N

HAL

open science

ADELFE 2.0
Noelie Bonjean, Wafa Mefteh Mejri, Marie-Pierre Gleizes, Christine Maurel,

Frédéric Migeon

» To cite this version:

Noelie Bonjean, Wafa Mefteh Mejri, Marie-Pierre Gleizes, Christine Maurel, Frédéric Migeon.
ADELFE 2.0. Cossentino, Massimo; Hilaire, Vincent; Molesini, Ambra; Seidita, Valeria. Handbook
on Agent-Oriented Design Processes, Springer, pp.19-64, 2013, 978-3-642-39975-6.

642-39975-6_ 3 . hal-03792675

HAL Id: hal-03792675
https://hal.science/hal-03792675
Submitted on 3 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1007/978-3-

https://hal.science/hal-03792675
https://hal.archives-ouvertes.fr

ADELFE 2.0

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

ADELFE is a French acronym that means “Toolkit for Designing Software with Emergent Func-
tionalities” (”Atelier de DEveloppement de Logiciels a Fonctionnalité Emergente” in french).
ADELFE methodology is dedicated to applications characterized by openness and the need of
the system adaptation to an environment. Its main goal is to help and guide any designer during
the development of an Adaptive Multi-Agent System (AMAS). An AMAS is characterized by the
following points: it is plunged into an environment and composed of interdependent agents, each
agent carries out a partial function and the agents organization during runtime makes the system
realizing an emergent function. Actually, an agent is locally cooperative, i.e. it is able to recog-
nize cooperation failures called ”Non Cooperative Situations” (NCS, which could be related to
exceptions in classical programs) and to treat them.

ADELFE includes five Work Definitions that were initially inspired from the Rational Uni-
fied Process (RUP) and gathers twenty one activities, producing or refining twelve work products.
These products are aggregating modelling diagrams or structured or free text. ADELFE, which is a
Model-Driven (model-centered) development method, is not hardly dependent of Domain Specific
Modelling Languages (DSML) but currently the recommendation is to use UML2 for general ac-
tivities and to use AMASML (AMAS Modelling Language) and SpeADL (Species-based Modelling
Language) for specific activities appearing in Analysis, Design or Implementation phases.

1 Introduction

ADELFE is a French acronym that means “Toolkit for Designing Software with
Emergent Functionalities” (”Atelier de DEveloppement de Logiciels a Fonction-
nalité Emergente” in french). The main goal of ADELFE is to help and guide any
designer during the development of an Adaptive Multi-Agent System (AMAS).
Adaptive software is used in situations in which the requirements are incompletely
expressed, the environment is unpredictable or the system is open. In these cases,
designers cannot implement a global control on the system and cannot list all sit-

Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France
e-mail: Firstname.Name @irit.fr

2 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

uations that the system encounters. In these situations, ADELFE guarantees that
the software is developed according to the AMAS theory. This theory, based on
self-organizing multi-agent systems, enables to build systems in which agents only
pursue a local goal while trying to keep cooperative relations with its neighbours
agents. An AMAS is characterized by the following points: it is plunged into an en-
vironment and composed of interdependent agents, each agent carries out a partial
function and the agents organization during runtime makes the system realizing an
emergent function.

In the following, the ADELFE process is described by initially considering its
whole process and then its five phases, which gather twenty one activities, producing
or refining twelve work products.

Since 2003, ADELFE has been used in many academic and industrial projects,
for a total of more than twenty AMAS produced. Recently, ADELFE has been
lightly modified in order to integrate last research results on Multi-Agent Oriented
Software Engineering and practical usages related by the industrial ADELFE part-
ners. This chapter presents this up-to-date version of the method.

As it can be seen in the next sections, ADELFE is composed of several activities
dedicated to Adaptive Multi-Agent-Systems. Considering this, it contains junction
activities where the designer has to control if his problem requires a MAS solution
or, even more, an AMAS solution. In the negative case, the design should be contin-
ued with a traditional process or a process dedicated to the problem characteristics.
This documentation does not describe such activities and focus only on the process
parts dedicated to AMAS development.

Finally, it is important to notice that ADELFE is a Model-Driven (model-
centered) Development method which is still in progress. Works on fragmentation,
simulation, formal methods, AMAS patterns are feeding the method every year in
order to improve the development of complex systems based on AMAS. As the ma-
turity of these topics is not sufficient to be included in this chapter, we left their
presentation in research papers.

Relevant references about the ADELFE process and the ADELFE extensions
are the following:

e Bernon, C.; Gleizes, M.-P.; Peyruqueou, S.; Picard, G.; ADELFE, a Methodol-
ogy for Adaptive Multi-Agent Systems Engineering International Workshop on
Engineering Societies in the Agents World (ESAW), Madrid, Spain, 16/09/2003-
17/09/2003, Springer-Verlag, 2003, 156-169

e Bernon, C.; Camps, V.; Gleizes, M.-P.; Picard, G. Designing Agents’ Behaviours
within the Framework of ADELFE Methodology International Workshop on En-
gineering Societies in the Agents World (ESAW), Imperial College London,
29/10/2003-31/10/2003, Springer-Verlag, 2003, 311-327

e Rougemaille, S.; Arcangeli, J.-P.; Gleizes, M.-P.; Migeon, F. ADELFE Design,
AMAS-ML in Action International Workshop on Engineering Societies in the
Agents World (ESAW), Saint-Etienne, 24/09/2008-26/09/2008, Springer-Verlag,
2008

ADELFE 2.0 3

Bernon, C.; Gleizes, M.-P.; Picard, G., Enhancing Self-Organising Emergent
Systems Design with Simulation International Workshop on Engineering Soci-
eties in the Agents World (ESAW), Dublin, 06/09/2006-08/09/2006, Springer-
Verlag, 2007, 4457, 284-299

Lemouzy, S.; Bernon, C.; Gleizes, M.-P. Living Design: Simulation for Self-
Designing Agents European Workshop on Multi-Agent Systems (EUMAS),
Hammamet, 13/12/07-14/12/07, Ecole Nationale des Sciences de 1’ Informatique
(ENSI, Tunisie), 2007

Mefteh, W.; Migeon, F.; Gleizes, M.-P.; Gargouri, F. Simulation Based Design
International Conference on Information Technology and e-Services, Sousse,
Tunisie, 2012

Bonjean, N.; Gleizes, M.-P.; Maurel, C.; Migeon, F., Forward Self-Combined
Method Fragments. Workshop on Agent Oriented Software Engineering (AOSE
2012), Valencia, Spain, 04/06/2012-08/06/2012, Jorg Muller, Massimo Cossentino
(Eds.), IFAAMAS, p. 65-74, juin 2012.

1.1 The ADELFE Process Lifecycle

ADELFE includes five Work Definitions (WD1..5) (see Fig.1):

Preliminary Requirements (WD1): this phase represents a consensus description
of specifications between customers, users and designers on what must be and
what must give the system, its limitations and constraints.

Final Requirements (WD?2): in this work definition, the system achieved with the
preliminary requirements is transformed in a use cases model, and the require-
ments (functional or not) and their priorities are organized and managed.
Analysis (WD3): the analysis begins with a study or analysis of the domain.
Then, identification and definition of agents are processed. The analysis phase
defines an understanding view of the system, its structure in terms of components
and identifies if the AMAS theory is required.

Design (WD4): this phase details the system architecture in terms of modules,
subsystems, objects and agents. These activities are important from a multi-agent
point of view that a recursive characterization of multi-agent system is achieved
at this point.

Implementation (WDS5): implementation of the framework and agent behaviours
is produced in this work definition.

B — | — L — =]
WD1: Preliminary WD2: Final WD3: Analysis WDA: Design WD5: Implementation
Requirements Requirements

Fig. 1 The ADELFE Process Phases

4 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

It is important to notice that ADELFE is not a simple waterfall process but in-
cludes loops and increments that are not described on the graphical representation
of the Fig. 1. For example, at the end of each phase, a validation step is executed
which requires a possible transition towards an activity previously passed.

Each phase produces at least one document that is aggregated from modelling di-
agrams or from structured or free text. ADELFE is not hardly dependent of Domain
Specific Modelling Languages (DSML) but currently the recommendation is to use
UML2 for general activities and to use AMAS Modelling Language (AMASML)
and Species-bAsed moDelling Language (SpeADL) for specific activities appear-
ing in Analysis, Design or Implementation phases'.

1.2 The ADELFE MAS Metamodel

1.2.1 Definition of MAS Metamodel Elements

The ADELFE method is composed of various tools based on model-driven develop-
ment. To support model transformation and DSML editors an ADELFE metamodel
has been defined. However, this metamodel is too much based on natural language
(precise and complex) to support a designer guidance.

The ADELFE MMM is organised according to the five phases composing the
process. We give in the following a short description of the main elements of this
metamodel that is presented in five diagrams to simplify the layout and the discus-
sion.

<<MMME>> <<MMMR>> <<MMME>> <<MMMR>> <<MMME>>
Non Functional Requirement K——| Constrained_by K—] i i FR_| i Domain Activity
<<MMMR>>
DAct-BActor
mivro= | [<<taviv re> | [<<vvim R wvivire> | [<<mvimi R <aMMME>> |
Constraint-NFR Limit-NFR Keyword-NFR Keyword-FR Association = Business Actor
<<MMMR>>
/Y ’\ /’ Definition
<<MMME>> <<MMME>> <<MMME>> <<MMMR=>> <<MMME>> <<MMME>>

Constraint Limit Keyword K_lllustration Domain Entity Term Definition

Fig. 2 The Preliminary Requirements Phase MAS Metamodel

The Preliminary Requirements Phase (see Fig.2) focuses on acquiring informa-
tion about the client and his needs. Therefore, a consensual description of the prob-
lem is made in terms of functional and non-functional requirements, keywords, lim-

! See SMAC Team website (http://www.irit.fr/~-Equipe-SMAC) for more information on these
DSML.

ADELFE 2.0 5

MMIMIE: MMMR MMIVIE: <<MMMR>> <<MMME>> <<sMMME>>
Ul Prototype |—>| View Use_Case SG Functional Descripti Functional Requirement |<— <3| MAS Adequacy
7 1/
<<MMMR>> <<MMMR>> <<MMME>>
<<MMME>> <<MMMR>> Actor Participation FR_Description System Environment Characteristics
Business Actor < Actot-BActor
“’ﬂﬂf» <<MMVE>> /? <<MMME>>
<<MMME>> MMMR: . System Interactions AS_Cooperation_Failure
Actor Description |& Descripti I~ 1\

<<MMMR>> <<MMME>> <<MMMR>>
Constraint-Act K—— Constraint S|_Characterization

Fig. 3 The Final Requirements Phase MAS Metamodel

<<MMMR>> <<MMME>> <<VIVMIVMR>> <<MMMR>> <<MMME>>
Global-Interaction |— Entities Interaction Analysis AE-PE AAE_ _Description K— AAE

i

<<MMME>> <<MMME>> <<MMMR=>> <<MMME>>
<<MMME »> Analysis Passive Entity Analysis Active Entity |&—| AAE_Individual_Goal k—| AAE_Goal
Global AMAS Adequacy
<<MMMR>> <<MMME>> <<MMMR>> <<MMMR>>
AE_Interaction || Analysis Entity AAE_Resp il AAE_Individual_Nego_Ability <<MMME>>
IS AAE_Negotiation_Ability

/ / Vi

;;m”gf:; L—T—ares <<MMME>> <<MMMR>>
Y AE-DE AS_Cooperation_Failure k<—| CA_Responsability <<MMMR>>
CA_Ability
<<MMME>> <<MMMR>> NVIVIME=S <<MMMR>> <<MMME>>
Domain Entity ACA-AE |« | Analysis_Agent [&———1 CA_Study [&—] Local AMAS Adequacy

Fig. 4 The Analysis Phase MAS Metamodel

its and constraints of the system. A business model with business concepts and busi-
ness activities is defined to complement the documentation.

In the Final Requirements Phase (see Fig.3), the objective is to validate the re-
quirements and to detail the need through a description of the actors, a use case
model, and scenarios descriptions. The end of the phase is dedicated to the charac-
terization of the system environment and the identification of cooperation failures
among the system interactions. This leads to a conclusion on the MAS adequacy to
treat the problem of the client.

During the Analysis Phase (see Fig.4), the entities are characterized as passive
or active and their interactions are described. The work product obtained enables an
AMAS analyst to conclude on the adequacy (or not) of AMAS to deal with the prob-
lem. If the result is positive, all the interactions between the entities are described
and cooperation failures are identified. From this information, agents (according to
the definition of agent in ADELFE, see section 2.3) are identified and local AMAS
adequacy is studied to conclude the phase.

6 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

| Rule I
<<MMME=>> <<MMME=>> =<<MMME=>>
DecisionModule StandardRule CooperativeRule <<MVNES (.(MMME» N
IL_ComP [—3 Communication Perception
<<MMME>> <<MMMR>>
<<MMMR=> Interaction_Language IL_ComA
Module_Relation

i
<<MMMR>> <<MMME>>
Communication_Out ——> Communication Action
<<MMME=>>
Module

DecisionResult
| <<MMME>> <<MMME=>> <<MMME>>
Design_Agent k>——— ActionModule o—] Action <<MMMR>>
<<MMMR>> (< InvolvedAction
ACA_DCA_Role
T <<MMME>> <<MVIMR>> 7\
J/ <<MMIVRS> Per i Ile Communication_ln —
2 << >
<<MIMME>> Realize skill
Analysis_Agent L\
7\ <<MMME>> _47{
Perception <<MMIE>> L
<<MMME>> <<MMI_AR.>> 4 KnowledgeModule MIVIVIR:
Prototype DCA_Par L InvolvedAptitude
<<MMME>> N
Design_Entity MV
MMV <<MMME=>> Modified Representation
DE_Participation | Agent_Interaction
<<MMME=>
Aptitude
<<iIMMR>> <<MMMR=> <<MMME>> <<MMME>> <<MMME>>
DE_DE_Participation AE_DE_Role [——{ Analysis Entity Representation Criticality
/I\ /’\ <<MMME>>
<<MMME=>> <<MMME=>> Confidence
<<MMME=>> <<MMMR>> 2 DE_Behavior Characteristics
Entity_Interaction DE_Beh_Description

Fig. 5 The Design Phase MAS Metamodel

The heaviest phase of ADELFE is the Design Phase (see Fig.5) which consists
in defining the multi-agent oriented architecture of the solution. It starts with the
definition of a module view. Then, all the communication acts are defined in order
to define precisely the entity interactions and agent interactions that will be useful to
complete the module view and to define a component-connector view of the agents
with their neighbourhood (agents, active and passive entities). The definition of the
structure and behaviour of the agents is made in two steps which lead to the defi-
nition of the knowledge module, the action module, the perception module and the
decision module. These two steps concern respectively the nominal behaviour of
the agent, which enables the agent to reach its goal, and the cooperative behaviour
which enables the agent to self-adapt to abnormal situations. Finally, a prototype is
defined to validate the result.

Currently the last phase of ADELFE, the Implementation Phase (see Fig.6) fo-
cuses on the definition of the component-oriented architecture that will support the
design. It is mainly composed of automated activities for model or code generation.
However, in this document, we deliberately describe the process as manual oper-

ADELFE 2.0 7

<<MMME>> <<MMVE>>
Design_Entity MAS_Environment_Code
Port
“rome sing y
- type : String <<MMMR>> <<MMMR>>
| — <<MMME>> Entity_Realization Env_Code_Generation
<<MMME>> qui
ProvidedPort Y
<<MMME>>
' ; <<MMMR>>
j Entlty_implementation Env_Framework_Generation
<<MMMR>> <<MMME>>
t_D ion |—>] ¢ i
<<MMME>> JavaCla! i <<MMME>>
Connector = T T Framework_Implementation
/{\ <<MMME>>
/|\ c | i Part_type _—
MMMR: MMME: <<MMME>>
Basic_f < T Agent_| i AMAS_Imple i
Link_type (exc\udedd/ I
<<MMME, MMMR>> Component_Part ﬂ\
/Y Composlte <<MMVR>> <<MMMR>>
<<MMME>> <<MMMR>> Agent_Realization Agent_Code_Generation
Link k— Internal_PP_Link f&— A\
<<MMMR>> /’\ /I\
'\v Composite_Content
<<MMME>> <<MMME>>
<<MMMR>> .
Internal_RP_Link Design_Agent Agent_Code
J <<MMME>>
ol Assembly

Fig. 6 The Implementation Phase MAS Metamodel

ations in order to give more details on the activities and in order to simplify the
metamodel. The implementation of AMAS is not dependent of any MAS platform.
On the contrary, it is recommended to produced a dedicated framework in order to
gain in software quality. Actually, this framework is defined in terms of components
(with provided and required ports, composite components, assembling) which are
specified and implemented. First, the implementation focuses on the components
defining entities, action and perception modules. Finally, decision module is imple-
mented with standard behaviour rules and cooperative behaviour rules.

Like in every process, unit testing, integration testing and functional testing are
taken into account but not described here.

1.2.2 Definition of MAS Metamodel Elements

The table below gives a set of concepts definitions related to AMAS theory and
ADELFE method. It covers the entire MAS Metamodel used during Requirements,
Analysis and Design.

Concept Definition Referred Con-|Domain
cepts
(Software) Sys-|A (software) system is the term describing | System Environ- [Requirements
tem the software to be produced, the applica- |ment
tion to be designed. Anything outside the
system is called system environment.

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

System Envi-
ronment

It is the entire environment into which
the software system is plunged and which
is not under design. In UML, the term
Actor (primary or secondary) is often
used to characterize the environment. Of
course, the frontier between environment
and software system will use software en-
tities that will deal with the interactions
between environment and system.

Software
tem

Sys-

Requirements

MAS
ment

Environ-

The MAS environment is composed of all
software elements that surround the MAS
and which are not agents. The elements
of the environment are called MAS en-
tities (active or passive) and all have at
minimum an interaction that is defined by
means of sensors or effectors.

Passive Entity,
Active Entity

Analysis

Agent Environ-
ment

The environment of an agent is the union
of its neighborhoods during its life. It rep-
resents all the knowledge it has on other
agents and on the MAS environment.

Agent Neigh-
borhood, Agent

Analysis

Agent
borhood

Neigh-

The neighborhood of an agent is a part
of the agent’s environment at a particular
time.

Agent Environ-
ment, Agent

Analysis

Multi-Agent
System (MAS)

A MAS is the set of elements, called
agents, which are not part of the environ-
ment. In a MAS, no agent can be isolated,
that is to say without any link with another
system component. Therefore, it can be
considered as the set of agents that com-
municate (directly or via the environment)
to achieve a common goal.

Goal, Agent

Analysis

Goal

The goal is an objective set by the de-
signer to an agent or to the entire system.

Agent, (Soft-
ware) System

Analysis

Passive Entity

In the MAS environment, passive entities
are related to resources or to data. This im-
plies that they have no autonomy and that
a state transition can only be the result of
an interaction with another system com-
ponent. Moreover, a passive entity is un-
able to send or receive messages.

MAS Environ-
ment

Analysis

Active Entity

Unlike a passive entity, an active entity is
given behavioural autonomy, allowing it
to change state without necessarily inter-
acting with another entity. An active entity
can send messages, possibly proactively
and receive messages.

Passive Entity

Analysis

(Cooperative)
Agent

In ADELFE, an element of a MAS (i.e. an
element that is not part of the MAS envi-
ronment) is an agent. This agent is charac-
terized by a cooperative attitude.

MAS, Coopera-
tive Attitude

Analysis

ADELFE 2.0

Cooperation

It is a behavioural principle for an en-
tity that avoids being placed in a situation
of misunderstanding, ambiguity, incom-
petence, unproductiveness, conflict, con-
currence or uselessness. This principle is
applied to agents designed with ADELFE,
but can also describe the behaviour of the
software system as a whole. The defini-
tion of cooperation goes beyond the sim-
ple sharing of resources or collaboration.
This cooperation includes all behaviours
that allow the agent to prevent and to re-
solve conflicts that occur during system
execution.

Agent, Software
System

Analysis

Cooperative
Attitude

An agent has a cooperative attitude when
its activity tends to give priority to antic-
ipate and solve all the Non Cooperative
Situations (NCS) it might encounter with
its environment. This implies the follow-
ing properties: (i) Sincerity: If an agent
knows a proposition p is true, it cannot
say anything different to others. (ii) Com-
passion: An agent temporarily leaves its
individual goal to help another agent in
greater difficulty (temporary change of
goal). (iii) Reciprocity: An agent knows
that it has a cooperative attitude, like all
other agents have.

Cooperative
Attitude, Non
Cooperative Sit-
uations, Agent
Environment,
Agent

Analysis

Communica-
tion Acts

A communication act is a mean imple-
mented by an agent to interact with an
agent and / or its environment. A speech
act (e.g. FIPA ACL) is a communication
act.

Agent, Agent
Environment

Analysis

Behaviour

The behaviour of an agent is a life cycle
consisting of the sequence: (i) perception
of the environment (including communi-
cation aspects), (ii) decision that allows it
to identify the state in which it lies and
actions to be performed, (iii) execution of
decided actions. The life cycle starts when
the agent is created and completes when
the agent dies. Agent behaviour can be
represented as an automaton whose states
are the situations that the agent can iden-
tify and transitions are actions it decides
to execute.

Agent Environ-
ment, Agent

Design

Nominal Be-

haviour

The nominal behaviour is the part from
the behaviour which enables the agent to
reach its goal when it is in cooperative sit-
uation.

Goal, Agent,
Behaviour

Design

10

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

Cooperative
Behaviour

The cooperative behaviour of an agent en-
ables it to detect the set of states identi-
fying NCS and to describe the repairing
actions to return to a cooperative situation
or anticipatory attempt to avoid NCSs. In
addition, an agent tries to help the most
critical agent in its neighbourhood. In cer-
tain conditions, it spontaneously commu-
nicates information to agents that it thinks
the information will be useful. Such a
cooperative behaviour can be divided in
three distinct steps: (i) tuning which con-
sists in the modification of parameter val-
ues for parameters that influence the be-
haviour of the agent; (ii) reorganization
which consists in the modification of the
acquaintances of the agent that will lead to
the reorganization of the system to make
the resulting global function properly; (iii)
evolution which consists in creation or
suicide of agents.

Goal, Agent,
Behaviour, NCS

Design

Criticality

For an agent, criticality represents the de-
gree of non-satisfaction of its own goal.
It enables an agent to determine the rela-
tive difficulty of agents in its neighbour-
hood. Evaluation methods and calculation
of the criticality are specific to each type
of agent.

Goal, Agent,
Neighbourhood

Design

Behaviour
Confidence

The behaviour confidence of an agent is
an internal measure that provides informa-
tion on the reliability of the decision on
actions intended.

Agent, Be-

haviour

Design

Skills

The skills of an agent are capabilities in a
domain that enables an agent to perform
actions to achieve its goal.

Agent, Goal

Design

Characteristics

A characteristic is an intrinsic property of
the agent. It can be visible or not and it can
be modified by the agent or other agents.

Agent

Design

Aptitudes

The aptitudes of an agent are generic ca-
pabilities which are independent of its
competence domain.

Agent

Design

Representations Representations of an agent are the im-

age that the agent has of its environment
and itself, that is to say all of its percep-
tions and beliefs. They can be updated by
means of its perceptions.

Agent, Agent
Environment

Design

Interaction
Language

The interaction language is a set of tools
required by the agent to communicate
with other agents. This communication
can be done through messages (direct) or
via the environment (indirect communica-
tion).

Agent

Design

ADELFE 2.0 11

1.3 Guidelines and Techniques

ADELFE is based on object-oriented methodology, inspired from the Rational Uni-
fied Process (RUP). Some steps have been added in the classical workflow fitting
with adaptive MAS.

ADELFE is based on UML2 notation with the complementary use of DSML
AMASML (AMAS Modelling Language) and SpeADL (Species-based Architec-
ture Description Language), a design methodology, several model-driven tools and
a library of components that can be used to facilitate the application development.
Guidance of the development process is supported by AdelfeToolkit (Fig.7 (a)).
The general idea is to help the designer to follow the process, with descriptions,
examples and presents a summary of works and artefacts already performed and re-
maining.

As mentioned in A1l and A13 activities of ADELFE process, the analyst must

=TT
REIEERE o «» e i s, ckan
il (T =

ADELFE g

ADELFE V1.2

natcsion

R bitcion ou
e p—

= (a) | (b)

Fig. 7 The Tool for Monitoring the ADELFE Process: AdelfeToolkit (a); The Tool of the AMAS
Adequacy (b)

verify that the problem needs or not AMAS. For this, a tool (Fig. 7 (b)) is provided
to answer the questions at the macro-level (eight criteria) and the micro-level (three
criteria). Answers to questions are graded from O to 20.

2 Phases of the ADELFE Process

ADELFE defines its five phases from the RUP definition. They are respectively
dedicated to Preliminary Requirements, Final Requirements, Analysis, Design and
Implementation.

12 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

2.1 Preliminary Requirements Phase (WDI)

The Preliminary Requirements Phase involves traditional software development
stakeholders which are assigned classical activities. The goal of this phase is to
obtain a precise and consensual description of the problem as well as the client’s
business. No specific modelling language is used. The process flow at the level of
activities is reported in Fig. 8 and Fig. 9 depicts this phase according to documents,
roles and work products involved.

'AO4 Establish

Jreas)] Lox; Keywords \

L5 o)

® 'AO1 Define User > A02 Define Consensual — >A03 Determing | @
Requirements Requirements Business Model g /

A05 Extract Limits
and Constraints

Fig. 8 The Preliminary Requirements Phase Flow of Activities

a o g
o L‘J predecessor _L,a
Problem AO1 Define User A02 Define Ct
Requirements Requirements
[XXX R P90 ¢
<<input>> f Cax | o
O <cinput>> 202 51‘5 i Consensual
2 Users -51 define Requirements Set
A01-51 define user Requirements Set consensual | -
requirements J requirements | Lo <<output>>
o <<oytput>> 0 A02-52 validate
<cperform, 0 52, 2 0 onsensual
primary>> S fa A01-52 validate Priman>> - Software Lgv -
o) . requirements
End-Users “©&* requirements Analyst Client
Client
<<perform, primary>>
<<perform, primary>>
<<predecessor>> i
eS| <<predecessor>> A0S Extract Limit
cehputss 203 Determine P 05 Extract Limis
Business Model nd tonstrat
Y & o §
| o “
N | Business Model L3
L p ‘<<predecessor>> <05 extr?a limits S0
A03-51 determine <<input>> Constraints
<<output>> i i =
business concepts Ca A?(:E:;:S';h and constraints /2, Set
<<perform, O A03-52 determine 'y. u <<perform, Software
primary>> “2* business process <<input>> primary>> * Analyst
Business Ca a <<output>>
Analyst " <<perform, primary>> SO4establish 3
keywords 2 Glossary

<<perform, Software
primary>>" Analyst
<<output>>
<<input>>

Fig. 9 The Preliminary Requirements Phase Described in terms of Activities and Work Products

2.1.1 Process Roles

Four roles are involved in the Preliminary Requirements Phase: the End-users, the
Client, the Software analyst and the Business analyst.

ADELFE 2.0 13

e Final User: he is responsible of functional and non-functional requirements list
during the Define Users Requirements activity. These requirements are used to
define the system and its environment.

e Client: his main role is to validate product documents drawn up by others expert.
He is responsible of the set of requirements approval during the Define Users Re-
quirements activity and during the Define Consensual Requirements activity.

e Software Analyst: actually the software analyst gives a definition for the main
concepts used to describe the system and its environment. He is responsible of:
consensual requirements list during the Define Consensual Requirements activ-
ity, keywords during the Establish Keywords activity, and limits and constraints
of the system during the Extract Limits and Constraints activity.

o Business Analyst: he is responsible of the business model during the Determine
Business Model activity. He defines the business concept and the relationships
between them. He also describes formally what are the business activities, what
are the products provided or required and who are the responsible persons of
these activities.

2.1.2 Activities Details

The flow of activities inside this phase is reported in Fig. 8 and are detailed in the
following.

2.1.2.1 AO1 : Define Users Requirements

This first activity concerns the description of the system and its environment in
which it will be deployed. This activity consists in defining what to build or what is
the most appropriate system for end-users. End-users and clients have to list, check
and approve the requirements. The context in which the system will be deployed
must be understood. The functional and non-functional requirements must be estab-
lished. The flow of tasks inside this activity is reported in Fig. 10 and the tasks are
detailed in the following table.

A01: Define Users Requirements

Tasks Tasks Descriptions Roles Involved
S1: define users’ re-|End-users list the functional and non-functional re-|End-users
quirements quirements.
S2: validate users’|The client has to check and approve the set of re-|Client
requirements quirements. If this document is not validated, the

requirements have to be improved; the previous

step is made again.

14 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

a

o) O
Ly Problem
End-Users <<mandatory, input>>
o = — =
A01-51 define user requirements A01-S2 validate requirements

- l«mandamry, output>>
o
Client

o
O
Users Requirements Set

Fig. 10 Flow of Tasks of the Define Users Requirements Activity

2.1.2.2 A02: Define Consensual Requirements

This activity consists in defining what conditions or capabilities the system has to
conform. The consensual requirements set is defined by the software analyst. The
flow of tasks inside this activity is reported in Fig. 11 and the tasks are detailed in
the following table.

a

o O
Software Analyst Users Requirements Set
<<mandatory, input>>
o La - La —@
A02-S1 define consensual requirements A02-52 validate consensual requirements

[l«mandamrv, output>>
D
Client

P
O
Consensual Requirements Set

Fig. 11 Flow of Tasks of the Define Consensual Requirements Activity

A02: Define Consensual Requirements
Tasks Tasks Descriptions Roles Involved
S1: define consen-|The software analyst defines the requirements set|Software Analyst
sual requirements | with the consensual requirements.
S2: validate consen-|If there is no agreement on the Requirements Set|Client
sual requirements [document, a backtrack must be performed to study
again the previous step

2.1.2.3 AO03: Determine Business Model
This activity provides an overview on the problem, the related concepts and the
activities linked to. The flow of tasks inside this activity is reported in Fig. 12 and

the tasks are detailed in the following table.

a

Lo
Problem
) |<<mandatory, input>>
2 La
Business Analyst 'A03-S1 determine business concepts
> e
A03-52 determine business process <<mandatory, output>>

e
o
Business Model

Fig. 12 Flow of Tasks of the Determine Business Model Activity

ADELFE 2.0

15

A03: Determine Business Model

Tasks

Tasks Descriptions

Roles Involved

S1: determine busi-
ness concepts

This step enables to understand the static and dy-
namic structure of the system.

Business Analyst

S2: determine busi-

In this step, the sequence of actors’ actions that

Business Analyst

ness process

achieve the goal of the system is determined.

2.1.2.4 A04: Establish Keywords

The main concepts used to describe the application and its business model are listed.
This activity, carried out by the software analyst, is composed of one task giving the
definition of each keywords. These definitions will be stored in the glossary. The
flow this activity is reported in Fig. 13.

.
o >
& Business Model

Software Analyst
<<mandatory, input>>

Ca ®
. > O
S04 establish keywords

<<mandatory, output>>

a
204
Glossary

Fig. 13 Flow of Tasks of the Establish Keywords Activity

2.1.2.5 AO0S5: Extract Limits and Constraints

In this activity, the limits and constraints of the system are defined by a software
analyst. They can be found in the expression of non functional requirements and in
the definition of the context in which the system will be deployed. This information
will be defined mainly from the consensual requirements set documents. The flow
of this activity is reported in Fig. 14.

a a ¢
Lo O L0
Consensual Requirements Set Glossary Business Model

2 ‘
Software Analyst |
<<mandatory, input>> l l <<optional, input>>

o— La —@

S05 extract limits and constraints

<<mandatory, output>>
a
Lo
Constraints Set

Fig. 14 Flow of Tasks of the Extract Limits and Constraints Activity

16

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

2.1.3 Work Products

The Preliminary Requirements Phase generates five work products (text document
including textual description and/or diagrams). Their relationships with the MAS
meta-model elements are described in the Fig. 15.

2.1.3.1 Work Products Kind

-
=

Keywords

Ey &

Business Concepts Business Process

V—?—\
B B B8 H

Functional Domain Domain Business

T

Keywords

Name Description Work Product
Kind
Users Requirements|Textual description of the functional and non-|Free Text
Set functional requirements
Consensual Require-| Textual description composed of consensual re-|Free Text
ment Set quirements
Business Model A document composed of: 1) a diagram modelling|Composite (Struc-
the domain-specific data structure; 2) a diagram |tural and Be-
showing the workflow of activities performed by |havioural)
the business actors
Glossary A glossary of terms Free Text
Constraints Set Textual description composed of the limits and|Free Text
constraints of the system
Business Actar Functional Non Functional
g | Requirements RequlrerTents
Business Actor a ’
— \—é}' Business Actor
g Users
| Requirements Set
Functional
Requirements l I‘:_J" -— g
ZD
—_ c ot | Functional
—— = onsensua Requirements
g I a | {J\ Requirements Set &
Non Functional L{,\. Preliminary
Requi i |
equirements Constraints Set Requirements E
Non Functional
ci— Requirements
Constraints ;“i\,
Business Model =
=
B oo Glossary

!—?—\

Domain Entity

=S|

Term Definition

‘ I

Requirements Entity Activity Actor

Fig. 15 The Preliminary Requirements Documents Structure

ADELFE 2.0 17

2.1.3.2 Example: Conference Management Study

The description of the system have been already detailed in the introductory chapter.
As the requirements are common to all methods and because ADELFE is not really
dedicated to preliminary requirements, only the business model is shown in this

phase. Fig. 16 shows the business process on the left and the business concepts on
the right.

Author Reviever FC Publisher

(o]

Author

Review

Reviewer

1
1

validate
proceedings - "
Program Committee Publisher
nt

\

Conference Session Chapter

Fig. 16 Business Process (left); Business Concepts (right)

2.2 Final Requirements Phase (WD2)

The Final Requirements Phase is a classical requirement-oriented phase where the
Business Analyst gives a detailed description of the system environment. It also
embeds MAS-oriented tasks. The analysis, done by a MAS specialist, must add
sufficient details to the description of the system environment in order to conclude
if a MAS approach is needed to solve the problem with gains. The process flow at
the level of activities is reported in Fig. 17 and Fig. 18 depicts this phase according
to documents, roles and work products involved.

18 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

5
A08 Verify MAS

B s Adequacy \

® > A0 Characterize *A07 Determiné ®
System Environment Use Cases [Lﬂ /

A09 Elaborate UI
Prototype

Fig. 17 The Final Requirements Phase Flow of Activities

E5

[ISAE <<predecessor>> AO7 Determine
LI 3
A06 Characterize PRt o
System Environment La she System Environment
A07-51 take inventory Behavior
of use cases X
f £ "
I <«input>>| | S<Perform: A07-53 validate
Business Process <> PmA, &
System Environment 2 - Usecases <<output>>
Analyst Business £
X Structure Process Analyst o
<<perform, La v Client <<perform, primary>>
primary>> - S06 characterize <<outputs> " =
. <<
system environment perform, A07-52 draw up
primary>>
P <<input>> <<input>> system scenarii
. <<input>> diagrams
Constraints ¢ - Lexe, <<predecessor>>
Set 2, L, | =
oy 2 O
SSpradecassorss L S Business Consensual A09 Elaborate UI
- " Prototype
A08 Verify MAS Model Requirements Set @ s,
X Adequacy 2
<<input>> i
Y *P0N ¢ [) Ul Prototyping Ergonomist | perform,
. < <<output>> N —
A08-S1 quahfy MAS qualification J T < | L priman>>
system environment . <<doutput>> A09-52 validate A09-S1 specify
= L Ul prototype Ul prototype
A A08-S3 verify
A08-S2 identify MAS adequac LD <<input>>
cooperation failures) quacy <<perform, primary>> Client
actors-system L9 g

. MAS Analyst <<perform, primary>>
<<perform, primary>>

<<perform, primary>>

Fig. 18 The Preliminary Requirements Phase Described in terms of Activities and Work Products

2.2.1 Process Roles

Four roles are involved in the Final Requirements Phase: the Business Process An-
alyst, the Client, the MAS Analyst and the Ergonomist.

o Business Process Analyst: he is responsible of use cases identification during
the Determine Use Case activity drawing diagrams that represent the interac-
tions between actors and the system.

e Client: his main role is to validate product documents drawn up by others ex-
pert. He is responsible of approving the use cases defined during the Determine
Use Case activity. Besides, he agrees the Ul prototype during the Elaborate Ul
Prototype activity.

e MAS Analyst: he is responsible of verifying the MAS adequacy during the Ver-
ify MAS Adequacy activity. It consists in (1) the characterization of the system
environment according to Russel and Norvig definition, (2) the identification of
the possible ’bad” interactions between the actors and the system, (3) the analy-

ADELFE 2.0 19

sis of the previous results to justify the MAS use.

e Ergonomist: he is responsible of graphic user interfaces prototype during the
Elaborate Ul Prototype activity. He understands the interactions among humans
and the system, and designs a prototype which optimizes human well-being and
overall system performance

2.2.2 Activities Details

The flow of activities inside this phase is reported in Fig. 17 and is detailed in the
following.

2.2.2.1 A06: Characterize System Environment

The main objective of this activity is to define the system environment in the system
environment description document. This activity enables to identify and to describe
briefly actors interacting with the system. The possible encountered constraints are
also explained. The flow of tasks inside this activity is reported in Fig. 19.

a a ¢
O 0 Lo
Constraints Consensual Business
Set Requirements Set Model

2 <<mandatory, input>>
Business Process Analyst R A

La
<
—
S06 characterize system environment ©

<<mandatory, output>>
a
Lo
System Environment Structure

Fig. 19 Flow of Tasks of the Characterize System Environment Activity

2.2.2.2 A07: Determine Use Cases

The main objective of this activity is to clarify the different functionalities that the
studied system must provide. The flow of tasks inside this activity is reported in Fig.
20 and the tasks are detailed in the following table.

A07: Determine Use Cases
Tasks Tasks Descriptions Roles Involved
S1: take inventory of | A set of steps defining interactions between an ac-|Business Process
use cases tor and a system are listed. Analyst

20 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon
S2: draw up system|This step explicits the system behaviour from|Business Process
scenarii diagrams users’ point of view. The interactions between the | Analyst

actors and the system are drawn.
S3: validate use|Approval of the System Environment Description|Client
cases document by the client. If the use cases have to be
improved, the two previous steps have to be made
again.
a @
> o> ¢
System Consensual o
0 Environment Requirements Business
Law Structure Set Model

Client

. A07-S1 take inventory of use cases A07-S2 draw up system scenarii diagrams

o
Business
Process Analyst

<<mandatory, input>>

La La

Lo ®
A07-53 validate use cases

l«mandatory, output>>

¢
L0

System Environment Behavior

Fig. 20 Flow of Tasks of the Determine Use Cases Activity

2.2.2.3 AO08: Verify MAS Adequacy

In this activity, one must verify that a Multi-Agent System (MAS) approach is
needed to realize the system to be built. The question to answer is “a traditional
(Object-Oriented) approach sufficient to solve the problem or has the problem some
characteristics which implies MAS approach for the solving?”. The flow of tasks
inside this activity is reported in Fig. 21 and the tasks are detailed in the following

table.

A08: Verify MAS Adequacy

Tasks

Tasks Descriptions

Roles Involved

S1: qualify system
environment

During this step, the MAS analyst characterises the
system environment according to the Russel and
Norvig definition.

MAS Analyst

S2: identify cooper-
ation failures actors-
system

The aim of this step is to show the inadequate in-
teractions that may occur between the actors and
the system.

MAS Analyst

S3: verify MAS ade-
quacy

This step verifies the MAS adequacy by analyzing
the results obtained during the two previous steps.

MAS Analyst

ADELFE 2.0 21

a 2

fog O
System System
Environment Environment
Structure Behavior

0 <<mandatory, input>> .
& L

MAS Analyst A08-S2 identify cooperation failures actors-system =
<>
[”A08-53 verify MAS adequacy ©
Le l<<mendatory, output>>

A08-51 qualify system environment

P
L0 d
MAS qualification

Fig. 21 Flow of Tasks of the Verify MAS Adequacy Activity

2.2.2.4 A09: Elaborate UI Prototypes

The GUISs described in the UI Prototype document have to be defined, judged and
validated from functional or non functional (ergonomic, design...) points of view.
The flow of tasks inside this activity is reported in Fig. 22 and the tasks are detailed
in the following table.

¢
S0
System Environment Behavior

LD
Ergonomist <<mandatory, input>>
) .
A09-51 specify Ul prototype A09-S2 validate Ul prototype
l«mandatory, output>>
D

a
L0
Ul Prototyping

Client

Fig. 22 Flow of Tasks of the Elaborate Ul Prototypes Activity

A09: Elaborate UI Prototypes
Tasks Tasks Descriptions Roles Involved
S1: specify Ul proto-|In this step, the interfaces supplying all needed|Ergonomist
types functionalities are specified.
S2: validate UI pro-|The UI are used and assessed from functional and |Client
totypes non-functional point of view.

2.2.3 Work Products

The Final Requirements Phase generates four work products (text document includ-
ing textual description and/or diagrams). Their relationships with the MAS meta-
model elements are described in the Fig. 23.

2.2.3.1 Work Products Kind

Name Description Work Product
Kind
System Environment|A textual description describing the actors which |Free Text
Structure interact with the system and the possible con-
straints. Moreover, this document contains a brief
text of actors description.

22

N. Bonjean, W. Mefteh, M.P. Gleizes, C.

Maurel and F. Migeon

System Environment
Behaviour

A document composed of: 1) a use case dia-
gram representing actors and the functionalities as-
signed to them; 2) a structured text description of

Composite (Struc-
tural and Be-
havioural and Free

the actors; 3) diagrams representing the interac- |text)
tions between the actors and the system

A text document composed by the description of
the environment according the Russel and Norvig
definition, the description of “bad” interaction be-
tween actors and system and the justification of an
implementation that using a MAS is needed

This document is composed by the GUIs descrip-
tion through which the user(s) interact with the
system and the links between the GUIs.

MAS Qualification Free Text

UI Prototype Free Text

= B B B
Actor g
i Actor Actor Use Case _ Functional
Description \—‘—‘ﬂ‘ements
B 8-
Constraints B ‘EE‘J} ﬂ\ E
- - [
L‘U)E‘ o =0 Actor
Actor Textual Description Use Case Diagram =
System Environment ‘ ‘ L
= Srueture i o> B
Actor System Scenario System
Description Interaction

E}

System Environment
Behavior

=

Business Actor

=

Functional
Requirements

L e —
=
=t
Final
Requirements

- @
=

MAS qualification

T

| [‘ \ \
B =i B =] B

Fun»ct‘\onal MAS Adequacy Systemn AS_Coolperation System
Requirements Environment Failure Interaction

Characteristics

Fig. 23 The Final Requirements Documents Structure

= -
Ul Prototype <
Ul Prototyping

E_

Use Case

2.2.3.2 Example: Conference Management Study

From the business model and the requirements previously established, four actors
are defined. For each of them, the functionalities are detailed and depicted in a use
cases diagram (see Fig.24).

ADELFE 2.0

Allocate paper
review

Withdraw
paper

—
—

Author Actor Submit paper

/
—

Design
PC Acto\proceedings

Coordinate
conference
session

Fig. 24 Use Cases Diagram

Author Actor
‘1 submit paper()

1: affect number submission()

2: evaluate paper()

alt: notification

[Accepted]

[Reject]

5. withdraw paper() 5.1: remove paper()

F

T
opt : withdraw

R Act
ewew‘/er i O{ provide own keywords()

2 allocate paper()

3 send allocated papers([paper]) L/

3.1 paper evaluation()

alt: deadline 3.2 reviews()
[ontime] |
[atel e 4rominder) T
41 reviews()
T L
t

Fig. 25 System Sequence Diagrams

Fillin
keywords

/ Modify
Keywords
—

= i —
. ive
Reviewer Actol Cancel review Publisher Actor

Give review
result

PC Actor
| 1:1aunch conference management()

23

validate
proceedings
—

|
/ITI 2: allocate paper()

1]

N 4: select paper()

1

| 6. designed proceedings()

>
P»— ©.1: store proceedings()

1

| 7.1 schedule sessions()
>

Publisher Actor
| 1: send constraints()

1

|
| ! 2: ask procedings validation()

1.1 select paper()

24 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

Moreover the interaction between the system and the actors are studied and
shows in Fig. 25. From these diagrams, the following cooperative failure have been
identified:

at least one paper is not allocated

not enough paper are accepted for the conference

the chair committee disagrees with the paper allocation
areviewer does not have paper to review

the reviewer disagrees with the paper allocation

Besides, according to Russel and Norvig ’s definition, the environment of the
system is described as

e inaccessible because knowing all about the environment (papers, keywords, ...)
is difficult;
discrete because the number of distinct percepts and actions is limited;
non-deterministic because the actions have multiple unpredictable outcomes;
dynamic because the state of the environment depends upon actions of the system
that is within this environment.

2.3 Analysis Phase (WD3)

The Analysis phase aims at identifying the system structure and justifying the
AMAS adequacy. This phase is composed of four activities enabling to analyse the
domain characteristics, determine the agents and validate an AMAS approach at the
global and local level. The process flow at the level of activities is reported in Fig.
26 and Fig. 27 depicts this phase according to documents, roles and work products
involved.

&3 B B3 B o
@ > A10 Analyse Domain A11 Verify the Global 'A12 Identify Agent 'A13 Verify the Local @
Characteristics Level AMAS Adequacy Level AMAS Adequacy

Fig. 26 The Analysis Phase Flow of Activities

2.3.1 Process Roles

Two roles are involved in the Analysis Phase: the MAS Analyst and AMAS Analyst.

e MAS Analyst: he is responsible of detailing the MAS Environment in Analysis
Domain Characteristics activity. It consists in (1) the identification of what are
the entities which are active and the ones which are not (passive), (2) the identi-
fication of the interactions between the entities. He is also responsible in Identify

ADELFE 2.0

13

25

<<predecessor>> exe <<predecessor>>

AL1 Verify the Global
Level AMAS Adequacy
. u

E o
B Jed
Global AMAS AMAS

Adequacy Synthesis Analyst <epertorm
A primary>>

S11 verify the global

<<OUtPUB> |avel AMAS adequacy

<<input>> i
put>>
O

MAS qualification

O
System
E"""r‘""'_“e"‘ <<input>>
Behavior Characteristics
[¢80
D > O
MAS 51 i i 1 .
M/ A10-51 identify passive System Analysis
qualification and active entities
<<input>> . N
<<perform, J- o
O 24 i i
= primary>> My AL0-52 study interactions
Business : between entities
Model A"a‘ yst
<<perform, primary>>
<<input>>
=5
A12 Identify Agent
. (B XA K] a
Lo N
A12-51 study Agent Extracti
active entities gent Extraction
<eperforn)] . <<output>>
e (& >
. AMAS = A12-53 determine
Analyst o cooperative agents

A12-S2 identify
<<perform, cooperation failures
primary>> interaction between

entities
<<perform, primary>>

&3

A13 Verify the Local
Level AMAS Adequacy
o ¢

0 B
159 =
:MlAS[Local AMAS
nalys Adequacy Synthesis
<<perform, .
primary>> 513 verify the local

level AMAS adequacy ~<<output>>
<<input>>

<<input>>

Fig. 27 The Analysis Phase Described in terms of Activities and Work P roducts

agent of the step which consists in defining autonomy, goal and negotiation abil-
ities of active entities.

e AMAS Analyst: he is responsible of every activity dealing with the specifici-
ties of AMAS principles. They can be found in Verify the global level AMAS
adequacy activity, in Identify agent activity and in Verify the local level AMAS
adequacy activity. The identification of (cooperative) agents needs to determine
the cooperation failures that can occur between entities and then to define the
agents regarding the results of previous steps.

2.3.2 Activity Details

The flow of activities inside this phase is reported in Fig.26 and are detailed in the
following.

2.3.2.1 A10: Analyse Domain Characteristics

The main goal of this activity is to analyse the Business Domain and the System
Environment Description in order to detail the entities of the domain and their inter-
actions. The flow of tasks inside this activity is reported in Fig. 28 and the tasks are
detailed in the following table.

26 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

A10: Analyse Domain Characteristics
Tasks Tasks Descriptions Roles Involved
S1: identify passive| The MAS analyst splits the system into passive| MAS Analyst
and active entities |and active entities.
S2: study inter-|This step shows the interactions between entities. |MAS Analyst
actions between
entities

. - .
> to >
System Environment Behavior MAS qualification Business Model
2o | | J

MAS Analyst l <<mandatory, input>>
o “e =
A10-51 identify passive and active entities A10-S2 study interactions between entities

<<mandatory, output>>

¢
L0
System Analysis

Fig. 28 Flow of Tasks of the Analyse Domain Characteristics Activity

2.3.2.2 Al1: Verify the Global Level AMAS Adequacy

In this activity, the AMAS analyst must verify that an Adaptive Multi-Agent System
(AMAS) approach is needed to realize the system to be built. For example, having a
system which is able to adapt itself is sometimes completely useless if the algorithm
required to solve the task is already known, if the task is not complex or if the system
is closed and nothing unexpected can occur. In this activity, the adequacy at the
global level is studied to answer the question ’is an AMAS required to implement
the system?”. This is done throw several simple questions related the global level.
The flow of this activity is reported in Fig. 29.

o ¢
20 d 0>

o MAS qualification System Analysis

e

AMAS Analyst <<mandatory, input>> <<mandatory, input>>
e —
511 verify the global level AMAS adequacy
L
<<mandatory, output>>

B8

N
Global AMAS Adequacy Synthesis

Fig. 29 Flow of Tasks of the Verify the Global Level AMAS Adequacy Activity

ADELFE 2.0

2.3.2.3 Al2: Identify Agent

27

This activity aims at finding what will be considered as agents in the desired system.
These agents are defined among the previously defined entities. The flow of tasks
inside this activity is reported in Fig. 30 and the tasks are detailed in the following

table.

A12: Identify Agent

Tasks

Tasks Descriptions

Roles Involved

S1: study active enti-
ties

For each previously defined active entity, its auton-
omy, its goal and its negotiation abilities are stud-
ied.

MAS Analyst

S2: identify coopera-
tion failures interac-
tion between entities

During its interactions with other entities, an en-
tity can encounter failures to respect the protocol
or failures in the content of the interaction (misun-
derstanding...). This step extracts this kind of in-
teractions.

AMAS Analyst

S3: determine coop-|The entities pertaining to the previous step are con-| AMAS Analyst
erative agents sidered as agents. In addition, the AMAS system

diagram is drawn.

EN
System Analysis
Eog <<mandatory, input>>
AMAS Analyst .
° Ca Lo Ca ©

A12-51 study active entities

'A12-S2 identify cooperation failures
interaction between entities

A12-S3 determine cooperative agents

<<mandatory, output>>

a
o

Agent Extraction

Fig. 30 Flow of Tasks of the Identify Agent Activity

2.3.2.4 A13: Verify the Local Level AMAS Adequacy

In this activity, the AMAS adequacy is studied at the local level in order to determine
if some agents are needed to be implemented as AMAS i.e. if a certain kind of
decomposition or recursion is required during the building of the system. The flow
of this activity is reported in Fig. 31.

28 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

e g
S0 B>
Agent Global AMAS
[a) Extraction ~ Adequacy Synthesis
il <<mandatory, input>> <<mandatory, input>>
AMAS Analyst vy

La

® >$13 verify the local level AMAS adequacy @

<<mandatory, output>>

2
[E3
Local AMAS Adequacy Synthesis

Fig. 31 Flow of Tasks of the Verify the Local Level AMAS Adequacy Activity

2.3.3 Work Products

The Analysis Phase generates four work products (text document including textual
description and/or diagrams). Their relationships with the MAS meta-model ele-
ments are described in the Fig. 32.

5 B. 8 8 5 B8, 8. 8

AAE Analysis AAE AAE Negaciation Analysis AS_Cooperation Analysis

r E R AutnTnmv Active IEntit\(GDH‘\ Ability Active Entity Failure Agent Negoc\atmn
Global AMAS ‘ il
Adequac:
quacy @
L =N i
=B .z E. 3,
= Active Entities L=
Analysis 3‘L’, Study C i
Active Entity Global AMAS ;23:11::
I g _____ | Adequacy Synthesis g
Analysis
. y Analysis
ent Extraction
Passive Entity Ag Passive Entity

— E - Tj‘), Ana\vns . E g

Entity Interaction Model Analys\s.
System Analysis Active Entity

AMAS Svstem
View g

Analysis
Agent
nalvsl
[
Passive Entity L E'
oy Eoy
Entity Local AMAS
Entity Description Adeguacy Synthesis
Entltv Interaction
Interaction Study T 1

B B B —

Anawsws Analysis Domain Analysis Local AMAS
Analvsls Passive Entity Active Entity Entity Agent Adequacy
Active Entity | | L |

Fig. 32 The Analysis Documents Structure

ADELFE 2.0

2.3.3.1 Work Products Kind

29

Name Description Work Product
Kind
System Analysis A document composed of: 1) a textual description|Composite (Free
of the entities described as active or passive; 2) di-|Text and Be-
agrams depicting the interactions between entities. |havioural)

Global AMAS Ade-
quacy Synthesis

This document stores the answers to the questions
regarding the global level about an implementation
using an AMAS.

Structured Text

Agent Extraction

This document supplements the System Analysis
document with: 1) the definition of the goal, the
study of autonomy and the negotiation abilities for
each active entity; 2) the list of the cooperation
failure interactions between entities or between en-
tity and its environment; 3) the definition of the
cooperative agent and the AMAS system diagram
which represents them.

Composite (Free
Text and Be-
havioural)

Local AMAS Ade-
quacy Synthesis

This document completes the Global AMAS ade-
quacy synthesis with the answers to the questions
regarding the local level about an implementation
using an AMAS.

Structured Text

2.3.3.2 Example: Conference Management Study

From the business concepts model, we define the active and passive entities. In our
case, we define six active entities and the other concepts as passive entities. The
entities system structure is depicted in Fig. 33. Broadly speaking, entities which
are linked to users were considered as active because users may change their mind
which implies a change in the state of the related entity. Moreover, papers and ses-
sions are considered as active because they will need negotiation while finding a
review or a session organization.

<<passive>> <<active>> <<passive>>
Acceptance Author @ Affiliation
<<passive>> J_}/
[I]ieview <<active=> pACEITED
active: <<passive>> Reviewer
Paper >——— Keywords =
<<active>> <<passive>> <<active>>
Program Committee Proceeding k—— Publisher

<<passive>>
Conference

<<active>>
Session

<<passive>>
Chapter

Fig. 33 Entities Structure System Diagram

30 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

The following step is the interactions study between entities shown Fig. 34 and
35. The started interactions and the other one shows the interaction after the paper
notification are represented in Fig. 34.

Paper Affliation

<<active>>
Keywords Reviewer Author

<<passive=> | | <<active>> | | <<active>> |

<<passive>> |

T
| 1:findReviewer()

=3

p| [for each L\eyword])

4 findRelatedReviewer(
|

=
lodp| [for each related reviewer])\

6: getAmhat‘on()
T

|
|
|
|
|
|
|
|
|
|
|

‘ 6.1 gelinfo() N

b

| |]
|
f
|
|
|

i
\
|
\
|
|
)

f
logp |[for each author of the paper] ‘)

I

I

|

f

|

7. fhdAuthorafiiiation() |
f |-

8: getinfo()

9 fi

loop reachse\ectedrewewer})‘

f

|

|

T I
\ [‘
\ [‘
| ! !
kerRevlewerWRTAﬁm ation() } }
| |

|

|

.

10 requestFor#ev\ew()

| |
| |
| |
| |
f | |
10.1: create() <<passive>>

‘ ‘ 7777777 # 7777777 + -

| 10.2: accebt() | |
[\ \ 1]

10.2.1:link() | |
| |
I I
| |
I I
, ,
T T
| |
| |

g
L

L

|
|
.
|
loop [‘for each paper linked] J }
|
|

7
1
| !

Fig. 34 Entities Interactions System Structure (beginning)

Verifying the AMAS adequacy consists in studying some specific features of
AMAS with respect to the target application. The designer is provided with a tool
which helps him to answer some questions. Here after are the 8 questions that are
asked and some answers for our case study.

o Is the global task incompletely specified? Is an algorithm a priori unknown?
YES: the CMS is precisely defined and some algorithms may be found to solve
this kind of problem.

o [f several entities are required to solve the global task, do they need to act in a
certain order? YES: there are dependencies in the interactions needed between
entities.

e [s the solution generally obtained by repetitive tests, are different attempts re-
quired before finding a solution? NO: no need for that.

ADELFE 2.0 31

<<active>> <<active>>
Paper Program Commitiee
I <<create>>

I
| | 1: give characteristics()

<<active>>
Publisher

<<passive>>
Proceeding

<<create>>

<<create>> 2 give characteritics()

<<passive>> | 2.1: characterise)
Conference

1.1 createMessage()] <<passive>>
Chapter
<<create>> I
737Cfaisﬁdeisigi0, L__ <<active>> !
| Session | I
| 1] ! |
4: dlassify() } [} } }
ol | I I ! !
5: proposeNotification() NG | | | I
; -
I o | ‘
U }6 notify() ! | } } }
IR | | |
‘ ‘ I I ! ‘
T
opt l[accepted paper] | T \oukmg?aneSSmn(l Bl 71 se\ect‘on paper() ‘ |
T ' e | ‘ |
| ‘ | ‘ |
P } 7.2: notify belonging() : } } }
" | ‘ L | ‘ |
| ‘ | | |
i ‘ | T I ! !
| 8: start publication() ! 1 ! '*‘ ‘
T f !) |
| | 5.1: ready()
| ! | [~ ‘
| |
} | | 8.1.1: proceeding done() 8111 sondPaper) 81111 add artice)
| ‘ |
| |
| ‘ |
| ‘ | feTTTTTTTTT
| ‘ | |
| ‘ | |
e [1 oo B e ‘
L \ ‘ ‘ | |
| T + ! : : l

Fig. 35 Entities Interactions System Structure (ending)

o Can the system environment evolve? Is it dynamic? YES: it is highly dynamic.
Authors, reviewers and papers may appear or disappear while a solution is cal-
culated.

e [s the system process functionally or physically distributed? Are several phys-
ically distributed entities needed to solve the global task? Or is a conceptual
distribution needed? YES/NO: people is physically distributed but there is no
need for a distributed solving of the problem.

e Does a great number of entities needed? YES: depending on the conference but
potentially, in conferences like AAMAS, there are a great number of entities.

o s the studied system non-linear? RATHER YES: in the nominal case, it can be
rather easy to find a linear decomposition of the problem, but with the openess
described above, the great number of interactions may lead to a complex system.

o [s the system evolutionary or open? Can new entities appear or disappear dy-
namically? YES: it is highly dynamic. Authors, reviewers and papers may appear
or disappear while a solution is calculated.

In the “Identify Agents” activity, the active entities previously defined are stud-
ied. The following table depicts the autonomy, the goal and the negotiation abilities
for each of them.

32

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

Active Entities

Autonomy

Goal

Negotiation Abilities

Paper

Take its own decision

Know its result: accep-
tance or rejection

Talk with other papers to
choose reviewer and find
its position in the accep-
tance

Reviewer

Act according the paper
and users

Review papers

Program Com-
mittee

Act according the users

Validate

pers to insert for the con-
ference management

Publisher Act according the users |Give constraints and pro-
ceedings
Author Act according the users |Deal with a paper
Session Select itself the right pa-|Select paper to be full ~ |Discuss with the others

sessions to select papers

From the interactions between entities which have been previously identified,
three other cooperative failure interactions are identified: (i) a paper does not find a
review; (ii) several papers want rise to the same rank; (iii) sessions select the same
paper. Two kinds of agent are therefore deduced: the paper agent and the session
agent. The AMAS system is therefore represented in Fig 36.

<<Passive Entity>>
Chapter

<<Adaptive Multi-Agent System >>

<<Passive Entity>>
Acceptance

<<Active Entity>>

<<Passive Entity>>
Affiliation

H

Author

<<Active Entity>>
Publisher

<<cooperative agent>>
L -

<<Passive Entity>>
Keywords

<<Passive Entity>>
Review

<<Passive Entity>>
Proceedings

<<Active Entity>>
Reviewer

<<cooperative agent>>
Session

<<Active Entity>>
Program Committee

<<Passive Entity>>
Conference

H

Fig. 36 AMAS System Diagram

2.4 Design Phase (WD4)

The Design Phase aims at providing a detailed architecture of the system. During
this phase, the definition of a module view is defined, the communication acts are
studied and the different behaviours are determined. The process flow at the level

ADELFE 2.0 33

of activities is reported in Fig. 37 and Fig. 38 depicts this phase according to docu-
ments, roles and work products involved.

E5

B3 &g s
fine — > A18 Define

A14 Define A17
Module View\ Nominal Behavior Cooperative Behavio\ Bg
E5 ®
® > o L 'A19 Validate
Design

A15 Study A16 Define Entity
Communication Acts Behavior

Fig. 37 The Design Phase Flow of Activities

o 25 <<predecessor>>
fu <cinput>> L
i . A19 Validate
Architect L{j Design
Designer [&, Organization A17 Define - . AL ¢
<«perform] 514 d’zﬂne Nominal Behavior <<input>> L - o ¢
primaryss 513 G tous 'R <inputss A19-S1 fast Software
- | M prototyping Architecture
<<input>> (293 O Q Ca
' <<perform, J; g
AMAS MAS Architecture L@ A19-52 complete
B primary>>|_,
= Designer [X AMAS design di <<output>>
o La <<output>>, Desi esign diagrams
Local AMAS ¢ A17-51t0S5 define <<input>> esigner
ad <<perform, inal ¢ behavi ccinput>>.
: e?huacv primary>> Nominal agent behavior inou <<perform, primary>>
ynthesis
<<input>>
2 A18 Define
8 0 Cooperative Behavior
usiness g L)
Model Y AN
9 | \ O
e R Cooperative MAS
=l AMAS Architecture
o - Designer Cax
System =5 <
Analysis 5 Stu A18-51t0S5 define | <<output>>
v A15‘Stu‘dy <<perform, cooperative agent
. Communication Acts primary>> €
PN behavior
o <cingut>> / . (2 <<input>>
inpu N . p— -
e Agen.t Lo < O " <<input>> r‘—; """ —— <<predecessor>>
xtraction - il ommunication]
A1 define nuni <cpredecessor> 1 pefine Entity
_ agents - Behavior
interaction [P
I 3 - ;
<<perform,| - pas A15-52 define ,\ e
primary>> Designer entities' <<output>> A [’Jb_ o
interaction esigner & MAS Environment
<<perform, 516 define
<<perform, primary>> primary>> entity behavior <<output>

<<input>>

Fig. 38 The Design Phase Described in terms of Activities and Work Products

2.4.1 Process Roles

Three roles are involved in the Design Phase: the architectural designer, the MAS
designer and the AMAS designer.

e Architectural Designer: he is responsible of module organization during the
Define Module View activity. He defines the detailed architecture of the system
in terms of modules.

34 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

e MAS Designer: he is responsible of communication acts during the Study Com-
munication Acts activity and the definition of the entities behaviour during the
Define Entity Behaviour activity. He defines how the entities and the agents in-
teract together or with their own environment.

e AMAS Designer: he is responsible of nominal behaviour of agents during the
Define Nominal Behaviour activity, cooperative behaviour of agents in the Define
Cooperative Behaviour activity and fast prototyping during the Validate Design
Phase activity. Indeed, from the structure analysis and the communication acts
previously detailed, He defines skills, aptitudes, an interaction language, a world
representation, a criticality and the characteristics of an agent. He fulfils the agent
behaviour by adding a cooperative attitude i.e. giving rules which enable to antic-
ipate or detect and repair the non cooperative situations. For that, skills, aptitudes,
an interaction language, a world representation, a criticality and the characteris-
tics are filled out. Finally, he tests the behaviour of agents ie. the protocols, the
methods and the general behaviour of agents.

2.4.2 Activity Details

The flow of activities inside this phase is reported in Fig.37 and are detailed in the
following.

2.4.2.1 Al4 : Define Module View

This activity shows how the architectural designer maps the key elements of the
software to the modules. Their organisation and dependencies are defined. The fol-
lowing kinds of dependencies can be used: use , allowToUse, include/decompose,
CrossCut, EnvModel). The flow of this activity is reported in Fig. 39 .

¢ a
L0 20
System Analysis Agent Extraction Local AMAS Adi
L 1 |

Architect
Designer Ca
® > $14 define module view @

<<mandatory, output>>
g
=>
Module Organization

¢
< L0d

|
B
lequacy Synthesis Business Model

|
<<mandatory, input>>

Fig. 39 Flow of Tasks of the Define Module View Activity

ADELFE 2.0 35

2.4.2.2 A15: Study Communication Acts

This activity aims at making clear interactions between the entities and/or the agents
previously identified. The flow of tasks inside this activity is reported in Fig. 40 and
the tasks are detailed in the following table.

¢ a
o o
System Agent
Analysis Extraction
<<mandatory, input>> r‘_}

e

MAS Designer A15-51 define agents' interaction
oy

'A15-52 define entities' interaction <<mandatory, output>>

e
O
Communication Acts

Fig. 40 Flow of Tasks of the Study Communication Acts Activity

A15: Study Communication Acts
Tasks Tasks Descriptions Roles Involved
S1: define agents in-| This step consists in defining the way in which an|MAS Designer
teraction agent is going to interact with the others and its
environment.
S2: define entities in- | This step consists in defining the way in which an|MAS Designer
teraction entity is going to interact with others entities.

2.4.2.3 A16: Define Entity Behavior

The aim of this activity is to define the entity behaviour. It can be illustrated by an
inner state related to its current role. This activity is performed by MAS analyst.
The flow of this activity is reported in Fig. 41.

¢
S0
Q Communication Acts
<
MAS Designer \—l«mandatory, input>>
La
S @
516 define entity behavior
<<mandatory, output>>
e
S0
MAS Environment

Fig. 41 Flow of Tasks of the Define Entity Behaviour Activity

36 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

2.4.2.4 A17: Define Nominal Behavior

The purpose of this activity is to define the nominal behaviour. The AMAS designer
has to define skills, aptitudes, an interaction language, a world representation, a
criticality which compose the nominal behaviour. Agents may also have physical
characteristics such as weight, colour... which may be necessarily found during this
activity. The structural diagrams of agent are drawn and the structural rules are de-
scribed. In addition, an agent can be defined by an inner state related to its current
role in the MAS organization. The flow of tasks inside this activity is reported in
Fig. 42 and the tasks are detailed in the following table.

A17: Define Nominal Bhavior

Tasks

Tasks Descriptions

Roles Involved

S1: define its skills

The knowledge about a domain allowing the agent
to execute actions are defined.

AMAS Designer

S2: define its apti-
tudes

The aim of this activity is to determine the capabil-
ities of an agent to reason on its knowledge about
the domain or on its representation of the world.

AMAS Designer

S3: define its interac-
tion language

This step consists in defining the way in which
agents are going to interact. Actually, if agents in-
teract to communicate, information exchanges be-
tween agents are described. Technically, these pro-
tocols are specified through protocol diagrams.

AMAS Designer

S4: define its world
representation

The AMAS designer gives the way to describe the
representations of an agent about others agents, it-
self and its environment.

AMAS Designer

S5: define critical-
ity and confidence of
agent behavior

This step determines the relative difficulty of
agents in its neighbourhood and its internal mea-
sure that provides information on the reliability of
the decision on actions intended.

AMAS Designer

e

)
£ g

Communication Cooperative MAS =

<<mandatory, input>>

(o
AMAS Designer

Acts.

i <
Architecture A17-S1 define skills of agent

2

'A17-52 define aptitudes of agent

Ca

A17-S3 define interaction language of agent
Lo

'A17-54 define world representation of agent

A17-S5 define criticality and confidence of agent behavior

<<mandatory, output>>

e
£

MAS Architecture

Fig. 42 Flow of Tasks of the Define Nominal Behavior Activity

ADELFE 2.0 37

2.4.2.5 A18: Define Cooperative Behavior

This activity is a key step. Indeed, the AMAS designer defines the cooperative be-
haviour by the allocation of cooperation rules. These rules enable an agent to have a
cooperative attitude i.e. anticipate or detect and repair the non cooperative situations.
During this activity, the structural diagram is completed by appropriated skills, rep-
resentations, the attitudes or any other agent characteristic. The flow of tasks inside
this activity is reported in Fig. 43 and the tasks are detailed in the following table.

A18: Define Cooperative Behaviour

Tasks

Tasks Descriptions

Roles Involved

S1: define its skills

The knowledge about a domain allowing the agent
to execute actions are defined.

AMAS Designer

S2: define its apti-
tudes

The aim of this activity is to determine the capabil-
ities of an agent to reason on its knowledge about
the domain or on its representation of the world.

AMAS Designer

S3: define its interac-
tion language

This step consists in defining the way in which
agents are going to interact. Actually, if agents in-
teract to communicate,information exchanges be-
tween agents are described. Technically, these pro-
tocols are specified through protocol diagrams.

AMAS Designer

S4: define its world
representation

The AMAS designer gives the way to describe the
representations of an agent about others agents, it-
self and its environment.

AMAS Designer

S5: define critical-
ity and confidence of
agent behaviour

This step determines the relative difficulty of
agents in its neighbourhood and its internal mea-
sure that provides information on the reliability of

AMAS Designer

the decision on actions intended.

¢
<

L0
Communication MAS
Acts

¥ Lo
Architecture 'A18-51 define skills of agent
<<mandatory, input>> ii,"
'A18-52 define aptitudes of agent
La
o | A18-53 define interaction language of agent >
. Fo

12

Lo
AMAS Designer

—@®
A18-54 define world representation of agent

. <<mandatory, output>>
Ly

A18-55 define criticality and confidence of agent behavior 2
S0
Cooperative MAS Architecture

Fig. 43 Flow of Tasks of the Define Cooperative Behavior Activity

2.4.2.6 A19: Validate Design Phase

During this activity, the AMAS designer may test the behaviour of the agents. This
test can lead to improve the agent’s behaviour if it is not adequate. The flow of tasks

38

N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

inside this activity is reported in Fig. 44 and the tasks are detailed in the following

table.

Lol

AMAS Designer

Cooperative MAS

.
> e e ER
o> =
Architecture MAS Architecture MAS Environment Module Organization
\ \

<<mandatory, input>>

O

° > &
A19-S1 fast prototyping A19-52 complete design diagrams

@

<<mandatory, output>>

3
O
Software Architecture

Fig. 44 Flow of Tasks of the Validate Design Phase Activity

A19: Validate Design Phase

Tasks

Tasks Descriptions

Roles Involved

S1: fast prototyping

During this step, the agents’ behaviour are tested.
The prototype has to point out the possible lacks
of an agent behaviour and of cooperative attitude.

AMAS Designer

S2: complete design
diagrams

The aim of this step is to finalize the module orga-
nization and finish the design phase.

AMAS Designer

2.4.3 Work Products

The Design Phase generates six work products. Their relationships with the MAS
meta-model elements are described in the Fig. 45.

2.4.3.1 Work Products Kind

Name Description Work Product
Kind

Module Organiza-| This document depicts the organization and the de- |Structural

tion pendencies of the key elements of the software.

Communication This document is composed of the specific tex-|Composite (Free and

Acts tual description of the entity interactions and the|Behavioural)

agent interactions and the precise diagrams depict-
ing this.

MAS Environment

This document contains the description of the en-
tities behaviour. It is illustrated with inner state re-
lated to their current role.

Composite (Free and
Behavioural)

ADELFE 2.0 39

MAS Architecture | This document is composed of the agent nominal |Composite (Free and
behaviour description, illustrated with inner state|Structural and Be-
related to their current role and depicted by struc-|havioural)

tural diagram of agent. Skills, aptitudes, an in-
teraction language, a world representation and a
criticality define an cooperative agent behaviour.
Moreover, it contains the physical characteristics
of the agent and its structural rules.

Cooperative ~ MAS|This document contains the elements of a coop-|Composite (Free and
Architecture erative agent behaviour enabling to anticipate or|Structural and Be-
detect and repair the non cooperative situations. A |havioural)
cooperative agent behaviour is composed of skills,
aptitudes, an interaction language, a world repre-
sentation and a criticality.

Software Architec- | This document is composed of the fast prototyping | Composite (Free and
ture of the agent behaviour and the refinement of the|Structural and Be-
Software architecture (entities), Software architec- |havioural)

ture (nominal) and Software architecture (cooper-
ative) document.

Eg BE B 588 98

Analysis Design Entity Agent Design Analysis DE Behavior DSSIEN
Enhtv Er‘mtv Intera‘cllun Interaction Age‘nt Agent Entity
Desngn
Agent ‘ ‘
uﬁware Module cil. A=
Architecture. Organization [L3N |Jd; Ent\tv Behavmr EntlwlnnerStates
Frorowpe Interaction Interaction g
Diagram Description
E [= !'“‘\. Decision Module
Decisi \:‘} MAS Environment g
ecision Pl Communication Standard Aol
Module o =] Acts andard Rule | |
s |- = =]
— = =
i pgent g —_— = Aptitude
ooperative Cooperative) = \-‘.}'
Rule Behavior Cooperative l -, P)
— | Rule View MAS Architecture fre— o | Agent Nominal
Design Model £ Behavior Action
Aptitude Rule View
(L E S B MAS Architecture S
Action L& -
— g ‘T Agent = E
Skill Structural View \}
Q Agent Protocol | Communication
T | \ View Action

=5 B8 B 28 8

Perception Perception Confidence Criticality Characteristics Aptitude Skill Representation Communication Cummumcatlon
i h
— Action Perception

= E =
Madpule Knowledge Module o '\.:(:or mtmm,
odule
| T T ! 1. Module Languaga
Action

Fig. 45 The Design Documents Structure

40 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

2.4.3.2 Example: Conference Management Study

In this section where the phase settles the design of the software architecture of each
agent and entity, we only describe the paper agent behaviour. Actually, its skills, its
aptitudes, its interaction language and its representations is depicted in Fig.46 on the
left part. The right part of Fig.46 represents an inner state related to the current state
of the paper agent. The nominal behaviour of a paper agent starts in a Submitted
state which corresponds to the creation of a paper agent. In this state, the paper
agent is looking for reviews. It is in IsReviewing state when it finds all reviews it
needs. It becomes Reviewed when all its reviews are complete. In order to reach the
following state, Accepted or Rejected, the paper agent self-evaluates the reviews’
results and changes its state. If the paper agent is Accepted, it informs the session
of its state and become IsImproving. Finally, the paper agent is Printed when the
proceedings are published.

Moreover, this cooperative agent can meet some non cooperative situations, for
a paper agent, two situations are detected: (i) a review can be linked to a limited
number of papers, it can happen that several paper agents want the same review ;
(i) when the paper agents have to deal with the acceptance, the paper agents can be
put in concurrence or competition.

<<Active Entity>>

<<cooperative agent>> <<perceptions>> _— Author

getAcceptance() n <<Passive Entity>>
<<sKills>> getReviews) Acceptance

checkReviewAdequacy) getkeywords(n\
evaluateReview()

<<Passive Entity>>

<<communications> >
Keywords

authorsChara

representations> > <<Passive Entity>>

list Selected Review <<action module>> B
list Keywords <<actions> >
<<Passive Entity>>

proceedings SelectReview)

—— Review

acceptance beAddedToProceedings) >
<<aptitude> > dieQ <<Passive Entity>>
isCorrespondTo(Keyword) <<communications>> I Acceptance Submitted
isAccepted <<Cooperative Agent>> _\slmpmy,lng
addReview = Paper
isBetter Accepted
[<<Cooperative Agent> >

Session

Fig. 46 Paper Agent Software Architecture: (left) Structural Diagram and (right) Inner State Re-
lated to its Behaviour

2.5 Implementation Phase (WDS5)

The Implementation Phase aims at providing the wished system. Actually, the as-
pects of the detailed architecture are firstly described using SpeADL, then imple-
mented using the Java programming language by relying on code generated from
the ADL, and finally executed to give the wished system. The process flow at the

ADELFE 2.0 41

level of activities is reported in Fig. 47 and Fig. 48 depicts this phase according to
documents, roles and work products involved.

&5 &5
® > A20 Implementati > A21 @

Framework Agent Behavior

Fig. 47 The Implementation Phase Flow of Activities

a [<<predecessor>> =X

> oS =)
Ul Prototyping A20 Implementation A21 Implement
Framework ¢ <<input>> Agent Behavior
: PN > XXX
<cinputs [T ‘
> Framework 0 a
A20-51 extract Code A21-51 implement <
micro architecture = <<output>> nominal behavior AMAS Code
¢ N ;
2 Ca A20-53 implement ;jf;;’x)’: . <<outplt>>
O A20-52implement - entities > 8 Ca
MAS : o .
L component =N s A21-52implement
Environment A <<perform, ;) ;
<<perform, AMAS primary>> <<input>> Developer cooperative behavior
primary>>"~ Framework r
Developer X <<perform, primary>>
<<input>>
¢ ¢ ¢
O fod Lo
Cooperative MAS MAS Software

Architecture Architecture Architecture

Fig. 48 The Implementation Phase Described in terms of Activities and Work Products

2.5.1 Process Roles

Two roles are involved in the Implementation Phase: the AMAS Framework Devel-
oper, and the AMAS Developer.

e AMAS Framework Developer: he is responsible of the description of the sys-
tem architecture in the SpeAD (Species-based Architecture Description) model
language during the Implement Framework activity and the implementation of
everything that is not an agent. Actually, the AMAS framework developer im-
plement the passive entities, the active entities and all programs required by the
system such as a scheduler.

e AMAS Developer: he is responsible of the agent behaviour implementation dur-
ing the Implement Agent Behaviour activity. He implements the nominal and
cooperative behaviour according to the designed software architecture.

42 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

2.5.2 Activities Details

The flow of activities inside this phase is reported in Fig.47 and the tasks are detailed
in the following table.

2.5.2.1 A20: Implement Framework

During this activity, the mechanisms are software components with provided and
required services that can be composed together to form the architectures of the
system. Entities and agents’ architecture are therefore described in terms of com-
ponents. The architecture is described using the textual architecture description lan-
guage SpeADL (Species-based Architecture Description Language). Then the ar-
chitectural elements which are not a cooperative agent are implemented. The flow
of tasks inside this activity is reported in Fig. 49 and the tasks are detailed in the
following table.

a e ¢ 2 ¢

> > > o Foy
ul Cooperative MAS Software MAS MAS
Prototyping Architecture Architecture Architecture Environment .
i 1 1 L] 1o8
AMAS Framework ¥ <<mandatory, input>> A20-S2 implement component
Developer Lo
@ 12051 extract micro architecture |
Lo
A20-S3 implement entities <<mandatory, output>>
BN
Framework Code
Fig. 49 Flow of Tasks of the Implement Framework Activity
A20: Implement Framework
Tasks Tasks Descriptions Roles Involved
S1: extract micro ar-|The previously defined software architecture is|{AMAS Framework
chitecture translated in SpeAD model language. Developer
S2: implement com-|The AMAS framework developer implements ev-{AMAS Framework
ponent erything that is not related to the agent or entity | Developer
behaviour in the system.
S3: implement enti-| The AMAS framework developer implements the| AMAS Framework
ties active and passive entities behaviour. Developer

2.5.2.2 A21: Implement Agent Behaviour

During this activity, the behaviour of the cooperative agent are implemented. The
flow of tasks inside this activity is reported in Fig. 50 and the tasks are detailed in
the following table.

ADELFE 2.0

43

A21: Implement Agent Behaviour

Tasks

Tasks Descriptions

Roles Involved

S1: implement nom-
inal behaviour

The nominal behaviour of agents is implemented
by working out the agents’ process decision.

AMAS Developer

S2: implement coop-
erative behaviour

The cooperative behaviour of agents are imple-
mented by working out the agents’ process deci-
sion which enables to anticipate or detect and re-
pair the non cooperative situations.

AMAS Developer

2

o
AMAS Developer

O
Cooperative MAS
Architecture Software Architecture MAS Architecture Framework Code

L

¢
S0

12
O

13
O

R

o8
® A21-51 implement nominal behavior

<<mandatory, input>>

Le

e

A21-S2 implement cooperative behavior

—@

<<mandatory, output>>

a
L0
AMAS Code

Fig. 50 Flow of Tasks of the Implement Agent Behaviour Activity

2.5.3 Work Products

The Implementation Phase generates two work products. Their relationships with
the MAS meta-model elements are described in the Fig. 51.

2.5.3.1 Work Products Kind

Name Description Work Product
Kind
Framework Code This document is composed of: 1)a textual de-|Composite (Struc-

scription of the architecture of the system, accord-
ing the SpeADL language; 2) the implementation
of all what is not agent.

tured Text and Free
Text)

AMAS code

This document is composed of the implementation
of the cooperative agent behaviour (nominal be-
haviour and cooperative behaviour).

Composite (Struc-
tured Text and Free
Text)

44 N. Bonjean, W. Mefteh, M.P. Gleizes, C. Maurel and F. Migeon

—E=
14
—— " 1= =51 ==l s
Implementation
Agent Agent Component Java AMAs Component Required Provided Connector Link Composite En
ion Code ion Class mplementation Part Port Port Realization ity

Imp\eantatiDn

\ | l | | | | | | | — g

Entity
Implementation

a A‘ ¢ B
— = | —
e B
=2 = fyg =D Framework
AMAS Code =) Framework Code Architecture Implementation
Implementation Description @
Model [
a Agent
= Implementation
=
Entities —
Implementation Design Agent
| I \ \ \ ‘ I I \ I \ |
Java Component Framework MAS Entity AMAS Component Required Provided Connector [ink Composite
Class Implementation Implementation Environment Implementation Implementation ~ Part Port Port Realization
Implementation | Code | ‘ ll u l | ‘
E— ‘ | Ik —]
171

Fig. 51 The Implementation Documents Structure

2.5.3.2 Example: Conference Management Study

Paper Agent $:| O

Behaviour Handler

incoming: Pull

g]
BO B e

| cyde:Do me: Pl | send: Send[Msg,Ref]

dlEEDu cycid: Do me: Pyl recewg'/Pushsend:Sen [Msg.Ref]

Factory Scheduled Receiver Sender

1 A
1
- ,
scfed: | okl Do
Exetutor :
1

" 7} g] deppsit :

N
[
[

o

Executor Clock e, 1

] o

create:

Fig. 52 Architectural Description of Paper Agent

ADELFE 2.0 45

Fig. 52 is a graphic description of a SpeADL. This architecture defined with
SpeAD is made of components connected together with simple connectors. The
components externally provide ports, for which they have an implementation, and
require ports, that they can use in their implementation. Note that the description of
components made with SpeADL will be then translated to Java.

3 Work Product Dependencies

Fig. 53 describes the dependencies among the different work products produced by
the process. A dashed arrow is used to relate two of them if one is an input document
to the other. Its direction points from the input document to the consumer one.

a @ a
________ 1
D L1 . o e |
Problem Users Consensual | :
! Requirements Set Reguirements Set : [=
' ! BN = W St &> !
' - L |
] I .
¢ e f o <! systemEnvironment | UlPrototyping !
M €-mmmmmmmmo B - System En‘\:ironment Behaviour : ‘
Business Madel Constraints ¥ Struct [I |
I E Set ﬂ‘lc I|JrE L f |
I I | QR 0 _______ | [:7.:‘7777 O kiiiiﬁ\ }
| | L Glossary | . MAS qualification | |
_______________________________ H
D M _____In 1 | |
| | ! [::]
! : ¢ | | é‘ :
e 4 - ! O |
I i 2 B ! Global AMAS |
B | . System Analysis Adequacy Synthesis |
= o
> o i 1
Module : Communication : 4‘ | :
Organization | Acts L T . : |
v ! T o ' g | |
: : ,,,,,,,,,, ,,Jl - -AgentExtraction - --—-- ‘:0_ ———————————————— ! |
________________ A |
| i Local AMAS I
| cTTo Hlmmm e e Adequacy Synthesis |
! | e l I |
e l I I " |
T 3 ¢ o S — ¥
I e = N = R o
Software o g O Framework
Architecture MAS Architecture Cooperative MAS MAS Environment Code
I (s Architecture g 1y
| N . [iy !
| | T [b
b o P! 1| === Vo
Lo Gle ..,} ,,,,,,,,,,, [N i
! | e F—— e ———— [
| bm e Im————————— ——] e 4
| | | |
| —— BB i |
_______________ ‘} ———— e)
AMAS Code

Fig. 53 The Work Products Dependencies

