irit.fr,
nicolas.couellan@math.univ-toulouse.fr

Abstract. MultiDisciplinary Optimization (MDO) problems represent
one of the hardest and broadest domains of continuous optimization.
By involving both the models and criteria of different disciplines, MDO
problems are often too complex to be tackled by classical optimization
methods. We propose an approach for taking into account this com-
plexity using a new formalism (NDMO - Natural Domain Modeling for
Optimization) and a self-adaptive multi-agent algorithm. Our method
agentifies the different elements of the problem (such as the variables,
the models, the objectives). Each agent is in charge of a small part of
the problem and cooperates with its neighbors to find equilibrium on
conflicting values. Despite the fact that no agent of the system has a
complete view of the entire problem, the mechanisms we provide make
the emergence of a coherent solution possible. Evaluations on several
academic and industrial test cases are provided.

Keywords: Self-Adaptation, Multi-Agent System, Multidisciplinary Op-
timization, Integrative Design

1 Introduction

In their review about multidisciplinary optimization (MDO), Sobieszczansky-
Sobieski and Haftka propose to define it as methodology for the design of sys-
tems in which strong interaction between disciplines motivates designers to si-
multaneously manipulate variables in several disciplines [1]. Designers have to
simultaneously consider different disciplines (such as, for example, aerodynam-
ics, geometrics and acoustics for an aircraft engine) which are often not only
complex by themselves but also strongly interdependent, causing the classical
optimization approaches to struggle handling them.

Formally, MDO problems are continuous optimization problems where the
goal is to find the values of a set of inputs that maximize (or minimize) several

2 T. Jorquera et al.

objectives while satisfying several constraints (both often regrouped under the
term optimization criteria). These problems tend to be complex to solve as they
can involve calculus-heavy, interdependent models and contradictory criteria.

Currently, MDO problems require specific strategies to be solved, and a major
part of the research in the field has been focusing on providing these strategies.
These approaches often involve reformulating the problem, requiring techniques
to maintain coherency among variables shared by different disciplines and specific
ordering of local optimizations on sub-parts of the problem. Thus an important
part of the burden is still on the shoulders of the engineers.

In this paper, we propose an original approach using a Multi-Agent System
(MAS) [2] for solving this kind of optimization problem in the most generic way
while keeping the need to reformulate the problem at a minimum. This system is
composed of autonomous agents which allow to model each discipline indepen-
dently. They interact and cooperate with each other in order to solve discipline
interdependencies. Inside the MAS, each discipline may be easily distributed and
may evolve without impacting the global system.

As an MDO problem implies different disciplines, several engineers (one per
discipline for instance) may have to intervene in the global optimization process
of the problem. We propose that each engineer may directly interact with the
system during the solving process in order to change, to test, to adapt or to
add elements to the parts of the problem inherent to its discipline. This implies
offering the engineers an easy way to modify their own constraints of the problem,
to set specific values to some variables or change their definition domains and
to automatically take these changes into account. We call this vision of MDO
Integrative and Interactive Design as stated by the ID4CS projectﬂ

Our main focus is to design the self-adaptation capabilities of the proposed
system as a potentially infinite feedback loop between the system and its envi-
ronment, which is typical of self-adaptive and self-organizing complex systems.
As explained in [3], by using the emergence phenomena in artificial systems, our
aim is to obtain a system able to cut through the search space of any problem
far more efficiently than by simply dividing the problem and distributing the
calculus.

In the next part (section [2]), we begin by reviewing existing optimization
methods, both from MDO and MAS sides, and argue that they are not adapted
to solve the issues we propose to tackle. We then present in section [3| a new
generic agent-based modeling for continuous optimization problems, called Nat-
ural Domain Modeling for Optimization (NDMO). Using NDMO we describe in
section {4f an adaptive multi-agent algorithm for solving continuous optimization
problems, and detail in section [5| the mechanisms we introduced to handle the
specificities of MDO. We present in section [6] the results of our algorithm on
different test cases, and finish by perspectives about future improvements based
on the current work.

3 Integrated Design for Complex Systems, national french project regrouping 9 aca-
demic and industrial partners, including Airbus and Snecma (Safran Group)
http://www.irit.fr/id4cs

http://www.irit.fr/id4cs

MAS for Integrative MDO 3
2 Existing methods

2.1 MDO methods

Classical MDO methods delegate the optimization in itself to standard optimiza-
tion techniques, which must be chosen and applied by the engineer, according to
his knowledge of the problem and his skills. The functioning of these methods
can vary greatly. For example Multi-Disciplinary Feasible Design, considered to
be one of the simplest methods [4], consists only in a central optimizer taking
charge of all the variables and constraints sequentially, but gives poor results
when the complexity of the problem increases [5]. Other approaches, such as
Collaborative Optimization [6] or Bi-Level Integrated System Synthesis [7], are
said bi-level. They introduce different levels of optimization [8], usually a lo-
cal level where each discipline is optimized separately and a global level where
the optimizer tries to reduce discrepancies among the disciplines. However these
methods can be difficult to apply since they often require to heavily reformulate
the problem [9],and can have large computation time [5)].

One of the major shortcomings of these classical methods is that they require
a lot of work and expertise from the engineer to be put in practice. To actually
perform the optimization process, one must have a deep understanding of the
models involved as well as of the chosen method itself. This is mandatory to be
able to correctly reformulate the models according to the formalism the method
requires, as well as to work out what is the most efficient way to organize the
models in regard to the method. Since by definition MDO involves disciplines of
different natures, it is often impossible for one person to possess all the required
knowledge, needing the involvement of a whole team in the process. Moreover,
answering all these requirements implies a lot of work before even starting the
optimization process.

2.2 Multi-Agent Systems for Optimization

While multi-agent systems have already been used to solve optimization prob-
lems, the existing works concern their application to Combinatorial Optimiza-
tion, mainly in the context of the DCOP (Distributed Constraint Optimization
Problem) formalism, which usually applies to constraint optimization problems
where the definition domains of the design variables are discrete and finite.

In DCOP, the agents try to minimize a global cost function (or alternatively,
maximize a global satisfaction) which depends on the states of a set of design
variables. Each design variable of the optimization problem is associated to an
agent. The agent controls the value which is assigned to the variable. The global
cost function is divided into a set of local cost functions, representing the cost
associated with the conjoint state of two specific variables. An agent is only
aware of the cost functions which involve the variable it is responsible for.

While some works successfully used DCOP in the context of continuous op-
timization [10], this formalism is not adequate to handle the type of problems

4 T. Jorquera et al.

we propose to solve here. DCOP problems are supposed to be easily decompos-
able into several cost functions, where the cost values associated to the variables
states are supposed to be known. This major assumption does not stand for
MDO problem, where the complexity of the models and their interdependencies
cause this information to be unavailable in most cases. Trying to model such
MDO problems with DCOP would result in a system where most agents are
related to every other agent, with unknown cost functions.

Moreover, the existing agent-based optimization techniques for DCOP often
present similar shortcomings to MDO methods, in the sense that they require a
strong expertise to be efficiently applied .

3 Problem Modeling with NDMO

In answer to the previous shortcomings, we propose a generic approach called
Natural Domain Modeling for Optimization (NDMO) that relies on a natural or
intrinsic description of the problem (i.e. close to the reality being described).

High-pressure Higgw—pressure
Fan compressor turbine

High-pressure
shaft

<]
Low-pressure
shaft
Low-pressure Combustion Low-pressure Nozzle
compressor chamber turbine

Fig. 1: Tllustration of a Turbofan engine (CC SA-BY [K. Aainsqatsi)

To illustrate how an optimization problem is modeled, we use a simplified
Turbofan optimization problem. On Fig[l] an illustration of the principle of the
turbofan can be seen. In this figure, the bypass ratio is the ratio between the
air drawn in by the fan not entering engine core (which is bypassed) and the
air effectively used for the combustion process. The pressure ratio is the ratio
between pressure produced by the compressors and the pressure it receives from
the environment.

http://en.wikipedia.org/wiki/File:Turbofan_operation.svg

MAS for Integrative MDO 5

«abstract» use» «abstract»
Criterion 0..n 1.

’ Objective

’ Constraint

’ Variable

’ Output

Fig. 2: Class diagram of MDO problems

In order to identify the elements of a generic continuous optimization model,
we worked with experts from several related fields: numerical optimization, me-
chanics as well as aeronautics and engine engineers. As a result, we identified
five classes of interacting entities: models, design variables, output variables, con-
straints and objectives. These entities and their relations are represented by the
diagram in Fig]2] that we detail next.

In Fig[3a] the analytic expression of this optimization problem is given, while
in Fig[3b the problem is presented as a graph of the different entities. The
design variables of this problem are pi_c and bpr, which indicate respectively
the compressor pressure ratio and the bypass ratio of the engine. The turbofan
model produces three outputs: Tdm0, s and fr, representing respectively the
thrust, fuel consumption and thrust ratio of the engine. In this problem we try
to maximize the thrust and minimizing the fuel consumption while satisfying
some feasibility constraints.

Design Variables

(T'dmO0, s, fr) = Turbofan(pi-c, bp \ /.

max T'dm0

; - Model
min 5 Outputs
subject to Ss oL
s < 155 R .
rei QR
(a) mathematical formulation. p P N “

max | min s | |s<=155| |fr>=4|
Objectives Constraints

(b) corresponding entities graph.

Fig. 3: Turbofan problem.

6 T. Jorquera et al.

Let’s now see in more details the roles of each of these fives entities: model,
variable, output, constraint and objective.

Models. In the most general case, a model can be seen as a black box
which takes input values (which can be design variables or output variables) and
produces output values. A model represents a technical knowledge of the relations
between different parts of a problem and can be as simple as a linear function
or a much more complex algorithm requiring several hours of calculation. Often
some properties are known (or can be deduced) about a model and specialized
optimization techniques can exploit this information. In our Turbofan example,
a model entity is the T'urbo fan function which calculate the three outputs using
the values of bpr and pi_c.

Design Variables. These are the inputs of the problem and can be adjusted
freely (within their defining boundaries). The goal is to find the set(s) of values
for these variables that maximize the objectives while satisfying the constraints.
Design variables are used by models to calculate their outputs and by constraints
and objectives to calculate their current value. A design variable can be shared
among several models, objectives and constraints. Keeping with our example,
bpr and pi_c are the two design variables of our optimization problem.

Output Variables. These values are produced by a model, and consequently
cannot be changed freely. As for the design variables, the output variables are
used by models to calculate their outputs and by constraints and objectives
to calculate their current value. In our example, T'dm0, s and fr are output
variables produced by the Turbofan model.

Constraints. These are strict restrictions on some parts of the problem,
represented as functional constraints defined by equalities and/or inequalities.
These can be the expression of a physical constraint, or a requirement concerning
the problem. Regarding the Turbofan, the two constraints are s <= 155 and
fr>=4.

Objectives. The goals to be optimized. In the general case, different objec-
tives are often contradictory. The two objectives of the Turbofan problems are
to maximize T'dm0 and to minimize s.

An interesting and important point is that both models, constraints and
objectives involve computation. Often the most heavyweight calculus is encap-
sulated inside a model and the calculi concerning criteria tend to be simple
equations, but this is neither an absolute requirement nor a discriminating char-
acteristic.

The NDMO modeling aims to provide the most complete and natural rep-
resentation of the problem. This modeling preserves the relations between the
domain entities and is completely independent of the solving process. Since we
now have a way to model optimization problems as graphs of entities, we now
present the multi-agent algorithm proposed to solve them.

MAS for Integrative MDO 7

4 A Multi-Agent System for MDO

Based on the NDMO modeling in section [3} we propose a multi-agent system
where each domain entity is associated with an agent. Thus, the multi-agent
system is the representation of the problem to be solved with the links and com-
munication between agents reflecting its natural structure. It is worth underlin-
ing the fact that this transformation (i.e. the agentification) can be completely
automatic as it is fully derived from the expression of the problem.

To describe the solving process — constituted by the collective behavior of
the agents — we must describe the behavior of each type of agents.

But before that, let’s us explain the resulting emergent behavior of the sys-
tem. It basically relies on two continuous simultaneous flow of information: down-
ward (from design variables to criteria) with new values computed by models,
and upward (from criteria to design variables) with change-value requests that
drive the movements of the design variable in the search space. Intuitively, by
emitting requests, criteria agents are ”pulling” the different design variables,
through the intermediary agents, in multiple direction in order to be satisfied.
The system thus converges to an equilibrium between all these ”forces”, espe-
cially in the case of multiple contradicting criteria, which corresponds to the
optimum to be found. Ultimately, we aim for our system to find one optimum
solution (any on the Pareto front) for any type of problem.

Methodologically, by studying how the system handles specific problems with
specific characteristics, we defined different cooperation mechanisms that enable
the system to work for all problems with these characteristics. In its current
state, the system described here can find the optimum solution only for some
classes of problem using the realized mechanisms. Most of these mechanisms are
presented in section

We now detail the general behaviors of our five agent types: model, variable,
output, constraint and objective agents. A summary of the basic principles of
each agent type is given in Algorithm

Model Agent. A model agent takes charge of a model of the problem. It
interacts with the agents handling its inputs (which can be wvariable or output
agents) and the output agents handling its outputs. Its individual goal is to
maintain the consistency between its inputs and its outputs. To this end, when
it receives a message from one of its inputs informing it of a value change, a
model agent recalculates the outputs values of its model and informs itsoutput
agents of their new value. On the other part, when a model agent receives a
message from one of its output agents it translates and transmits the request to
its inputs.

To find the input values corresponding to a specific desired output value,
the model agent uses an external optimizer. This optimizer is provided by the
engineer based on expert domain-dependent knowledge regarding the structure
of the model itself. It is important to underline that the optimizer is used only to
solve the local problem of the model agent, and is not used to solve the problem
globally.

8 T. Jorquera et al.

Algorithm 1 Agents Behaviors

procedure MODEL AGENT BEHAVIOR
loop
analyze received messages
if received new information messages then
recalculate outputs
inform depending agents
end if
if received new requests then
use optimizer to find adequate inputs
propagate requests to input agents
end if
end loop
end procedure

procedure VARIABLE AGENT BEHAVIOR
loop
analyze received messages
if received new requests then
select most important
adjust value
inform depending agents
end if
end loop
end procedure

procedure OUTPUT AGENT BEHAVIOR
loop
analyze received messages
if received new information messages then
update its value
inform depending agents
end if
if received new requests then
select most important
transmit selected request to model agent
end if
end loop
end procedure

procedure CONSTRAINT/ OBJECTIVE AGENT BEHAVIOR
loop
analyze received messages
if received new information messages then
update its value
use optimizer to find adequate inputs
send new requests to variable/output agents
end if
end loop
end procedure

MAS for Integrative MDO 9

Variable Agent. This agent represents a design variable of the problem.
Its individual goal is to find a value which is the best equilibrium among all the
requests it can receive (from models and criteria for which it is an input). The
agents using the variable as input can send to it request asking to change its
value. When changing value, the agent informs all agents linked to it of its new
value.

To find its new value, the variable agent uses an exploration strategy based
on Adaptive Value Trackers (AVT) [12]. The AVT can be seen as an adaptation
of dichotomous search for dynamic values. The main idea is to change value ac-
cording to the direction which is requested and the direction of the past requests.
While the value varies in the same direction, the variation delta is increased so
the value varies more and more. As soon as the requested variation changes,
it means that the variable went past the good value, so the variation delta is
reduced.

This capability to take into account a changing solution allows the wvariable
agent to continuously search for an unknown dynamic target value. This capa-
bility is also a requirement for the system to be able to adapt to changes made
by the engineer during the solving process.

Output Agent. The output agent takes charge of an output of a model.
Output agent and variable agents have similar roles, except output agents cannot
directly change their value. Instead they send a request to the model agent they
depend on. In this regard, the output agent act as a filter for the model agent it
depends on, selecting among the different requests the ones it then transmits.

As we will see in the next section, the output agent is distinct from the
variable agent in the way that it can be involved in cycles. A cycle is a situation
of interdependent models (that is, models which depend of each other to calculate
their outputs).

Constraint Agent. The constraint agent has the responsibility for handling
a constraint of the problem. When receiving a message from one of its inputs,
the agent recalculates its constraint and checks its satisfaction. If the constraint
is not satisfied, the agent sends change value requests to its inputs.

It should be noted that, to estimate the input values required to satisfy the
constraint on its computed value, this agent employs the same technique as the
model agent (i.e. an external optimizer).

Objective Agent. The objective agent is in charge of an objective of the
problem. This agent sends requests to its inputs aiming to improve its objective,
and recalculates the objective when receiving value changed messages from its
inputs.

This agent uses an external optimizer to estimate input values which would
improve the objective, as the model and constraint agents.

The most important point is that each agent only has a local strategy. No
agent is in charge of the optimization of the system as a whole, or even of a
subset of the other agents. Contrary to the classical MDO methods presented
earlier, the solving of the problem is not directed by a predefined methodology,

10 T. Jorquera et al.

but by the structure of the problem itself. The emerging global strategy is unique
and adapted to the problem.

5 Specific Mechanisms

We now introduce three mechanisms used in the previously presented behav-
iors. They handle specific challenges related to MDO: Criticality, Simultaneous
Cooperative Multi-Request Satisfaction and Cycle Handling. Other lesser mech-
anisms that support the behavior of the agents are not described here (hidden
dependencies, delayed information).

5.1 Criticality: A Heuristic for Local Cooperation

0 ife< t—e,
o —t—z—n)?/2—n)+yt—z—n)+5 ift—e< z< t—m,
ticalitys , o (x) =
eriticalityen.c(T) =\ b u) b y(—t—z—m) 45 ft-n< 2 < 1,
1 ifx >t
where
v =—2/e,

§=—y(e=m)/2,
and 0 < n < €.

(a) Analytical formulation.

—n=1-¢/10

1,
---np=1-¢/3
n=c¢€/2
-y —n=¢/3
RS —n=¢€/10
ﬂg
O, -
1 1 1
0 0.5 1
input value

(b) Shapes of criticality function of threshold t = 1
for e = 1 and different 7.

Fig. 4: Criticality Function of a Constraint Agent.

The design of the agents’ behavior is based on cooperation. The main idea
of cooperation is for agents to try to help other agents which are less satisfied
than themselves, that is, which are in a more critical state than themselves.

To evaluate this critical state of an agent as a single, comparable numeri-
cal value, a measure called criticality is used [13]. This indicator can then be

MAS for Integrative MDO 11

transmitted to the other agents or the engineer. Facing contradictory requests,
an agent can choose which request to satisfy by observing and comparing the
criticalities of the senders. For example, the variable agent uses the criticality to
discriminate between contradictory change requests, choosing the request from
the agent which is the most critical (that is, the agent whose criticality is the
highest). The strengths of this approach are its flexibility and ease of interpre-
tation for a human. This notion of criticality is a heuristic for local cooperation
coming from the Adaptive Multi-Agent System theory [14].

In the proposed system, criticality is computed by criteria agents and is
propagated in the system through their requests. We illustrate this with a con-
straint of the type g(X) < ¢, with X input of the constraint, g(X) the constraint
equation and ¢ the threshold under which the constraint is satisfied. The basic
requirements regarding the criticality of this agent is to be low when the con-
straint is satisfied and high when the constraint is violated. Thus, the criticality
of this agent is function of its current value and of the threshold.

To compute it, we use the function defined on Figlda] It takes as input x,
the current value of the constraint. It is parameterized by ¢, the threshold, and
by 1 and e that both regulate the shape of the function as seen on Fig[h| Its
value always varies between 0 and 1. The € can be adjusted by a domain expert
if needed: the higher it is, the faster the constraint increases in criticality. In our
experiments, we used € = 0.1 and n was set to roughly a third of ¢, i.e. 0.03.
This function allows a smooth transition between two states and provides several
interesting properties: it is continuous, differentiable, requires few parameters,
is computed quickly and is relatively easy to grasp.

The criticality of the other agents is determined as follow:

— For objective agents: the criticality is set to an arbitrary constant value which
must be lower than 1. In our experiments we settled for a value of 0.5. This
translates the fact that, in the general case, an objective could theoretically
always be improved, but is less important to satisfy than a constraint.

— For variable, output and model agents: the criticality is set to the highest
criticality among the received requests.

When the system converges to a solution, it stabilizes at a point where the
maximum of the criticalities of the agents is minimized.

5.2 Simultaneous Cooperative Multi-Request Satisfaction

Another very common difficulty in MDO problems is the presence of multiple
objectives and constraints, often contradictory. Consequently a model agent often
receives contradictory requests from its output originating from different criteria.
To ensure the convergence of the system towards a good solution, it is important
to handle these requests in the most cooperative way.

As we presented earlier, objectives and constraints try to improve their local
goals independently, without taking each other in account. During the solving,
a model agent can receive contradictory requests originating from these criteria
agents. In this case, the normal behavior of the model agent is to select the most
critical request, disregarding the others. However in some cases, this behavior

12 T. Jorquera et al.

could be inefficient, as it is possible to find a set of actions (or ”direction” in the
search space) which would satisfy several criteria at the same time. Indeed, the
outputs of a model can actually be sensitive only to a subset of its input.

The model agent is given a mechanism to estimate the correlation between
each outputs and inputs, 4.e. how much an output changes when a given input
changes. Such a measure is only valid at a given time and is constantly revised
when the model recomputes its outputs.

When sending its requests, the model agent can then for each input base its
demand on the request of the most impacted output. By satisfying the requests
in the most cooperative way, the model agent improves the efficiency of the
system.

5.3 Cycle Handling

Another common situation in complex systems is the presence of interdepen-
dency cycles (i.e. models which depend of each other to calculate their outputs).
The solution (if it exists) when such a cycle is stabilized is called the fized point.
To be able to converge towards such a point, we must introduce specific mecha-
nisms to:

— Detect the existence of a cycle.

— Determine if the fixed point is attractive or repulsive.

— In the case of a repulsive fixed point, develop a strategy to ensure convergence

towards it.

To address the first point, each message is uniquely signed to register its origin.
When a variable agent sends a message, it signs the message with its unique
agent "ID” and an unique sender-relative (i.e. order is only valid for a same
origin) message number. The association of these two elements is the origin
signature. This signature is preserved from message to message when forwarding
messages and can be used to pinpoint the origin of an action in the system.

The output agents are in charge of detecting and handling cycles, as they are
in the best position for being at the junction between criteria and models (or
between different models).

To detect a cycle, the output agent creates a correspondence table associating
to each origin the last signature it received from it. Every time a message is
received, before updating this table with the new signatures, the agents checks
if the signature matches with one that was already seen. If it is the case, then
it means it saw two times a message pertaining to a given action in the system
and that there is a cycle.

As in the general case all models are black boxes, the output agent needs to
observe the evolution of its value when a cycle is detected to determine whether it
is diverging or converging towards the fixed point. Because the system converges
by osculating around the solution, if the difference between successive values
is decreasing, the cycle is converging towards the fixed point, else the cycle is
diverging. In the case of a diverging cycle, instead of taking the newly value from
the model, the agent counteracts it by inverting the tendency by applying the
inverse variation to its value instead of just propagating it.

6 Experiments

MAS for Integrative MDO 13

In this section we present three test cases, Alexandrov Problem, Turbofan Prob-
lem and Viennetl, on which our system has been applied, and the experimental
results we obtained. In each test case, the MAS consistently converges towards

the best (or one of the best) solution.

ay = (ll 7(12)/2
a2 = (lz — a1)/2
min 1(af +10a3 + 5(s — 3)?)
subject to
s+ <1
—s+1 < -2

(a) mathematical formulation.

a=(l-a,)/2

- +H2 <=2

Y2(ag+10a,2+5(s-3) 2)

(b) corresponding agent graph.

Fig.5: Alexandrov problem

6.1 Alexandrov Problem

Our first test case is inspired from an aca-
demic example taken in literature by Alexan-
drov and al [8]. This simple example presents
some of the commons characteristics of MDO
problems, such as interdependent disciplines
and multiple criteria. In the original article,
the example was used to illustrate some prop-
erties of Collaborative Optimization, which
we presented earlier, in terms of reformula-
tion. While the paper only gave the structure
of the problem, we adapted it with meaningful
values and equations. The mathematical for-
mulation of the problem and the correspond-
ing agent graph can be seen in Fig[j] Inter-

o

o .
¢ | BRSSO
[T T T T
0 20 40 60 80
number of evaluations of o

Fig.7: Convergence of the
Alexandrov objective for 100
random starting points

estingly, the NDMO representation is quite similar to the one adopted by the

original authors of the problem.
On Figl6] the behavior of the design varia

bles agents 11, 12 and s, as well the

evolution of the objective, can be observed on one instance of the problem with

14 T. Jorquera et al.

S o©
0 o
S
2] g
= =0
g g
=9 N
| o
8
3 2
I
0 20 40 60 80 0 20 40 60 80
number of evaluations of [1 number of evaluations of 12
o | i
<
o | o
N o
=3
wn
[} o + o) —
= =]
g g
[Ne] o
T o
o |
o
q n
o
7 o
0 20 40 60 80 0 20 40 60 80
number of evaluations of s number of evaluations of o

Fig. 6: Alexandrov agents behavior

random starting points. On Figl7] we show the evolution of the objective over
100 iterations with starting points for each design variable randomly drawn over
the interval [-100; 100]. We can see how the system converges towards the same
optimum despite the wildly different initial conditions.

Adaptation to perturbations. On Fig[8] we can observe the reaction of
the multi-agent system to a perturbation. During the solving of the previous
problem, we changed the threshold of the constraint s +1; < 1to s+1; < —4
(the change is indicated by a dotted line on the charts). The system dynamically
adapts to the constraint changed and converges towards a new solution which
satisfies the updated constraint.

6.2 Other Experiments

We now briefly present results we obtained on two other test cases, the Turbofan
problem and Viennetl. For each case, the system was executed 100 times with
random starting points for each design variable.

Turbofan Problem. The turbofan problem we introduced in Figl3] is a
based on a real-world optimization problem, albeit simplified for demonstration
purpose, concerning the conception of a turbofan engine.

MAS for Integrative MDO 15

l-l|7,
()
=
©
>
=3
|
n
=N
tL —_ , : P — , ,
40 60 80 100 120 40 60 80 100 120
number of evaluations of |1 number of evaluations of |12
0 i 87 i
—

o value

0 20 40 60 80

40 60 8 100 120 4 60 8 100 120

number of evaluations of s number of evaluations of o
Fig. 8: Alexandrov agents behavior with perturbation (constraint change at dot-
ted line)

As stated before, the problem concerns two design variables pi_c and bpr. pi_c
is defined inside the interval [20-40] and bpr inside [2-10]. The model produces
three variables T'dm0, s and fr. The problem has two objectives, maximizing
Tdm0 and minimizing s, under the constraint s < 155 and fr > 4. The main
interest and difficulty of this problem is the existence of two contradictory ob-
jectives. As we can see on Figld] the system consistently converges toward the
same optimal solution.

Viennetl. The Viennetl test case is part of a series of problems proposed
in [15] to evaluate multi-criteria optimization techniques. This problem involves
three objectives. Its analytical formulation is:

Minimize ol = 22 + (y — 1)%, 02 =2® + (y + 1)* and 03 = (x — 1)® + ¢y* + 2
where z,y € [—4;4]
Fig[T0] illustrates the convergence of the system towards a valid solution.

7 Conclusion

We have presented a generic model of numerical optimization problem and an
agent-based optimization algorithm. While classical methods often have difficul-

16 T. Jorquera et al.

3
™ 8
—
3
7 o
(90] i
E $3
€o S_
N i
S 3
8]
Q Q|
—
10 20 30 40 50 0 10 20 30 40 50
number of evaluations of ol number of evaluations of 02

Fig.9: Convergence of the Turbofan objectives for 100 random starting points

40

3
=3 o \
) o o \
37 s° g1\
[© [\"
> > > A
o N o | ™ \
o o N © o |\
o ol SRR
(] (] (]

j c c

cC o] c o | c

Q- Q- Qo

S S S =

° ° b

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
number of evaluations of viennet_o number of evaluations of viennet_o number of evaluations of viennet_o

Fig. 10: Convergence of Viennetl objectives for 100 random starting points

ties to handle complex MDO problems and require the use of specific method-
ologies, we distribute the problem among the agents in order to keep a low local
complexity.

One of our concerns has been to facilitate the work of the engineer and allow
him to express his problem in a way which is the most natural to him, instead
of restricting him to a specific formulation. By analyzing the different concepts
involved in the expression of an MDO problem, we extracted several atomic
roles upon which we based the relations between the entities of our system. With
these low-level entities, we are able to propose a new formalism we name NDMO.
This new formalism can reconstruct a great variety of problems while mirroring
their original formulation. Using this formalism, we proposed an agent-based
optimization algorithm integrating MDO-specific mechanisms.

MAS for Integrative MDO 17

We have exposed here the results of preliminary experiments using simple
but representative problems in order to validate the soundness of our approach.
Obviously these test cases are a first step to demonstrate the validity of the MAS
we propose. We continue to work with our industrial partners in order to show
the scalability of our approach on more complex real world-based problems. As
an example of the problems we are currently studying, the figure [L1|represents a
preliminary aircraft design problem (as visualized by our prototype tool) which
involves sixteen disciplines and a hundred variables.

Fig. 11: Preliminary aircraft design test case as represented in our prototype

Our goal is to make a system that grows not only with the complexity of the
problem but also with the needs of the engineer. This is why our approach can,
by design, easily be interfaced with any local optimization method. In the same
idea, one of our next goals is to integrate into our system the capability to handle
and propagate uncertainties among the different parts of the problem. Another
line of research is about efficiently and interactively exploring the Pareto front
of a problem.

Acknowledgements. This work has been supported by French National
Research Agency (ANR) through COSINUS program with ANR-09-COSI-005
reference.

References

1. Sobieszczanski-Sobieski, J., Haftka, R.T., Sobieszczanski-sobieski, J., Haftka, R.T.:
Multidisciplinary aerospace design optimization: Survey of recent developments.
Structural Optimization 14 (1996) 1-23

2. Weiss, G., ed.: Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press (1999)

18

10.

11.

12.

13.

14.

15.

T. Jorquera et al.

Serugendo, G., Gleizes, M., Karageorgos, A.: Self-organising systems. Self-
organising Software: From Natural to Artificial Adaptation (2011) 7

Cramer, E., Dennis Jr, J., Frank, P., Lewis, R., Shubin, G.: Problem formulation
for multidisciplinary optimization. SIAM Journal on Optimization 4(4) (1994)
754-776

Yi, S., Shin, J., Park, G.: Comparison of mdo methods with mathematical exam-
ples. Structural and Multidisciplinary Optimization 35(5) (2008) 391-402

Kroo, I.M., Altus, S., Braun, R.D., Gage, P.J., Sobieski, I.P.: Multidisciplinary
optimization methods for aircraft preliminary design. AIAA 5th Symposium on
Multidisciplinary Analysis and Optimization (September 1994) ATAA 1994-4325.
Sobieszczanski-Sobieski, J., Agte, J., Sandusky, R.: Bi-Level Integrated System
Synthesis. NASA Langley Technical Report Server (1998)

Alexandrov, N., Lewis, R.: Analytical and computational aspects of collaborative
optimization for multidisciplinary design. AIAA journal 40(2) (2002) 301-309
Perez, R., Liu, H., Behdinan, K.: Evaluation of multidisciplinary optimization
approaches for aircraft conceptual design. In: ATAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, NY. (2004)

Stranders, R., Farinelli, A., Rogers, A., Jennings, N.: Decentralised coordination of
continuously valued control parameters using the max-sum algorithm. In: Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, International Foundation for Autonomous Agents and Multia-
gent Systems (2009) 601-608

Kaddoum, E.: Optimization under Constraints of Distributed Complex Problems
using Cooperative Self-Organization. PhD thesis, Université de Toulouse, Toulouse,
France (november 2011)

Lemouzy, S., Camps, V., Glize, P.: Principles and properties of a mas learning
algorithm: A comparison with standard learning algorithms applied to implicit
feedback assessment. In: Web Intelligence and Intelligent Agent Technology (WI-
IAT), 2011 IEEE/WIC/ACM International Conference on. Volume 2. (aug. 2011)
228 —235

Gleizes, M.P.: Self-Adaptive Complex Systems. In Cossentino, M., Kaisers, M.,
Tuyls, K., Weiss, G., eds.: 9th European Workshop on Multiagent Systems (EU-
MAS 2011), Proceedings, Springer (2012)

Gleizes, M., Camps, V., Georgé, J., Capera, D.: Engineering systems which gen-
erate emergent functionalities. Engineering Environment-Mediated Multi-Agent
Systems (2008) 58-75

Viennet, R., Fonteix, C., Marc, I.: Multicriteria optimization using a genetic algo-
rithm for determining a pareto set. International Journal of Systems Science 27(2)
(1996) 255-260

	A Natural Formalism and a Multi-Agent Algorithm for Integrative Multidisciplinary Design Optimization

