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Abstract
We lay the foundations of a non-parametric theory of best-arm identification in multi-armed bandits
with a fixed budget T . We consider general, possibly non-parametric, models D for distributions
over the arms; an overarching example is the model D = P[0, 1] of all probability distributions
over [0, 1]. We propose upper bounds on the average log-probability of misidentifying the optimal
arm based on information-theoretic quantities that we name L<

inf( · , ν) and L>
inf( · , ν) and that

correspond to infima over Kullback-Leibler divergences between some distributions in D and a
given distribution ν. This is made possible by a refined analysis of the successive-rejects strategy
of Audibert et al. (2010). We finally provide lower bounds on the same average log-probability,
also in terms of the same new information-theoretic quantities; these lower bounds are larger when
the (natural) assumptions on the considered strategies are stronger. All these new upper and lower
bounds generalize existing bounds based, e.g., on gaps between distributions.
Keywords: Multi-armed bandits, best-arm identification, non-parametric models, Kullback-Leibler
divergences, information-theoretic bounds

1. Introduction and brief literature review

We consider a class D of distributions over R with finite first moments, which we refer to as the
model D. A K–armed bandit problem in D is a K–tuple ν = (ν1, . . . , νK) of distributions in D.
We denote by (µ1, . . . , µK) the K–tuple of their expectations. An agent sequentially interacts with
ν: at each step t > 1, she selects an arm At and receives a reward Yt drawn from the distribution
νAt . This is the only feedback that she obtains.

While regret minimization has been vastly studied (see Lattimore and Szepesvári, 2020), an-
other relevant objective is best-arm identification, that is, identifying the distribution with highest
expectation. In the fixed-confidence setting, this identification is performed under the constraint
that a given confidence level 1 − δ is respected, while minimizing the expected number of pulls of
the arms. This setting is fairly well understood (see Lattimore and Szepesvári, 2020, Chapter 33
for a review). A turning point in this literature was achieved by Garivier and Kaufmann (2016),
who provided matching upper and lower bounds on the expected number of pulls of the arms in the
case of canonical one-parameter exponential families. Since then, improvements have been made
in several directions, including for example non-asymptotic bounds (Degenne et al., 2019) and the
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problem of ε–best-arm identification (Garivier and Kaufmann, 2021); however, no generalization to
non-parametric models has been considered yet, to the best of our knowledge.

Best-arm identification with a fixed budget. The fixed-budget setting is much less understood.
Therein, the total number T of pulls of the arms is fixed. After these T pulls, a strategy must issue a
recommendation IT . Assuming that ν contains a unique optimal distribution ν? of index a?(ν), one
aims at minimizing P

(
IT 6= a?(ν)

)
. We are interested in (upper and lower) bounds that hold for all

problems ν in D, possibly under the restriction that they only contain a unique optimal arm. It may
be straightforwardly seen that the probability of error can decay exponentially fast—for instance,
by uniformly exploring the arms (pulling each of them about T/K times) and recommending the
one with the largest empirical average. This is why the literature focuses on upper and lower bound
functions ` 6 U < 0 of the typical form: for all bandit problems ν inD, with a unique optimal arm,

`(ν) 6 lim inf
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 lim sup

T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 U(ν) < 0 ,

or, put differently, exp
(
`(ν)T

(
1+o(1)

))
6 P

(
IT 6= a?(ν)

)
6 exp

(
U(ν)T

(
1+o(1)

))
.

This problem is generally considered more difficult than the fixed-confidence setting, and even for
parametric models like canonical one-parameter exponential models, no strategy with matching
upper and lower bounds (i.e., no optimal strategy) is known so far. Indeed, even the possibility of
obtaining such bounds is disputed.

Earlier approaches. So far, four main approaches were considered for the problem of best-arm
identification with a fixed budget. First, the early approach by Audibert et al. (2010) relies on
gaps: we define the gap ∆a of arm a as the difference µ? − µa between the largest expectation
µ? in ν and the expectation of the distribution νa. They introduce a successive-rejects strategy
and provide gap-based upper bounds for sub-Gaussian models, based on Hoeffding’s inequality.
They however propose a lower bound only in the case of a Bernoulli model, not for larger, non-
parametric, models. This lower bound was further discussed by Carpentier and Locatelli (2016).
A second series of approaches (see, e.g., Kaufman et al., 2016) focused on Gaussian bandits with
fixed variances, but results do not seem to be easily generalized to other models as they often rely on
specific facts (related, among others, to the symmetry of the Kullback-Leibler divergence). A third
approach, led by Russo (2016, 2020), considered canonical one-parameter exponential families,
but a for a different target probability. Namely, a Bayesian setting is considered and the quality of
a strategy is measured as the posterior probability of identifying the best arm. An optimal non-gap-
based complexity is exhibited, together with optimal strategies matching this complexity. However,
Komiyama (2022) argue that such an approach is specific to the Bayesian case and is not suited to
the frequentist case that we consider. A fourth approach is to focus on the case of K = 2 arms,
see, e.g., Kaufman et al. (2016). The non-parametric bounds obtained therein do not enjoy any
obvious generalization to the case of K > 3 arms. By considering very specific models, Kato et al.
(2022) constructed a strategy that is optimal (only) in the regime where the gap between the 2 arms
is small—yet, this gap-based approach does not, by nature, go in the direction of non-parametric
bounds.

We will provide more details concerning some of these approaches while presenting and dis-
cussing our main results, in Section 2.2; see also Appendix E.
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Content and outline of this article. We focus our attention on general upper and lower bounds,
holding for all possible models D, including non-parametric models, and valid for any number K
of arms. Put differently, we target a high degree of generality. While admittedly not exhibiting
matching upper and lower bounds, we show that the same information-theoretic quantities L<inf and
L>inf are at stake in these upper and lower bounds. They are defined, in Section 2, as infima of
Kullback-Leibler divergences and provide a quantification of the difficulty of the identification in
terms of the geometry of information of the problem. We also provide in this section an overview
of our results, which we carefully compare to existing bounds (restated therein, occasionally with
some improvements). We study in Section 3 the classical successive-rejects strategy and provide
an improved analysis, not relying on gaps through Hoeffding’s lemma. Section 4 exhibits several
possible lower bounds, which are inversely larger to the strength of the assumptions made on the
strategies. These lower bounds generalize known lower bounds in the literature, like the lower
bound for Bernoulli models by Audibert et al. (2010), but hold for arbitrary models. They share
some similar flavor with the lower bounds by Lai and Robbins (1985) and Burnetas and Katehakis
(1996) for the cumulative regret.

2. Overview of the results and more extended literature review

Before being able to actually provide a formal summary of our results, we introduce new quan-
tifications of the difficulty of a bandit problem in terms of geometry of the information. These
quantifications should be reminiscent of the Kinf quantity that appears in the optimal bounds on the
cumulative regret; it was introduced by Honda and Takemura (2015), see also Garivier et al. (2022).
Denoting by ν the distribution of interest, this Kinf is defined as an infimum over divergences of the
form KL(ν, ζ). For our objectives, the arguments in the KL are in reverse order, and we are rather
interested in infima over divergences of the form KL(ζ, ν).

Except for very specific models (e.g., the model Dσ2 of Gaussian distributions with a fixed
variance σ2 > 0), the Kullback-Leibler divergence is not symmetric, i.e., KL(ζ, ν) and KL(ν, ζ)
differ in general. Specific best-arm-identification results were obtained by Kaufman et al. (2016)
for the model Dσ2 , based on the Bretagnolle-Huber inequality; they indicate that the sum of the
inverse squared gaps would be driving both the lower bound and upper bound functions ` and U .
However, a close look at the proof reveals that they heavily rely (among others) on the symmetry of
KL for this model. There is therefore absolutely no hope to provide any generalization beyond the
Gaussian case. Appendix E.2 provides furthers details and discussions on this matter.

2.1. The key new quantities: L<inf and L6inf , as well as L>inf and L>inf

In this article, we only consider models D whose distributions all admit an expectation. We denote
by E(ζ) the expectation of a distribution ζ ∈ D. For a distribution ν ∈ D and a real number x ∈ R,
we then introduce

L<inf(x, ν) = inf
{

KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x
}

and L6inf(x, ν) = inf
{

KL(ζ, ν) : ζ ∈ D s.t. E(ζ) 6 x
}
,

where KL denotes the Kullback-Leibler divergence and with the usual convention that the infimum
of an empty set equals +∞. Symmetrically, by considering rather distributions ζ with expectations
larger than x, we define
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L>inf(x, ν) = inf
{

KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x
}

and L>inf(x, ν) = inf
{

KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x
}
.

We state some general properties on these quantities in Appendix A—among others, that L<inf and
L6inf , as well as L>inf and L>inf , are almost identical for the model P[0, 1]. The same holds for
canonical one-parameter exponential models, as discussed in Appendix C.3.

Lower bounds will be typically expressed with L<inf and L>inf quantities, while upper bounds will
rely on L6inf and L>inf quantities.

2.2. Overview of the results

The paper provides new and more general (possibly non-parametric) bounds based on information-
theoretic quantities, namely the quantities L<inf , L6inf , L>inf and L>inf . In particular, we consider a
version of Chernoff information defined, for ν, ν ′ in D with E(ν ′) < E(ν), as

L(ν ′, ν) = inf
x∈[E(ν′),E(ν)]

{
L>inf(x, ν

′) + L6inf(x, ν)
}
.

Given a bandit problem ν with a unique optimal distribution denoted by ν?, we may rank the arms
a in non-decreasing order of L

(
νa, ν

?
)
, i.e., consider the permutation σ such that

0 = L
(
νσ1 , ν

?) < L
(
νσ2 , ν

?
)
6 . . . 6 L

(
νσK−1 , ν

?
)
6 L

(
νσK , ν

?
)
.

Our first main result (Corollary 3 together with Lemma 4) considers modelsD likeD = P[0, 1], the
set of all probability distributions over [0, 1], orD = Dexp, any canonical one-parameter exponential
family. It studies the successive-rejects strategy, introduced by Audibert et al. (2010), for which
arms are rejected one by one at the end of phases of uniform exploration, and states that this strategy
is such that for all bandit problems ν in D with a unique optimal arm,

lim sup
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 − 1

lnK
min

26k6K

L
(
νσk , ν

?
)

k
, (1)

where lnK ≈ lnK. The key for this result (Lemma 1, of independent interest) is a grid-based
application of the Cramér-Chernoff bound to control P

(
XN 6 Y N

)
, where XN and Y N are aver-

ages of two independent N–samples. This approach can be used to analyze similar algorithms, like
sequential halving (Karnin et al., 2013).

The corresponding lower bounds are stated rather in terms of L<inf and L>inf quantities, but Ap-
pendix A explains why, except in a single pathological case, L(ν ′, ν) could be alternatively defined
with L<inf and L>inf instead of L6inf and L>inf . We actually state several lower bounds in Section 4, that
are larger as the assumptions on the strategies considered are more restrictive; as usual, there is a
trade-off between the strength of a lower bound and its generality. However, all assumptions consid-
ered remain rather mild and are satisfied by successive-rejects-type strategies: e.g., one may restrict
the attention to strategies such that for all bandit problems, the arm associated with the smallest ex-
pectation is pulled less than a fraction 1/K of the time. Our second main result (Theorem 12) gives
the following alma matter lower bound: for all bandit problems ν with no two same expectations,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

26k6K
inf

x∈[µ(k),µ(k−1))

{L>inf

(
x, ν(k)

)
k − 1

+
L<inf

(
x, ν?

)
k

}
, (2)
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where we considered the order statistics in reverse order, µ(1) > µ(2) > µ(3) > · · · > µ(K), and
where ν(a) denotes the distribution with expectation µ(a).

This lower bound does not match the exhibited upper bound, mainly because the infima in (2)
are only taken on restricted ranges [µ(k), µ(k−1)) and not on the entire intervals [µ(k), µ

?] as in (1).
Still, we argue that quantities defined as infima over x of L>inf

(
x, ν(k)

)
+L<inf

(
x, ν?

)
should measure

how difficult a best-arm-identification problem is under a fixed budget. This is the main insight of
this article.

We now compare our general bounds to existing bounds, for sub-Gaussian models and for ex-
ponential models. To do so, we will sometimes consider the following consequence of the lower
bound (2), obtained by picking x = µ(k):

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

26k6K

L<inf

(
µ(k), ν

?
)

k
. (3)

Comparison to the gap-based approaches. Audibert et al. (2010) propose an analysis of the
successive-rejects strategy based on Hoeffding’s inequality, stating that for all bandit problems in
P[0, 1] with a unique optimal arm,

lim sup
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
6 − 1

lnK
min

26k6K

∆2
(k)

k
, (4)

where we recall the definition of the gaps ∆(k) = µ? − µ(k). This bound is a consequence of
(Corollary 3, a slightly more general form of the) bound (1), given Pinsker’s inequality (18):

L
(
ν(k), ν

?
)
> inf

x∈[µ(k),µ
?]

{
2
(
x− µ(k)

)2
+ 2(x− µ?)2

}
=
(
µ? − µ(k)

)2
= ∆2

(k) . (5)

We remark that the bound (4) and the lower bound on L
(
ν(k), ν

?
)

may actually be extended to the
model of σ2–sub-Gaussian distributions, up to dividing the bound (4) by a factor 4σ2. We do not
discuss the UCB-E algorithm of Audibert et al. (2010), as its performance and analysis crucially
depend on a tuning parameter set with some knowledge of the gaps.

Audibert et al. (2010) also propose a carefully constructed lower bound for the model Dp ={
Ber(x) : x ∈ [p, 1−p]

}
of Bernoulli distributions Ber(x) with parameters x in [p, 1−p] for some

p ∈ (0, 1/2). A key inequality in their proof follows from the Kullback-Leibler – χ2-divergence
bound:

∀x, y ∈ [p, 1− p], KL
(
Ber(x),Ber(y)

)
6 (x− y)2

2p(1− p) .

Their construction may actually be generalized to modelsD withCD > 0 such that for all ν, ν ′ inD,
one has KL(ν, ν ′) 6 CD

(
E(ν)− E(ν ′)

)2. This is a property that clearly holds for some exponential
problems: on top of the restricted Bernoulli model discussed above, for whichCDp = 1/

(
2p(1−p)

)
,

we may cite the model Dσ2 of Gaussian distributions with variance σ2, for which CDσ2 = 1/(2σ2).
For models enjoying the existence of such a constant CD, (a straightforward modification of) the
analysis by Audibert et al. (2010) entails that for any ν in D,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> −5CD min

26k6K

∆2
(k)

k
. (6)

As by the very assumption on the model, L<inf

(
µ(k), ν

?
)
6 CD∆2

(k), the lower bound (3) implies
the stated lower bound (6), with an improved constant factor.
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The lower bound (6) and the upper bound (4) differ in particular by a factor of about ≈ lnK.
Carpentier and Locatelli (2016) discuss this gap in the case of a restricted Bernoulli model and
improve the lower bound (6) by a factor of lnK, but not simultaneously for all bandit problems
ν (as we aim for); they obtain the improvement just for one bandit problem ν. Their lower bound
result (formally stated and discussed in Appendix E.1) is therefore of a totally different nature. More
results on how and when given lower bounds with a given complexity measure may, or may not, be
improved were stated by Komiyama et al. (2022).

Discussion of the non-parametric bound for K = 2 arms of Kaufman et al. (2016). It turns
out that the existing literature offered so far a non-parametric bound, in the case of K = 2 arms.
Namely, in a general, possibly non-parametric model D, Kaufman et al. (2016, Theorem 12) stated
a lower bound for all 2–armed bandit problems ν = (ν1, ν2):

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − inf

λ in D :
E(λa?(ν))<E(λw?(ν))

max
{

KL
(
λw?(ν), νw?(ν)

)
, KL

(
λa?(ν), νa?(ν)

)}
,

(7)
where w?(ν) denotes the suboptimal arm in ν and where the infimum is over all alternative bandit
problems (λ1, λ2) in D with inverse order on the expectations compared to ν. We note (see the
proof of Theorem 13) that we may actually rewrite this lower bound in a more readable way, in
terms of L<inf and L>inf quantities, illustrating once again that these quantities are key in measuring
the complexity of best-arm-identification under a fixed budget:

inf
λ in D :

E(λa?(ν))<E(λw?(ν))

max
{

KL
(
λw?(ν), νw?(ν)

)
, KL

(
λa?(ν), νa?(ν)

)}
= inf

x∈[µw?(ν),µ
?]

{
max

{
L>inf

(
x, νw?(ν)

)
, L<inf

(
x, ν?

)}}
. (8)

The proof technique of Kaufman et al. (2016) may be applied in a pairwise fashion to generalize the
above lower bound for 2 arms into a lower bound for K > 2 arms, stated in Theorem 13: for all ν
in D with a unique optimal arm,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

k 6=a?(ν)
inf

x∈[µk,µ?]

{
max

{
L>inf(x, νk), L<inf(x, ν

?)
}}

.

We however do not claim that this is a deep and interesting bound, as it only involves pairwise
comparisons with the best arm. In particular, we lack divisions by the ranks of the arms, as in (2).

Bounds for exponential models. We denote byDexp the model corresponding to a canonical one-
parameter exponential family with expectations defined on an open intervalM (see Appendix C.3
for a reminder on this matter). For such a model, we denote by d the mean-parameterized Kullback-
Leibler divergence. By continuity of d, we have that for all ν in Dexp and for all x ∈M,

∀x 6 E(ν), L<inf(x, ν) = L6inf(x, ν) = d
(
x,E(ν)

)
, (9)

and ∀x > E(ν), L>inf(x, ν) = L>inf(x, ν) = d
(
x,E(ν)

)
. (10)

All bounds above then admit simple reformulations in terms of d. The version L of Chernoff
information we introduced may also be mean-parameterized: for µ′ < µ,

L(µ′, µ) = min
x∈[µ′,µ]

{
d(x, µ′) + d(x, µ)

}
.
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ALGORITHM: SUCCESSIVE-REJECTS STRATEGY

Parameters: K arms, budget T , lengths ℓ1, . . . , ℓK−1 ⩾ 1 with ℓ1 + . . .+ ℓK−1 = T

Initialization: S0 = {1, . . . ,K}
For each regime: r ∈ {1, . . . ,K − 1}:

1. For each arm a ∈ Sr−1

(a) Pull it ⌊ℓr/(K − 1 + r)⌋ times

(b) Compute the empirical average Xr
a of the payoffs obtained in this regime and in

the previous regimes

2. Drop the arm ar with smallest average (ties broken arbitrarily):

Sr = Sr−1 \ {ar} , where ar ∈ argmin
a∈Sr−1

X
r
a

Output: Recommend arm IT , where SK−1 = {IT }

The original definition of the Chernoff information D(µ′, µ) is the value d(y, µ) for y ∈ [µ′, µ]
such that d(y, µ′) = d(y, µ). This is the quantity at stake in (8): given that d( · , µ′) and d( · , µ) are
respectively increasing and decreasing on [µ′, µ],

min
x∈[µ′,µ]

max
{
d(x, µ′), d(x, µ)

}
= D(µ′, µ) .

Therefore, D(µ′, µ) 6 L(µ′, µ) 6 2D(µ′, µ). This justifies that we called L (and therefore L) a
version of Chernoff information.

3. Upper bound: successive-rejects strategy, with an improved analysis

We consider the successive-rejects strategy introduced by Audibert et al. (2010), for K arms and a
budget T . Regime lengths are set beforehand; they are denoted by `1, . . . , `K−1 > 1 and satisfy
`1 + . . . + `K−1 = T . The strategy maintains a list of candidate arms, starting with all arms, i.e.,
S0 = {1, . . . ,K}. At the end of each regime r ∈ {1, . . . ,K − 1}, it drops an arm to get Sr, while
during the regime r, it operates with the K − r + 1 arms in Sr−1.

More precisely, during regime r ∈ {1, . . . ,K − 1}, the strategy draws b`r/(K − r + 1)c times
each arm in Sr−1 (and does not use the few remaining time steps, if there are some). At the end
of each regime r, the strategy computes the empirical averages Xr

a of the payoffs obtained by each
arm a ∈ Sr−1 since the beginning; i.e., Xr

a is an average over

Nr = b`1/Kc+ . . .+ b`r/(K − r + 1)c

i.i.d. realizations of νa. It then drops the arm ar with smallest empirical average (ties broken arbi-
trarily). This description is summarized in the algorithm box.

7
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3.1. General analysis

The key quantities for the general analysis will be the logarithmic moment-generating function φν
of a distribution ν ∈ D, and its Fenchel-Legendre transform φ?ν :

∀λ ∈ R, φν(λ) = ln

∫
R

eλx dν(x) and ∀x ∈ R, φ?ν(x) = sup
λ∈R

{
λx− φν(λ)

}
. (11)

Based on them, we can now define, for all ν, ν ′ ∈ D with E(ν ′) < E(ν),

Φ(ν ′, ν)
def
= inf

x∈[E(ν′),E(ν)]

{
φ?ν′(x) + φ?ν(x)

}
.

The following simple lemma shows that Φ plays a significant role for bounding the probability that
two sample averages are in inverse order compared to the expectations of the underlying distribu-
tions. It supersedes the use of Hoeffding’s inequality in Audibert et al. (2010).

Lemma 1 Fix ν and ν ′ inD, with respective expectations µ = E(ν) > µ′ = E(ν ′). For allN > 1,
let XN and Y N be the averages of N–samples with respective distributions ν and ν ′. Then,

lim sup
N→+∞

1

N
lnP

(
XN 6 Y N

)
6 − inf

x∈[µ′,µ]

{
φ?ν′(x) + φ?ν(x)

} def
= −Φ(ν ′, ν) .

Proof sketch The fact XN 6 Y N entails the existence of x such that XN 6 x 6 Y N . By indepen-
dence, together with two applications of the Cramér-Chernoff bound (recalled in Appendix B.1),

P
(
XN 6 x 6 Y N

)
= P

(
XN 6 x

)
P
(
x 6 Y N

)
6 exp

(
−N φ?ν(x)

)
exp
(
−N φ?ν′(x)

)
.

The technical issue is then to deal with some union over x of the events
{
XN 6 x 6 Y N

}
. We do

so with a sequence of finite grids, with vanishing steps, and use lower-semi-continuity arguments to
obtain an infimum over an interval based on a sequence of finite minima. A complete proof is to be
found in Appendix B.2.

The main performance upper bound is stated below in terms of Φ, that is, in terms of Fenchel-
Legendre transforms of logarithmic moment-generating functions. Section 3.2 will later explain
why and when the latter may be replaced by L6inf and L>inf quantities, leading to a rewriting Φ = L
and to the bound claimed in (1).

Theorem 2 Fix K > 2 and a model D. Consider a sequence of successive-rejects strategies,
indexed by T , such that Nr/T → γr > 0 as T → +∞ for all r ∈ {1, . . . ,K − 1}. Let ν be a
bandit problem in D with a unique optimal arm and, for each r ∈ {1, . . . ,K − 1}, let Ar be a
subset of arms of cardinality r that does not contain a?(ν). Then

lim sup
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 − min

16r6K−1

{
γr min

k∈Ar
Φ
(
νk, ν

?
)}
.

Proof sketch A complete proof may be found in Appendix B.3; it mimics the analysis by Audibert
et al. (2010), the main modification being the substitution of Hoeffding’s inequality by the bound of
Lemma 1. We have IT 6= a?(ν) if and only if a?(ν) is rejected in some regime, i.e.,

{
IT 6= a?(ν)

}
=

K−1⋃
r=1

{
ar = a?(ν)

}
⊆

K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, X

r
a?(ν) 6 X

r
k

}
.

8
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By optional skipping (see Doob, 1953, Chapter III, Theorem 5.2, p. 145) and by the fact that by the
pigeonhole principle, the (random) set Sr−1 necessarily contains one element of the deterministic
set Ar,

P
(
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, X

r
a?(ν) 6 X

r
k

)
6
∑
k∈Ar

P
(
Y
r
a?(ν) 6 Y

r
k

)
,

where, for all a, the Y r
a are the averages of independent Nr–samples distributed according to νa.

The proof is concluded by Lemma 1 and the fact that a sum of exponentially fast decaying quantities
is driven by its largest term.

We conclude this subsection by stating the bound of Theorem 2 for the regime lengths suggested
by Audibert et al. (2010), namely, `1 = T/ lnK and for r ∈ {2, . . . ,K − 1},

`r =
T

(K − r + 2) lnK
, where lnK =

1

2
+

K∑
k=2

1

k
. (12)

We also consider lower bounds f
(
νk, ν

?
)

on the Φ
(
νk, ν

?
)
. We may of course use f = Φ but

sometimes, it is handy to rely on more readable lower bounds. For instance, in the case of the
P[0, 1] model, Hoeffding’s inequality entails that

φ?ν(x) > 2
(
x− E(ν)

)2
, so that Φ

(
νk, ν

?
)
> ∆2

k
def
= f

(
νk, ν

?
)

; (13)

see more details in Appendix B.4. Such bounds hold more generally in models consisting of sub-
Gaussian distributions.

We now order the arms into σ1, . . . , σK based on f , namely, we let σ1 = a?(ν) and

0 = f
(
νσ1 , ν

?
)
< f

(
νσ2 , ν

?
)
6 . . . 6 f

(
νσK−1 , ν

?
)
6 f

(
νσK , ν

?
)
, (14)

and we take Ar = {σK−r+1, . . . , σK}. We obtain immediately the following corollary, for which a
detailed proof may be found, for the sake of completeness, in Appendix B.4.

Corollary 3 Fix K > 2, a model D, and consider a lower bound f on Φ. The sequence of
successive-rejects strategies based on the regime lengths (12) ensures, that for all bandit problems
ν in D with a unique optimal arm,

lim sup
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 − 1

lnK
min

26k6K

f
(
νσk , ν

?
)

k
,

where arms were reordered as in (14).

3.2. On links between Φ and the quantities L<inf , L6inf , L>inf and L>inf

The Fenchel-Legendre transform φ?ν of the logarithmic moment-generating function of ν admits a
classical (see, e.g., Boucheron et al., 2013, Exercice 4.13) dual formulation in terms of infima of
Kullback-Leibler divergences. The following lemma, proved in Appendix C.2, reveals that these
infima correspond to L6inf and L>inf for the model P[0, 1] of distributions supported on [0, 1].

9
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Lemma 4 Consider the model D = P[0, 1]. For all ν ∈ P[0, 1],

∀x 6 E(ν), φ?ν(x) = L6inf(x, ν) and ∀x > E(ν), φ?ν(x) = L>inf(x, ν) .

Based on this lemma, we have the following rewriting, which is useful to reinterpret the quantities
appearing in Theorem 2 and Corollary 3: Φ(ν ′, ν) = L(ν ′, ν) for the model P[0, 1], i.e.,

inf
x∈[E(ν′),E(ν)]

{
φ?ν′(x) + φ?ν(x)

}
= inf

x∈[E(ν′),E(ν)]

{
L>inf(x, ν

′) + L6inf(x, ν)
}
. (15)

For canonical one-parameter exponential models Dexp, a slightly weaker version of Lemma 4,
only holding for x corresponding to expectations in Dexp and provided in Appendix C.3, simi-
larly shows (15), i.e., Φ = L. Conditions on general models for Φ = L to hold are discussed in
Appendix C.4.

4. Lower bounds

In most of this section, we restrict our attention to generic K–armed bandit problems ν, that are
such that µj 6= µk for j 6= k. In particular, the best arm a?(ν) is unique.

Definition of a strategy, and of a (doubly-indexed) sequence of strategies. A strategy (ψ,ϕ) de-
pends on the budget T and the number K of arms; it consists of a sampling scheme ψ = (ψt)16t6T
and a recommendation function ϕ. At each round t ∈ {1, . . . , T}, the strategy picks an armAt, pos-
sibly at random using an auxiliary randomization Ut−1. Given this choice At, the strategy observes
a payoff Yt drawn at random according to νAt , independently from the past. For t > 2, the choice
At is therefore a measurable function At = ψt(Ht) of the history Ht = (U0, Y1, . . . , Yt−1, Ut−1),
while A1 = ψ1(H0), where H0 = U0. At round T , the strategy recommends the arm IT = ϕ(HT ).

For our lower bounds, we will consider sequences of strategies, either only indexed by T > 1
given a value of K > 2, or doubly indexed by T and K. These sequences will also be assumed to
be “reasonable” in the sense below.

Consistent (or exponentially consistent) sequences of strategies. The probability P
(
IT 6= a?(ν)

)
of misidentifying the unique optimal arm may vanish asymptotically (and even vanish exponentially
fast) for all bandit problems—in not too large a model D, as illustrated in Section 3. We will there-
fore only be interested in such sequences of strategies, called (exponentially) consistent. In the
sequel and for extra clarity, we index the probabilities by the ambient bandit problem ν considered.

Definition 5 Fix K > 2. A sequence of strategies indexed by T > 1 is consistent, respectively,
exponentially consistent, on a model D if for all generic problems ν in D,

Pν
(
IT 6= a?(ν)

)
−→

T→+∞
0 , respectively, lim sup

T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
< 0 .

By extension, a doubly-indexed sequence of strategies is (exponentially) consistent if for all K > 2,
the associated sequences of strategies are so.

The fundamental inequality. We denote by Na(T ) =
T∑
t=1

I{At=a}

the number of times arm a was pulled in the T exploration rounds of a given strategy with bud-
get T > 1. The fundamental inequality by Garivier et al. (2019), together with the very definition
of consistency, yields in a straightforward manner our building block for lower bounds. Details of
the derivation are provided in Appendix D.1, for the sake of completeness.

10
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Lemma 6 Fix K > 2 and a model D. Consider a consistent sequence of strategies on D, and two
generic bandit problems ν and λ in D such that a?(λ) 6= a?(ν). Then

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − lim sup

T→+∞

K∑
a=1

Eλ[Na(T )]

T
KL(λa, νa) .

4.1. A lower bound revisiting and extending the one by Audibert et al. (2010)

The focus of this subsection is to establish the lower bound (3), from which we derived the gap-
based lower bound (4) by Audibert et al. (2010). The lower bound (3) is smaller than the lower
bound to be exhibited in the next subsection, but it comes with less restrictive assumptions on the
behaviors of the sequences of strategies considered.

Firstly, we only consider sequences of strategies—actually, sequences of sampling schemes—
that do not pull too often the worst arm, and which we will refer to as being balanced against the
worst arm. Successive-rejects-type strategies sample the worst arm less than other arms in expecta-
tions, and hence, are indeed balanced against the worst arm. To define this constraint formally, we
denote by w?(ν) the index of the unique worst arm of a generic bandit problem ν.

Definition 7 A doubly-indexed sequence of strategies is balanced against the worst arm on a model
D if for all K > 2, for all generic K–armed bandit problems ν in D,

lim sup
T→+∞

1

T
Eν
[
Nw?(ν)(T )

]
6 1

K
.

A second constraint is related to bandit subproblems. We say that ν ′ is a subproblem of a K–
armed bandit problem ν if ν ′ = (νa)a∈A for a subsetA ⊆ {1, . . . ,K} of cardinality greater than or
equal to 2; we denote by ν ′ ⊆ ν this fact. We say in addition that ν ′ and ν feature the same optimal
arm if ν ′a?(ν′) = νa?(ν). It should be easier to identify the best arm in ν ′ than in ν, in the sense
below, and this defines the fact that a strategy cleverly exploits pruning of suboptimal arms. Again,
successive-rejects-type strategies naturally satisfy this constraint.

Definition 8 A doubly-indexed sequence of strategies cleverly exploits pruning of suboptimal arms
on a modelD if for all generic bandit problems ν inD withK > 2 arms, for all subproblems ν ′ ⊆ ν
featuring the same optimal arm,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> lim inf

T→+∞
1

T
lnPν′

(
IT 6= a?(ν ′)

)
.

We use again the order statistics µw?(ν) = µ(K) < µ(K−1) < . . . < µ(1) = µa?(ν).

Theorem 9 Fix a model D. Consider a doubly-indexed sequence of strategies that is consistent,
balanced against the worst arm on D, and that cleverly exploits the pruning of suboptimal arms
on D. For all generic bandit problems ν in D with K > 2 arms,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

26k6K

L<inf

(
µ(k), ν

?
)

k
.

Proof sketch The bound is proved for k = K by considering alternative bandit problems λ differing
from ν only at arm a?(ν), where ν? is replaced by distributions ζ ∈ D with E(ζ) < µ(K). For
λ, the arm a?(ν) is the worst arm, and is therefore pulled less than a fraction 1/K of the time,

11
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asymptotically and on average, as the strategy is balanced against the worst arm. An application of
Lemma 6 concludes the case k = K. The extension to k 6 K−1 is obtained by clever exploitation
of the pruning of suboptimal arms. A complete proof may be found in Appendix D.2.

4.2. A larger lower bound, for a more restrictive class of strategies

In this section, we derive a slightly stronger version of the lower bound (2). This lower bound is
larger than the bound exhibited in the previous subsection but relies on stronger assumptions on
the strategies considered. Namely, we introduce an assumption of monotonicity, which extends
Definition 7 to provide frequency constraints on each arm a ∈ {1, . . . ,K}.

Definition 10 Fix K > 2. A sequence of strategies is monotonous on a model D if for all generic
problems ν in D, for all arms a ∈ {1, . . . ,K},

lim sup
T→+∞

Eν
[
N(a)(T )

]
T

6 1

a
,

where arms are ordered such that µ(1) > µ(2) > · · · > µ(K).

This condition is satisfied as soon as a given arm is not pulled more often, asymptotically
and on average, than better-performing arms (note that Definition 10 is slightly weaker than this).
Successive-rejects-type strategies naturally satisfy this requirement.

We also rely on the following assumption on the modelD, which essentially indicates that there
is “no gap” in D. Once again, the model P[0, 1] and canonical one-parameter exponential models
Dexp all satisfy this mild requirement (see Appendix D.3 for the immediate details).

Definition 11 A model D is normal if for all ν ∈ D, for all x > E(ν),

∀ε > 0, L>inf(x, ν)
def
= inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
= inf

{
KL(ζ, ν) : ζ ∈ D s.t. x+ ε > E(ζ) > x

}
.

Theorem 12 Fix K > 2 and a normal model D. Consider a sequence of strategies which is
consistent and monotonous on D. For all generic bandit problems ν in D,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

26k6K
min

26j6k
inf

x∈[µ(j),µ(j−1))

{L>inf

(
x, ν(k)

)
j − 1

+
L<inf

(
x, ν?

)
j

}
.

Proof sketch A complete proof may be found in Appendix D.4. For triplets (k, j, x) satisfying
the stated requirements, we consider an alternative problem λ differing from the original bandit
problem ν at the best arm (1) and at the k–th best arm (k), for which we pick distributions such that
E
(
λ(1)

)
< x < E

(
λ(k)

)
< µ(j−1). Then arm (1) is at best the j–th best arm of λ, while arm (k) is

exactly the j − 1–th best arm of λ. By monotonicity and Lemma 6, we obtain

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> −

(
KL
(
λ(k), ν(k)

)
j − 1

+
KL
(
λ(1), ν

?
)

j

)
. (16)

We get −L>inf

(
x, ν(k)

)
/(j − 1) − L<inf

(
x, ν?

)
/j as a lower bound by taking (separate) suprema of

the lower bound (16) over E
(
λ(1)

)
< x and x < E

(
λ(k)

)
< µ(j−1), where the < µ(j−1) constraint

disappears thanks to normality of the model.
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4.3. A general lower bound, valid for any strategy

The previous subsections illustrated what may be achieved under restrictions—though natural res-
trictions—on the classes of strategies considered. For the sake of completeness, we also provide
a lower bound relying on no other restriction than consistency; it extends the lower bound (7)
exhibited by Kaufman et al. (2016) for K = 2 arms, and is formulated in terms of L<inf and L>inf . A
proof of the following theorem may be found in Appendix D.5.

Theorem 13 Fix K > 2 and a model D. Consider a consistent sequence of strategies on D. For
all generic bandit problems ν in D,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

k 6=a?(ν)
inf

x∈[µk,µ?]
max

{
L>inf(x, νk),L<inf(x, ν

?)
}
.
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Supplementary material for
“On Best-Arm Identification with a Fixed Budget in

Non-Parametric Multi-Armed Bandits ”

The appendices of this article contain the following elements.

• Appendix A states and proves some basic properties on quantities L<inf , L6inf , L>inf , and L>inf

that were introduced in Section 2.1.

• Appendix B provides the proofs for the first part of the analysis of the successive-rejects
strategy, namely, the general analysis in terms of Φ, to be found in Section 3.1.

• Appendix C provides the proofs for the second part of the analysis of the successive-rejects
strategy, namely, the rewriting of Φ as L that was the key contribution of Section 3.2.

• Appendix D is related to the lower bounds of Section 4, and provides detailed proofs thereof.

• Appendix E contains additional elements on the literature review of Sections 1 and 2; it states
and discusses some important existing lower bounds.
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Appendix A. Properties of the L<inf , L6
inf , L>inf , and L>

inf quantities

We separate the list of properties in two categories: general properties, that hold for all models D,
in Appendix A.1; specific properties for the model D = P[0, 1], in Appendix A.2. It also worth
noting that the L<inf , L6inf , L>inf , and L>inf quantities admit a simple rewriting in the case of canonical
one-parameter exponential modelsDexp, as the mean-parameterized Kullback-Leibler divergence d,
see Appendix C.3. Properties in this case thus follow from classical properties of d.

A.1. General properties

We state some properties for L<inf , that all also hold for L6inf ; the corresponding properties for L>inf

and L>inf are deduced by symmetry.

The function L<inf( · , ν) is non-increasing and satisfies L<inf(x, ν) = 0 for all x > E(ν), as can
be seen by taking ζ = ν. Also, whenever D is convex, the function L<inf is jointly convex over
R×D, as indicated in the lemma below. In particular, x 7→ L<inf(x, ν) is continuous on the interior
of its domain (the set where it takes finite values).

Lemma 14 When D is a convex model, all four functions L<inf , L6inf , L>inf , and L>inf are jointly
convex over R×D.

Proof We provide the proof for L<inf , and it may be adapted in a straightforward manner for the
other functions.

We set two distributions ν and ν ′ of D, two expectation levels µ and µ′ in R, and a weight
λ ∈ (0, 1). We want to prove that

L<inf

(
λµ+ (1− λ)µ′, λν + (1− λ)ν ′

)
6 λL<inf(µ, ν) + (1− λ)L<inf(µ

′, ν ′) . (17)

The desired inequality holds whenever L<inf(µ, ν) = +∞ or L<inf(µ
′, ν ′) = +∞. Otherwise, as-

suming that both L<inf(µ, ν) and L<inf(µ
′, ν ′) are finite, we set δ > 0 (which we will ultimately let

converge to 0) and pick ζ and ζ ′ in D such that E(ζ) < µ and E(ζ) < µ′, as well as

KL(ζ, ν) 6 L<inf(µ, ν) + δ and KL(ζ ′, ν ′) 6 L<inf(µ
′, ν ′) + δ .

Then, by joint convexity of the Kullback-Leibler divergence:

λL<inf(µ, ν) + (1− λ)L<inf(µ
′, ν ′) + δ > λKL(ζ, ν) + (1− λ)KL(ζ ′, ν ′)

> KL
(
λζ + (1− λ)ζ ′, λν + (1− λ)ν ′

)
> L<inf

(
λµ+ (1− λ)µ′, λν + (1− λ)ν ′

)
,

where for the last inequality, we used the definition of L<inf as an infimum and the fact that by
convexity, the distribution λζ+(1−λ)ζ ′ belongs toD, with expectation larger than λµ+(1−λ)µ′.
The desired convexity inequality (17) follows by letting δ → 0.
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A.2. Specific properties for D = P[0, 1]

We now consider only the model P[0, 1] of all distributions over [0, 1].
Since we are considering distributions over [0, 1], the data-processing inequality for Kullback-

Leibler divergences ensures (see, e.g., Garivier et al., 2019, Lemma 1) that for all ζ ∈ P[0, 1],

KL(ζ, ν) > KL
(

Ber
(
E(ζ)

)
, Ber

(
E(ν)

))
> 2
(
E(ζ)− E(ν)

)2
,

where Ber(p) denotes the Bernoulli distribution with parameter p and where we applied Pinsker’s
inequality for Bernoulli distributions. Therefore, taking the infimum over distributions ζ ∈ P[0, 1]
with E(ζ) < x,

∀x 6 E(ν), L<inf(x, ν) > 2
(
E(ν)− x

)2
. (18)

We denote by m(ν) = min
(
Supp(ν)

)
> 0 the minimum of the closed support Supp(ν) of ν;

that is, m(ν) is the largest value such that Supp(ν) ⊆
[
m(ν), 1

]
. We will refer to m(ν) as the

lower end of the support of ν. Though we will not need it immediately, we also define the upper
end of the support of ν as M(ν) = max

(
Supp(ν)

)
6 1; by symmetry, it will be considered when

studying L>inf and L>inf instead of L<inf and L6inf .
The lemma below states that the functions L<inf( · , ν) and L6inf( · , ν) coincide, except maybe

at m(ν). One may wonder what happens at x = m(ν). We denote by ν
{
m(ν)

}
the probability

mass assigned by ν to the point m(ν). It follows from the second part the lemma below that
L<inf

(
m(ν), ν

)
= L6inf

(
m(ν), ν

)
if and only if

{
m(ν)

}
is not an atom of ν.

Lemma 15 For the model D = P[0, 1], we have, on the one hand,

∀µ 6= m(ν), L<inf(µ, ν) = L6inf(µ, ν) , (19)

and on the other hand, at µ = m(ν),

ln
1

ν
{
m(ν)

} = L6inf

(
m(ν), ν

)
6 L<inf

(
m(ν), ν

)
= +∞ . (20)

Proof To prove (19), we first identify the interior of the domain of L<inf .
Distributions ζ such that E(ζ) < m(ν) cannot be absolutely continuous with respect to ν;

otherwise, they would also give a null probability to values strictly smaller than m(ν), which con-
tradicts the assumption E(ζ) < m(ν). Hence KL(ζ, ν) = +∞ for these distributions. It fol-
lows that L<inf(µ, ν) = L6inf(µ, ν) = +∞ for µ < m(ν); we note in passing that we also have
L<inf

(
m(ν), ν

)
= +∞.

For µ > m(ν), we take ε > 0 with m(ν) + ε < µ and have, by definition of the support of a
measure, that

[
m(ν),m(ν)+ε] has a positive ν–measure denoted by κ. The distribution ζ given by ν

conditioned to the interval
[
m(ν),m(ν)+ε] is absolutely continuous with respect to ν, with density

dζ/dν = 1/κ on
[
m(ν),m(ν) + ε

]
, and 0 elsewhere; therefore, KL(ζ, ν) = ln(1/κ) < +∞ and

L<inf(µ, ν) < +∞.
The interior of the domain of µ 7→ L<inf(µ, ν) is therefore

(
m(ν), +∞

)
, and we recall that

L<inf( · , ν) is continuous on this interval. We fix some µ > m(ν). For all ε > 0, by the very
definitions of all quantities as infima of nested sets, we have

L<inf(µ, ν − ε) 6 L6inf(µ, ν) 6 L<inf(µ, ν) .
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Letting ε → 0, we get, by a sandwich argument, that L6inf(µ, ν) = L<inf(µ, ν). This concludes the
proof of (19).

We turn our attention to (20). We already showed above that L<inf

(
m(ν), ν

)
= +∞. Now, to

compute L6inf(µ, ν), we wonder which are the distributions ζ that are absolutely continuous with
respect to ν, and thus, give a null probability to values strictly smaller than m(ν), and are also
such that E(ζ) 6 m(ν): at most one such distribution exists, the Dirac mass at m(ν), denoted by
δm(ν). We then distinguish the cases ν

{
m(ν)

}
> 0 and ν

{
m(ν)

}
= 0 to establish, respectively,

the equalities

L6inf

(
m(ν), ν

)
= KL(δm(ν), ν) = ln

1

ν
{
m(ν)

} and L6inf

(
m(ν), ν

)
= +∞ = ln

1

ν
{
m(ν)

} .
In both cases, the first equality in (20) is proved, which concludes the proof.

We also have the following result, which is the most important and useful one, as it discussed
the quantity that appears in the upper bounds on the average log-probability of misidentification of
the optimal arm; see Corollary 3 together with Lemma 4.

Lemma 16 Let ν, ν ′ ∈ P[0, 1] with µ = E(ν) > E(ν ′) = µ′. Then

inf
x∈[µ′,µ]

L6inf(x, ν) + L>inf(x, ν
′) = inf

x∈[µ′,µ]
L<inf(x, ν) + L>inf(x, ν

′)

if and only if either m(ν) 6= M(ν ′) or ν
{
m(ν)

}
× ν ′

{
M(ν ′)

}
= 0.

Remark 17 In other words, the only case for which the two infima differ is when m(ν) = M(ν ′),
i.e., the upper end of the support of ν ′ equals the lower end of the support of ν, and both ν and ν ′

admit this common value as an atom.

Proof The first lines of the proof of Lemma 15 show that L6inf(x, ν) = L<inf(x, ν) = +∞ for
x < m(ν). We can symmetrically show that L>inf(x, ν

′) = L>inf(x, ν
′) = +∞ for x > M(ν ′).

Therefore, L6inf(x, ν) +L>inf(x, ν
′) and L<inf(x, ν) +L>inf(x, ν

′) are infinite whenever x lies outside
of
[
m(ν),M(ν ′)

]
. This implies that

inf
x∈[µ′,µ]

L6inf(x, ν) + L>inf(x, ν
′) = inf

x∈[µ′,µ]∩[m(ν),M(ν′)]
L6inf(x, ν) + L>inf(x, ν

′)

and inf
x∈[µ′,µ]

L<inf(x, ν) + L>inf(x, ν
′) = inf

x∈[µ′,µ]∩[m(ν),M(ν′)]
L<inf(x, ν) + L>inf(x, ν

′) .

We now split the analysis according to how large the interval I is, where

I = [µ′, µ] ∩
[
m(ν),M(ν ′)

]
=
[
max

{
µ′,m(ν)

}
, min

{
µ,M(ν ′)

}]
.

Case 1: I is empty. In that case, the two infima are over an empty set and both equal +∞.

Case 2: I has a non-empty interior. When a 6= b, the infimum of a convex function over a
closed interval [a, b] equals the infimum over (a, b), whether the function takes finite or infinite
values at a and b. Now, the interior of I = [a, b] equals

(a, b) =
(

max
{
µ′,m(ν)

}
, min

{
µ,M(ν ′)

})
= (µ′, µ) ∩

(
m(ν),M(ν ′)

)
19
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and does not contain neitherm(ν) norM(ν ′). By Lemma 15, the functionsL<inf( · , ν) andL6inf( · , ν)
coincide on R\

{
m(ν)

}
. It may be similarly shown that L>inf( · , ν ′) and L>inf( · , ν ′) coincide on

R\
{
M(ν ′)

}
. In particular, the functions L6inf( · , ν) + L>inf( · , ν ′) and L<inf( · , ν) + L>inf( · , ν ′) co-

incide on the interior of I. Their infima over the interior of I, which, by convexity, are equal to the
infima over I, are therefore equal.

Case 3: I is a singleton. This case arises if and only if m(ν) = M(ν ′), as by definition,
m(ν) 6 µ and M(ν ′) > µ′. We then have I =

{
m(ν)

}
=
{
M(ν ′)

}
, and both infima are equal

to the values of the sums at m(ν) = M(ν ′). By Lemma 15 and by symmetric results for L>inf and
L>inf , on the one hand,

L<inf

(
m(ν), ν

)
= L>inf

(
M(ν ′), ν ′

)
= +∞ ,

and on the other hand,

L6inf

(
m(ν), ν

)
+ L>inf

(
M(ν ′), ν ′

)
= ln

1

ν
{
m(ν)

} + ln
1

ν ′
{
M(ν ′)

} .
We get the desired equality if and only if either ν

{
m(ν)

}
= 0 or ν

{
M(ν ′)

}
= 0.
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Appendix B. General analysis of successive-rejects in terms of Φ

This appendix is devoted to the technical elements omitted in the general analysis of the successive-
rejects strategy presented in Section 3.1.

B.1. The Cramér-Chernoff bound

In this section, we recall, for the sake of completeness, the highly classical Cramér-Chernoff bound.
With the notation introduced in Section 3, it states that, for an N–sample X1, . . . , XN , distributed
according to ν and of average denoted by XN ,

∀x 6 E(ν), P
(
XN 6 x

)
6 exp

(
−N φ?ν(x)

)
, (21)

and ∀x > E(ν), P
(
XN > x

)
6 exp

(
−N φ?ν(x)

)
. (22)

Proof For all λ < 0, by Markov’s inequality first and then by independence,

P
(
XN 6 x

)
= P

(
eλXN > eλx

)
6 e−λx E

[
eλXN

]
= e−λx

(
E
[
eλX1/N

])N
= exp

(
−λx+N φν(λ/N)

)
= exp

(
−N

(
λ′x− φν(λ′)

))
,

where λ′ = λ/N . The bound also holds for λ = λ′ = 0 given that φν(0) = 0. Optimizing over
λ 6 0 (or, equivalently, over λ′ 6 0), we proved so far

P
(
XN 6 x

)
6 exp

(
−N sup

λ60

{
λx− φν(λ)

})
.

Now, by Jensen’s inequality,

∀λ ∈ R, φν(λ) = lnE
[
eλX

]
> λE[X] = λE(ν) ; (23)

therefore, for x 6 E(ν),

∀λ > 0, λx− φν(λ) 6 λ
(
x− E(ν)

)
6 0 .

In particular,

0 = −φν(0) 6 sup
λ60

{
λx− φν(λ)

}
= sup

λ∈R

{
λx− φν(λ)

} def
= φ?ν(x) . (24)

This concludes the proof of (21). The bound (22) follows by symmetry.

We also note, in passing, that Jensen’s inequality entails, for x = E(ν), that

∀λ ∈ R, λE(ν)− φν(λ) 6 λ
(
E(ν)− E(ν)

)
= 0 ,

thus showing that φ?ν
(
E(ν)

)
= 0. The property (24) and its counterpart for x > E(ν) and λ > 0

actually show that φ?ν is non-increasing on
(
−∞, E(ν)

]
and non-decreasing on

[
E(ν), +∞

)
.
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B.2. Proof of Lemma 1

We first restate the lemma, for the convenience of the reader.

Lemma 1 Fix ν and ν ′ in D, with respective expectations µ = E(ν) > µ′ = E(ν ′). For all N > 1,
let XN and Y N be the averages of N–samples with respective distributions ν and ν ′. Then,

lim sup
N→+∞

1

N
lnP

(
XN 6 Y N

)
6 − inf

x∈[µ′,µ]

{
φ?ν′(x) + φ?ν(x)

} def
= −Φ(ν ′, ν) .

Proof The proof consists in two parts. We first show that for any finite grid G = {g2, . . . , gG−1} in
(µ′, µ), to which we add the points g1 = µ′ and gG = µ, we have

lim sup
N→+∞

1

N
lnP

(
XN 6 Y N

)
6 −min

{
φ?ν(µ′), min

26j6G−1

{
φ?ν′(gj−1) + φ?ν(gj)

}
, φ?ν′(µ)

}
. (25)

Indeed, by identifying, when XN and Y N belong to [µ′, µ], in which interval [gj−1, gj ] lies XN ,
we note that

{
XN 6 Y N

}
⊆

{
XN 6 µ′

}
∪
{
Y N > µ

}
∪

G−1⋃
j=2

{
Y N > gj−1 and XN 6 gj

}
.

First, by independence and by the Cramér-Chernoff inequalities (21) and (22),

P
(
Y N > gj−1 andXN 6 gj

)
= P

(
Y N > gj−1

)
P
(
XN 6 gj

)
6 exp

(
−N

(
φ?ν′(gj−1)+φ?ν(gj)

))
.

Second, again by the Cramér-Chernoff inequalities,

P
(
XN 6 µ′

)
6 exp

(
−N φ?ν(µ′)

)
and P

(
Y N > µ

)
6 exp

(
−N φ?ν′(µ)

)
.

By a union bound,

P
(
XN 6 Y N

)
6 exp

(
−N φ?ν(µ′)

)
+ exp

(
−N φ?ν′(µ)

)
+
G−1∑
j=2

exp
(
−N

(
φ?ν′(gj−1) + φ?ν(gj)

))
.

The stated bound (25) follows by identifying the (finitely many) terms with the smallest rate in the
exponent.

In the second part of the proof, we note that the bound (25) holds for any finite grid in (µ′, µ),
and we consider a sequence

G(n) =
{
g

(n)
2 , . . . , g

(n)
Gn−1

}
of such finite grids. In particular,

lim sup
N→+∞

1

N
lnP

(
XN 6 Y N

)
6 −min

{
φ?ν(µ′), max

n>1
Sn, φ

?
ν′(µ)

}
,

where Sn
def
= min

26j6Gn−1

{
φ?ν′
(
g

(n)
j−1

)
+ φ?ν

(
g

(n)
j

)}
.

To obtain the claimed bound, given that (see the end of Appendix B.1)

φ?ν(µ) = 0 = φ?ν′(µ
′) ,
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it suffices to show that
max
n>1

Sn > inf
x∈[µ′,µ]

{
φ?ν′(x) + φ?ν(x)

}
.

To that end, we assume that the steps εn of the grids G(n), which are defined as

εn
def
= max

26j6Gn

∣∣∣g(n)
j − g(n)

j−1

∣∣∣ ,
vanish asymptotically, i.e., εn → 0. For each grid G(n), we denote by x?n ∈ (µ′, µ) the argument of
the minimum in the definition of Sn. As a consequence, for each n > 1,

Sn = φ?ν′(x
?
n − ε?n) + φ?ν(x?n) ,

for some 0 < ε?n 6 εn. The quantity x?n − ε?n denotes the point in the grid that is right before
x?n, and it belongs to [µ′, µ). We note that we also have ε?n → 0. In the compact interval [µ′, µ],
the Bolzano-Weierstrass property ensures the existence of a converging subsequence: there exists
x?∞ ∈ [µ′, µ] and a sequence (nk)k>1 of integers such that

x?nk −→k→+∞
x?∞ , which also entails x?nk − ε

?
nk
−→
k→+∞

x?∞ .

Now, the functions φ?ν , respectively, φ?ν′ , are lower semi-continuous, as the suprema over λ ∈ R of
the continuous functions x 7→ λx − ϕν(λ), respectively, x 7→ λx − ϕν′(λ). Therefore, by these
lower semi-continuities,

max
n>1

Sn > lim inf
k→+∞

φ?ν′(x
?
nk
− ε?nk) + φ?ν(x?nk) > φ?ν′(x

?
∞) + φ?ν(x?∞)

> inf
x∈[µ′,µ]

{
φ?ν′(x) + φ?ν(x)

}
.

This concludes the proof.

B.3. Proof of Theorem 2

The proof mimics the analysis by Audibert et al. (2010), the main modification being the substitu-
tion of Hoeffding’s inequality by the bound of Lemma 1.

Proof We recall that for r ∈ {1, . . . ,K−1}, we denoted byNr = b`1/Kc+ . . .+b`r/(K−r+1)c
the total number of times an arm still considered in regime r, i.e., belonging to Sr−1, was pulled in
regimes 1 to r. For each arm a, we denote by Y r

a the average of a Nr–sample distributed according
to νa. By optional skipping (see Doob, 1953, Chapter III, Theorem 5.2, p. 145, or Chow and
Teicher, 1988, Section 5.3 for a more recent reference), we may assume, with no loss of generality,
that for each r ∈ {1, . . . ,K − 1},

on the event {a ∈ Sr−1}, X
r
a = Y

r
a . (26)

We fix a bandit problem ν with a unique optimal arm a?(ν). The successive-rejects strategy
fails if (and only) if it rejects a?(ν) in ones of the regimes. This corresponds to the event

{
IT 6= a?(ν)

}
=

K−1⋃
r=1

{
ar = a?(ν)

}
⊆

K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, X

r
a?(ν) 6 X

r
k

}
.
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(We have an inclusion because ties are broken arbitrarily.) By optional skipping (26),

K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, X

r
a?(ν) 6 X

r
k

}
=

K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, Y

r
a?(ν) 6 Y

r
k

}
.

Recall that the set Sr−1 is a random set; dealing with it therefore requires some care. On the event
of interest, Sr−1 contains K − r + 1 elements, among which a?(ν). The set Ar is of cardinality r
and does not contain a?(ν). By the pigeonhole principle, Sr−1 thus necessarily contains one arm
in Ar. As a consequence, for each regime r ∈ {1, . . . ,K − 1},{

a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, Y
r
a?(ν) 6 Y

r
k

}
⊆
⋃
k∈Ar

{
Y
r
a?(ν) 6 Y

r
k

}
.

Summarizing the inclusions above, taking unions bounds, and upper bounding the obtained sum in
a crude way, we proved so far

P
(
IT 6= a?(ν)

)
6

K−1∑
r=1

∑
k∈Ar

P
(
Y
r
a?(ν) 6 Y

r
k

)
6 K2 max

16r6K−1
max
k∈Ar

P
(
Y
r
a?(ν) 6 Y

r
k

)
,

or equivalently,

1

T
lnP

(
IT 6= a?(ν)

)
6 2

T
lnK + max

16r6K−1
max
k∈Ar

1

T
lnP

(
Y
r
a?(ν) 6 Y

r
k

)
=

2

T
lnK + max

16r6K−1
max
k∈Ar

Nr

T

1

Nr
lnP

(
Y
r
a?(ν) 6 Y

r
k

)
.

As Nr/T → γr > 0 as T → +∞, we may apply Lemma 1, together with an exchange between the
lim sup and the maximum over a finite number of quantities. We obtain

lim sup
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 max

16r6K−1
max
k∈Ar

{
γr

(
−Φ
(
νk, ν

?
))}

= − min
16r6K−1

{
γr min

k∈Ar
Φ
(
νk, ν

?
)}

.

This concludes the proof.

B.4. Proof of Corollary 3 and of the bound (13) on Φ

In this final subsection, we provide two series of proofs: first, a proof of Corollary 3; and then a
proof of the bound Φ

(
νk, ν

?
)
> ∆2

k stated as (13).

Proof of Corollary 3. To apply Theorem 2, we need only to show that the regime lengths of (12)
are such that Nr/T converges to a positive value, and to identify this limit value γr. As N1 =

24



FIXED BUDGET BEST-ARM IDENTIFICATION IN NON-PARAMETRIC MULTI-ARMED BANDITS

b`1/Kc, where `1 = T/ lnK, we immediately have N1/T → γ1 = 1/
(
K lnK

)
> 0. For

r ∈ {2, . . . ,K − 1},

Nr

T
=

r∑
p=1

1

T

⌊
`p
K

⌋
=

1

T

(⌊
T

K lnK

⌋
+

r∑
p=2

⌊
T

(K − p+ 1)(K − p+ 2) lnK

⌋)

−→
T→+∞

γr
def
=

1

lnK

(
1

K
+

r∑
p=2

1

K − p+ 1
− 1

K − p+ 2

)
=

1

(K − r + 1) lnK
.

The bound of Theorem 2 reads:

lim sup
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 − 1

lnK
min

16r6K−1

{
1

K − r + 1
min
k∈Ar

Φ
(
νk, ν

?
)}

.

It implies, in terms of lower bounds f(νk, ν
?) 6 Φ

(
νk, ν

?
)
,

lim sup
T→+∞

1

T
lnP

(
IT 6= a?(ν)

)
6 − 1

lnK
min

16r6K−1

{
1

K − r + 1
min
k∈Ar

f
(
νk, ν

?
)}

. (27)

The permutation σ in (14) and the sets Ar = {σK−r+1, . . . , σK} were exactly picked, for each
r ∈ {1, . . . ,K − 1}, to minimize

min
k∈Br

f
(
νk, ν

?
)

over sets Br abiding by the indicated constraints: being of cardinal r and not containing the optimal
arm a?(ν) = σ1. We get

min
k∈Ar

f
(
νk, ν

?
)

= min
K−r+16k6K

f
(
νσk , ν

?
)

= f
(
νσK−r+1 , ν

?
)
,

which, together with (27), yields the stated bound, up to replacingK−r+1 with r ∈ {1, . . . ,K−1}
by k ∈ {2, . . . ,K}:

− 1

lnK
min

16r6K−1

{
1

K − r + 1
f
(
νσK−r+1 , ν

?
)}

= − 1

lnK
min

26k6K

{
1

k
f
(
νσk , ν

?
)}

.

We now move to the proof of the bound (13) on Φ, when the model is D = P[0, 1]. We restate
it here for the convenience of the reader:

φ?ν(x) > 2
(
x− E(ν)

)2
, so that Φ

(
νk, ν

?
)
> ∆2

k
def
= f

(
νk, ν

?
)
.

For the ease of exposition, the path followed in Section 2 to show that Φ
(
νk, ν

?
)
> ∆2

k was to
first note that Φ = L when D = P[0, 1] (see Lemma 4) and then use Pinsker’s inequality (5). We
provide here a slightly more direct but equivalent approach, based on Hoeffding’s inequality.

Proof of the bound (13) on Φ. When ν ∈ P[0, 1], Hoeffding’s inequality exactly states that

∀λ ∈ R, φν(λ) 6 λE(ν) +
λ2

8
,

so that ∀x ∈ R, φ?ν(x) > sup
λ∈R

{
λ
(
x− E(ν)

)
− λ2

8

}
= 2
(
x− E(ν)

)2
.
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This corresponds to the first part of (13).
For its second part, we consider a pair ν, ν ′ of distributions inP[0, 1], we set any x ∈ [E(ν ′),E(ν)],

and we apply twice the bound of the first part to get

φ?ν′(x) + φ?ν(x) > 2
(
x− E(ν ′)

)2
+ 2
(
x− E(ν)

)2
.

From the definition of Φ, it follows that

Φ(ν ′, ν) > inf
x∈[E(ν′),E(ν)]

{
2
(
x− E(ν ′)

)2
+ 2
(
x− E(ν)

)2}
=
(
E(ν ′)− E(ν)

)2
.

This corresponds to the second part of (13).
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Appendix C. Rewriting of φ?ν as some L6
inf or L>

inf , i.e., of Φ as L
We use the notation of Sections 2.1 and 3 and discuss conditions on models guaranteeing that
Φ = L, i.e., that (15) holds. We do so for D = P[0, 1] in Section C.2 and for canonical one-
parameter exponential families in Section C.3; based on these two examples, we provide a set of
conditions for general models, in Section C.4. A building block of these results is that for all models
D, the functionsL6inf( · , ν) andL>inf( · , ν) dominate φ?ν defined in (11); we prove this in Section C.1.

This rewriting of L6inf( · , ν) or L>inf( · , ν) as φ?ν claimed, e.g., by Lemma 4, can be seen as a
counterpart to a similar rewriting of the Kinf as the supremum of a function of λ ∈ [0, 1]. More
precisely, for ν ∈ P[0, 1] and x ∈ [0, 1],

Kinf(ν, x) = inf
{

KL(ν, ζ) : ζ ∈ P[0, 1] s.t. E(ζ) < x
}
,

and Honda and Takemura (2015, Theorem 2)—see also Garivier et al., 2022, Lemma 18—show that

Kinf(ν, x) = sup
06λ61

E

[
ln

(
1− λY − x

1− x

)]
,

where Y is a random variable distributed according to ν. In both cases, for L6inf( · , ν) or L>inf( · , ν),
and for Kinf , being able to rewrite the infimum of a set of Kullback-Leibler divergences as a
supremum is not unexpected, as a Kullback-Leibler divergence can be formulated as a supremum,
see (28), and exchanges between the infimum and the supremum may be justified (e.g., through
Sion’s lemma, when applicable).

C.1. L6inf( · , ν) and L>inf( · , ν) dominate φ?ν
This domination is a consequence of a variational formula for the Kullback-Leibler divergence (28).

Lemma 18 For all models D, for all ν ∈ D,

∀x 6 E(ν), φ?ν(x) 6 L6inf(x, ν) and ∀x > E(ν), φ?ν(x) 6 L>inf(x, ν) .

In the next sections we will obtain the converse inequalities for the specific models mentioned
above. The proofs are immediate adaptations of a rather standard result, stated, among others, but in
a slightly different form (and for the model D of all real-valued distributions with a first moment),
by Boucheron et al. (2013, Exercise 4.13).

Proof We rely on a key variational formula for the Kullback-Leibler divergence, see Boucheron
et al. (2013, Chapter 4): for all distributions ν, ν ′ over R,

KL(ν ′, ν) = sup
{
Eν′ [Y ]− lnEν

[
eY
]

: r.v. Y ∈ L1(ν ′) s.t. Eν
[
eY
]
< +∞

}
,

= sup
{
Eν′ [Y ]− lnEν

[
eY
]

: r.v. Y ∈ L1(ν ′)
}
, (28)

where Eν and Eν′ indicate that expectations are relative to ν and ν ′, respectively. In particular, when
ν and ν ′ lie in D, those two distributions admit a finite first moment, hence all random variables
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Y = λ idR are ν ′–integrable, where idR denotes the identity function on R and where λ ∈ R. They
satisfy Eν′ [Y ] = λE(ν ′). A consequence of (28) is therefore

KL(ν ′, ν) > sup
λ∈R

{
λE(ν ′)− lnEν

[
eλidR

]}
= φ?ν

(
E(ν ′)

)
. (29)

Using the variations of φ?ν indicated at the end of Appendix B.1, we see that

φ?ν
(
E(ν ′)

)
> φ?ν(x) when E(ν ′) 6 x 6 E(ν) or E(ν ′) > x > E(ν) .

Therefore, by taking the infimum in (29) over ν ′ ∈ D either with E(ν ′) 6 x or E(ν ′) > x, we
proved the claimed inequalities.

C.2. The case of P[0, 1]

In this section, we focus on the model P[0, 1] and prove that the inequalities of Lemma 18 are in
fact equalities, as claimed by Lemma 4.

Lemma 4 Consider the model D = P[0, 1]. For all ν ∈ P[0, 1],

∀x 6 E(ν), φ?ν(x) = L6inf(x, ν) and ∀x > E(ν), φ?ν(x) = L>inf(x, ν) .

The lemma holds for all x ∈ R, that is, even outside of the [0, 1] interval, though the proof
reveals that when x is smaller than the lower end m(ν) of the support of ν, we actually have
φ?ν(x) = L6inf(x, ν) = +∞. The counterpart statement φ?ν(x) = L>inf(x, ν) = +∞ holds for x
larger than the upper end M(ν) of the support of ν. The pieces of notation m(ν) and M(ν) were
formally defined in Appendix A.2.

Proof Note first that by Lemma 18, it suffices to prove that

∀x 6 E(ν), φ?ν(x) > L6inf(x, ν) and ∀x > E(ν), φ?ν(x) > L>inf(x, ν) .

We only deal with the first inequality, namely L6inf(x, ν) 6 φ?ν(x) for x 6 E(ν), and obtain the
other one by symmetry.

In the case x = E(ν), we have φ?ν
(
E(ν)

)
= 0, as stated at the end of Section B.1, and

L6inf

(
E(ν), ν

)
= 0 as can be seen by taking ζ = ν in the defining infimum. We therefore only

consider x < E(ν) in the sequel. We will rely on the standard fact that, by Hölder’s inequality, the
logarithmic moment-generating function

φν : λ ∈ R 7−→ lnEν
[
eλid[0,1]

]
,

is convex, where id[0,1] denotes the identity function on [0, 1]. Also, by two applications of a stan-
dard theorem of differentiation under the integral, given that ν is supported by [0, 1], we have that
φν is continuously differentiable over R, with derivative

φ′ν : λ ∈ R 7−→
Eν
[
id[0,1] eλid[0,1]

]
Eν
[
eλid[0,1]

] .
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By convexity of φν , this derivative is non-decreasing. Therefore, the limit of φ′ν at −∞ exists; we
denote it by ` and have that a priori ` ∈ {−∞} ∪ R. We now prove that actually,

lim
λ→−∞

φ′ν(λ)
def
= ` = m(ν) . (30)

On the one hand, by definition ofm(ν), we have id[0,1] > m(ν) ν-a.s., which entails φ′ν(λ) > m(ν)
for all λ ∈ R, and hence, ` > m(ν). On the other hand, as φ′ν is non-decreasing, it is always larger
than its limit ` at −∞:

∀λ ∈ R, φ′ν(λ) > ` , thus, Eν
[(

id[0,1] − `
)

eλid[0,1]

]
> 0 , (31)

or Eν
[(

id[0,1] − `
)

eλ(id[0,1]−`)
]
> 0 . (32)

The last inequality and limit arguments as λ → −∞ impose that id[0,1] − ` > 0 ν-a.s., which in
turn entails that ` 6 m(ν). This concludes the proof of (30).

The various properties exhibited above for φν , including the fact that the derivative φ′ν takes
values in

[
m(ν),+∞

)
, entail that the function

Λ : λ ∈ R 7−→ λx− φν(λ)

is concave, continuously differentiable, with a non-increasing derivative Λ′ taking values in the
interval

(
−∞, x−m(ν)

]
and with limit x−m(ν) at −∞.

We split the analysis of the case x < E(ν) into three sub-cases, depending on the respective
positions of x and m(ν), and recall that we want to show that L6inf(x, ν) 6 φ?ν(x).

Case 1: x > m(ν). By Jensen’s inequality (23) and given that we consider x < E(ν), the
limit of Λ at +∞ equals −∞. The limit of Λ at −∞ also equals −∞, as the derivative Λ′ has
limit x −m(ν) > 0 at −∞. By concavity of Λ and the fact that Λ′ is continuous, this implies the
existence of some λ? ∈ R such that

Λ′(λ?) = x− φ′ν(λ?) = 0 and φ?ν(x) = sup
λ∈R

{
Λ(λ)

}
= Λ(λ?) .

Denoting by ζλ? the distribution absolutely continuous with respect to ν with density

dζλ?

dν
=

eλ
?id[0,1]

Eν
[
eλ
?id[0,1]

] = eλ
?id[0,1]−φν(λ?) ,

we have Eζλ?
[
id[0,1]

]
= E

(
ζλ?
)

= φ′ν(λ?) = x. Therefore, by definition of L6inf(x, ν) and of the
Kullback-Leibler divergence,

L6inf(x, ν) 6 KL
(
ζλ? , ν

)
= Eζλ?

[
ln

dζλ?

dν

]
= λ? Eζλ?

[
id[0,1]

]
− φν(λ?) = Λ(λ?) = φ?ν(x) .

Case 2: x = m(ν). In that case, Λ′ → 0 at −∞ and Λ′ is non-increasing, thus Λ′ 6 0 on R
and Λ is non-increasing on R. Thus,

φ?ν
(
m(ν)

)
= sup

λ∈R

{
Λ(λ)

}
= lim

λ→−∞
Λ(λ) = lim

λ→−∞
− lnEν

[
eλ(id[0,1]−m(ν))

]
.
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By monotone convergence based on id[0,1] −m(ν) > 0 ν-a.s.,

lim
λ→−∞

− lnEν
[
eλ(id[0,1]−m(ν))

]
= − ln ν

{
m(ν)

}
,

whether ν
{
m(ν)

}
is positive or null. Moreover, the very end of the proof of Lemma 15 shows that

L6inf

(
m(ν), ν

)
= − ln ν

{
m(ν)

}
.

We therefore have L6inf(x, ν) = φ?ν(x) in this case.
Case 3: x < m(ν). In that case, as Λ′ → x−m(ν) < 0 at −∞, we get that Λ→ +∞ at −∞

and φ?ν(x) = +∞. No distribution ζ ∈ P[0, 1] with E(ζ) 6 x, if some exists, can be absolutely
continuous with respect to ν, as x < m(ν) imposes that ζ puts some probability mass to the left of
the support of ν. Therefore, KL(ζ, ν) = +∞. All in all, L6inf(x, ν) appears as the infimum of either
an empty set or of +∞ values, so that L6inf(x, ν) = +∞. In this case as well, L6inf(x, ν) = φ?ν(x),
both being equal to +∞.

C.3. The case of canonical one-parameter exponential models Dexp

In this section, we consider a model Dexp of distributions given by a canonical one-parameter ex-
ponential family and will prove that the target equality (15) is satisfied by Dexp. Before we do so,
let us recall briefly some definitions and properties of exponential families; more detail (including
proofs of the stated properties) may be found in Lehmann and Casella (1998).

Canonical one-parameter exponential families. We fix a reference real measure ρ and consider
the set, called the natural parameter space,

Θ =

{
θ ∈ R :

∫
R

exp(θ y) dρ(y) < +∞
}
.

We assume that Θ is an open interval (the model is said to be regular) and we consider the model
Dexp = {νθ : θ ∈ Θ}, where, for θ ∈ Θ, the distribution νθ is absolutely continuous with respect to
ρ, with density

dνθ
dρ

= exp
(
θ idR − b(θ)

)
, (33)

for a twice differentiable function b : Θ→ R. Due to density constraints, we get, for all θ ∈ Θ,∫
R

exp
(
θy − b(θ)

)
dρ(y)︸ ︷︷ ︸

=dνθ(y)

= Eνθ [1] = 1 or, equivalently, b(θ) = ln

∫
R
eθy dρ(y) . (34)

It can be seen that b is strictly convex and that E(νθ) = b′(θ) for all θ ∈ Θ. Thus, b′ is a one-to-one
mapping between Θ and the set M of the expectations of the distributions of Dexp; the set M is
an open interval of R, by continuity of b′, whose bounds are denoted by µ− and µ+. In particular,
a distribution of Dexp is characterised by its mean. We can also parameterize the Kullback-Leibler
divergence function by the expectations: we set, for all θ1, θ2 ∈ Θ,

d
(
E(νθ1),E(νθ2)

) def
= KL(νθ1 , νθ2) .
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This defines a divergence d which is strictly convex and differentiable on the open setM×M. In
particular, d is continuous, is such that d(µ, µ′) = 0 if and only if µ = µ′, and, for all µ ∈M, both
d(µ, · ) and d( · , µ) are decreasing on (µ−, µ], and increasing on [µ, µ+).

In the following, we extend d to R× R by +∞ values outside ofM×M.

Links between L<inf , L6inf , L>inf , L>inf and d. A direct application of the continuity and mono-
tonicity properties of d is that all functions L<inf , L6inf , L>inf , L>inf easily rewrite as d, as stated in
equalities (9) and (10). For instance, for ν ∈ Dexp and x 6 E(ν), we have, when x ∈M:

L<inf(x, ν) = inf
µ<x

{
d(µ, ν)

}
= lim

µ→x
µ<x

d(µ, ν) = d(x, ν) ;

and when x /∈M, by convention, L<inf(x, ν) = +∞ = d(x, ν).
We are now able to prove that all canonical one-parameter exponential models satisfy Equa-

tion (15), which rewrites as follows, thanks to (9) and (10): for all ν, ν ′ ∈ Dexp with E(ν ′) < E(ν),

inf
x∈[E(ν′),E(ν)]

{
φ?ν′(x) + φ?ν(x)

}
= inf

x∈[E(ν′),E(ν)]

{
d
(
x,E(ν ′)

)
+ d
(
x,E(ν)

)}
. (35)

To obtain this result, we will not prove an exact counterpart of Lemma 4: we will rather only focus
on points x belonging to M, not to all x ∈ R; see (36) below. In particular, we avoid the cases
x ∈ {µ−, µ+}, the boundary points of M, at which the equality of d

(
· ,E(ν)

)
and φ?ν does not

seem to hold in general.

Proof of (35). It suffices to show that, for all ν ∈ Dexp and x ∈M,

φ?ν(x)
def
= sup

λ∈R

{
λx− φν(λ)

}
= d
(
x,E(ν)

)
. (36)

Now, by Lemma 18, we only need to show that φ?ν(x) > d
(
x,E(ν)

)
, and to prove this inequality,

we will justify the existence of λ? ∈ R such that

d
(
x,E(ν)

)
= λ?x− φν(λ?) . (37)

Let θ1 ∈ Θ be such that ν = νθ1 and θ2 = (b′)−1(x) ∈ Θ be such that E(νθ2) = x. We
will prove (37) with λ? def

= θ2 − θ1. Using the model density (33), we note that νθ2 is absolutely
continuous with respect to νθ1 and compute, by definition of the Kullback-Leibler divergence,

d
(
x,E(ν)

)
= KL(νθ2 , νθ1) = Eνθ2

[
ln

dνθ2
dνθ1

]
= Eνθ2

[
(θ2 − θ1)idR −

(
b(θ2)− b(θ1)

)]
= (θ2 − θ1)E(νθ2)−

(
b(θ2)− b(θ1)

)
= λ?x−

(
b(θ2)− b(θ1)

)
. (38)

To obtain (37), it only remains to show that

b(θ2)− b(θ1) = φν(λ?) . (39)

Using (34) at θ2 and again the density (33) at θ1, we obtain

b(θ2) = ln

∫
R
eθ2y dρ(y) = ln

∫
R
e(θ2−θ1)y eθ1y−b(θ1) dρ(y)︸ ︷︷ ︸

=dνθ1 (y)=dν(y)

+b(θ1)

= ln

∫
R
eλ

?y dν(y) + b(θ1) = φν(λ?) + b(θ1) , (40)

which gives (39) and concludes the proof of (37).
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Remark 19 A more direct approach bypassing Lemma 18 can be followed withDexp models, along
the following lines. The result (40) can be generalized into

∀θ ∈ Θ, φν(θ − θ1) = b(θ)− b(θ1) .

As b is differentiable on Θ, the function φν is also differentiable; at λ? = θ2 − θ1, we have

φ′ν(λ?) = φ′ν(θ2 − θ1) = b′(θ2) = x .

Thus, the derivative of the strictly concave function

Λ : λ ∈ R 7−→ λx− φν(λ)

vanishes at λ?, which is therefore the argument of its maximum: φ?ν(x) = Λ(λ?). The latter equality,
together with the closed-form calculation (38), shows (36).

C.4. Condition for general models

In this section, we extend the equality (15) to more general models; we did so by analyzing which
conditions were actually required in the proof of Lemma 4. We recall that the pieces of notation
m(ν) and M(ν) for the lower and upper ends of the support of a distribution ν were introduced in
Appendix A.2 and lie in R ∪ {−∞} and R ∪ {+∞} respectively in all generality. We also remind
the reader that all considered models contain distributions with finite first moments.

Lemma 20 Assume that a model D is such that for all distributions ν ∈ D and all λ ∈ R, on the
one hand, the quantity φν(λ) is well-defined and finite, and, on the other hand, the distribution νλ
with density

dνλ
dν

=
eλidR

Eν
[
eλidR

] with respect to ν

belongs to D. Assume also that δx, the Dirac mass at x, belongs to D whenever there exists ν ∈ D
with x ∈

{
m(ν),M(ν)

}
and ν{x} > 0.

Then, for all ν ∈ D,

∀x 6 E(ν), φ?ν(x) = L6inf(x, ν) and ∀x > E(ν), φ?ν(x) = L>inf(x, ν) .

Proof By Lemma 18, we only need to prove that

∀x 6 E(ν), φ?ν(x) > L6inf(x, ν) and ∀x > E(ν), φ?ν(x) > L>inf(x, ν) .

We will follow the proof of Lemma 4 for the model P[0, 1] (see Appendix C.2), and show that the
same proof applies to D, up to a few changes in the justifications. In particular, we only treat the
first case, showing that

∀x 6 E(ν), φ?ν(x) > L6inf(x, ν) , (41)

and obtain the other by symmetry. For x = E(ν), we show, as in the P[0, 1] case, that

φ?ν
(
E(ν)

)
= 0 = L6inf

(
E(ν), ν

)
.
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Before proving (41) for x < E(ν), we show that φν satisfies the same required properties than in
the P[0, 1] case. As φν takes finite values on R, the moment-generating function of ν is a power
series with infinite radius of convergence. In particular, φν is differentiable over R and, as Hölder’s
inequality still entails that φν is convex, the derivative φ′ν is non-decreasing. We now prove that the
limit of the latter at−∞ (which we recall exists and belongs to {−∞}∪R by monotonicity) equals
m(ν):

lim
λ→−∞

φ′ν(λ)
def
= ` = m(ν) . (42)

If m(ν) ∈ R, the same proof as in the P[0, 1] case applies. Otherwise, m(ν) = −∞ and we prove
that ` cannot be finite. Indeed, if ` ∈ R, then using that φ′ν is always larger than its limit ` by non-
decreasing, and following the same analysis as in (31)–(32), we obtain idR − ` > 0 ν-a.s., which
in turn entails that ` 6 m(ν) and contradicts the fact that m(ν) = −∞. This concludes the proof
of (42).

Finally, we prove that

φ′ν : λ ∈ R 7−→ Eν
[
idR eλidR

]
Eν
[
eλidR

] ,

by applying a standard theorem of differentiation under the integral. To obtain the domination on a
subset (λ−, λ+) of R, we write that

∀λ ∈ (λ−, λ+),
∣∣idR eλidR

∣∣ 6 ∣∣idR
∣∣ (eλ−idR + eλ+idR

)
def
= h

and get that h is ν–integrable whenever distributions νλ− and νλ+ admit a finite first moment, which
holds by assumption as those distributions belong to D.

We now get all necessary properties to follow the proof of Lemma 4. Similarly to this proof, we
split the analysis of the case x < E(ν) into three sub-cases, depending on the respective positions
of x and m(ν).

Case 1: x > m(ν). The properties of φν ensure, as in the corresponding P[0, 1] case, the
existence of λ? such that

φ?ν(x) = λ?x− φν(λ?) .

Besides, we get, again as in the proof of Lemma 4, that E(νλ?) = φ′ν(λ?) = x and compute that

KL(νλ? , ν) = λ?x− φν(λ?) .

This gives (41) noting that L6inf(x, ν) 6 KL
(
δm(ν), ν

)
, as by assumptions νλ? ∈ D.

Case 2: x = m(ν). As in the proof of this case in Lemma 4, we prove that

φ?ν
(
m(ν)

)
= − ln ν

{
m(ν)

}
,

and get
KL
(
δm(ν), ν

)
= − ln ν

{
m(ν)

}
.

This also concludes this case, as δm(ν) ∈ D by assumption.

Case 3: x < m(ν). Similarly to the corresponding P[0, 1] case, we show that both L6inf(x, ν)
and φ?ν(x) are infinite.
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Appendix D. Proofs for lower bounds (Section 4)

This section provides the detailed proofs that were omitted when stating our various lower bounds
in Section 4.

D.1. Proof of Lemma 6

We restate it for the convenience of the reader.

Lemma 6 Fix K > 2 and a model D. Consider a consistent sequence of strategies on D, and two
generic bandit problems ν and λ in D such that a?(λ) 6= a?(ν). Then

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − lim sup

T→+∞

K∑
a=1

Eλ[Na(T )]

T
KL(λa, νa) .

Proof The considered sequence of strategies being consistent on D, and as a?(λ) 6= a?(ν),

qT
def
= Pλ

(
IT 6= a?(ν)

)
> Pλ

(
IT = a?(λ)

)
−→

T→+∞
1 ,

while pT
def
= Pν

(
IT 6= a?(ν)

)
−→

T→+∞
0 .

Note that we introduced above short-hand notation pT and qT .
The fundamental inequality for lower bounds in bandit problems (which is a consequence of

the chain rule and of the data-processing inequality for Kullback-Leibler divergences, see Garivier
et al., 2019), applied for Z = I{IT 6=a?(ν)}, exactly states here that

K∑
a=1

Eλ[Na(T )] KL(λa, νa) > KL
(
Ber(qT ),Ber(pT )

)
, (43)

where we recall that Ber(p) refers to the Bernoulli distribution with parameter p. Given the asymp-
totics of pT and qT ,

KL
(
Ber(qT ),Ber(pT )

)
= qT ln

qT
pT

+ (1− qT ) ln
1− qT
1− pT

∼ − ln pT as T → +∞ .

Put differently,
1

T
lnPν

(
IT 6= a?(ν)

)
∼ −KL

(
Ber(qT ),Ber(pT )

)
T

.

Combining this limit behavior with the previous inequality leads to the stated result, namely:

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − lim sup

T→+∞

K∑
a=1

Eλ[Na(T )]

T
KL(λa, νa) .
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D.2. Proof of Theorem 9

We restate it for the convenience of the reader.

Theorem 9 Fix a model D. Consider a doubly-indexed sequence of strategies that is consistent,
balanced against the worst arm on D, and that cleverly exploits the pruning of suboptimal arms
on D. For all generic bandit problems ν in D with K > 2 arms,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

26k6K

L<inf

(
µ(k), ν

?
)

k
.

Proof The proof consists of two steps. The first step is to prove that for a generic bandit problem ν
in D with K > 2 arms, we have,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> −
L<inf

(
µ(K), ν

?
)

K
. (44)

In the second step, we use this lower bound and the very definition of the clever exploitation of the
pruning of suboptimal arms to get the claimed bound.

Step 1: lower bound (44). We follow a well-established methodology and consider an alternative
bandit problem only differing from ν at one arm, namely, at the best arm. To do so, we set some dis-
tribution ζ ∈ D with E(ζ) < µ(K), if some exists, and define the bandit problem λ = (λ1, . . . , λK)
as

λa =

{
ζ if a = a?(ν),

νa if a 6= a?(ν).

Observe that λ is also a generic bandit problem in D, that a?(ν) is the worst arm in λ (and also that
the second best arm of ν is the optimal arm in λ, but we will not use this specific fact). Therefore,
Lemma 6 yields, as λ and ν only differ at arm a?(ν),

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − lim sup

T→+∞

Eλ[Na?(ν)(T )]

T
KL(λa?(ν), ν

?) ,

where we recall that ν? = νa?(ν). Given that a?(ν) is the worst arm of λ, and since by assumption,
the sequence of strategies is balanced against the worst arm,

lim sup
T→+∞

1

T
Eλ
[
Na?(ν)(T )

]
6 1

K
,

proving that

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> −KL(ζ, ν?)

K
.

The claimed inequality (44) follows from taking the supremum in the right-hand side over distribu-
tions ζ ∈ D with E(ζ) < µ(K).
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Step 2: clever exploitation of pruning. For each k ∈ {2, . . . ,K − 1}, define ν ′1:k as the sub-
problem of ν obtained by keeping the k best arms and dropping the K − k worse arms. Use the
definition of clever exploitation of pruning of suboptimal arms and apply (44) to ν ′1:k to get

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> lim inf

T→+∞
1

T
lnPν′1:k

(
IT 6= a?

(
ν ′1:k

))
> −
L<inf

(
µ(k), ν

?
)

k
.

Taking the maximum of all lower bounds exhibited as k varies between 2 and K, we proved the
claimed result.

D.3. Proof of the normality of the models P[0, 1] and Dexp

In this section, we show that P[0, 1] and canonical one-parameter exponential models are normal.
We focus first on P[0, 1].

Proposition 21 P[0, 1] is a normal model.

Proof We fix ν ∈ P[0, 1], a real x > E(ν) and consider a positive ε. We recall that the pieces
of notation m(ν) and M(ν) for the lower and upper ends of the support of a distribution ν were
introduced in Appendix A.2. If x >M(ν), there exists no distribution ζ absolutely continuous with
respect to ν and such that E(ζ) > x, hence the considered infima are infinite:

L>inf(x, ν) = +∞ = inf
{

KL(ζ, ν) : ζ ∈ D s.t. x+ ε > E(ζ) > x
}
.

Assume now that E(ν) 6 x < M(ν) and note that this case only occurs when E(ν) < M(ν),
i.e. when ν is not a Dirac distribution. It is clear that

L>inf(x, ν) 6 inf
{

KL(ζ, ν) : ζ ∈ D s.t. x+ ε > E(ζ) > x
}
.

To prove the other inequality >, we will first remind why

L>inf(x, ν) = KL(ζλ? , ν) , (45)

where ζλ? is a distribution of D of mean x introduced in the proof of Lemma 4. As the expectation
of ζλ? does not belong to (x, x+ ε), we will then need to prove that

inf
{

KL(ζ, ν) : ζ ∈ D s.t. x+ ε > E(ζ) > x
}
6 KL(ζλ? , ν) . (46)

In the remaining of the proof, we rely on notation and results proved in the first case (by sym-
metry) of the proof of Lemma 4, and for λ ∈ R, we define ζλ the distribution absolutely continuous
with respect to ν with density

dζλ
dν

=
eλid[0,1]

Eν
[
eλid[0,1]

] = eλid[0,1]−φν(λ) ,

On the one hand, by Lemma 15 (or more precisely its formulation for L>inf and L>inf instead of
L<inf and L6inf ), we know that

L>inf(x, ν) = L>inf(x, ν) ,
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while, on the other hand, the proof of the first case of Lemma 4 ensures the existence of λ? ∈ R
such that E(ζλ?) = φ′ν(λ?) = x and

L>inf(x, ν) = KL(ζλ? , ν) .

We thus obtained (45) and move to Equation (46).
We noticed that ν is not a Dirac distribution, as E(ν) 6 x < M(ν). This entails, by Hölder’s

inequality, that φν is strictly convex, hence φ′ν is an increasing function. Considering distributions
ζλ for which λ > λ?, this implies that

Eζλ
[
id[0,1]

]
= E(ζλ) = φ′ν(λ) > x = E(ζλ?) .

As φ′ν is a continuous function (see, again, Lemma 4), we also get

lim
λ→λ?
λ>λ?

E(ζλ) = E(ζλ?) ,

so that there exists λε > λ? such that

∀λ ∈ (λ?, λε), E(ζλ) ∈ (x, x+ ε) .

As a consequence,

inf
{

KL(ζ, ν) : ζ ∈ D s.t. x+ ε > E(ζ) > x
}
6 inf

λ∈(λε,λ?)

{
KL(ζλ, ν)

}
, (47)

and we compute that, for λ ∈ (λ?, λε)

KL(ζλ, ν) = Eζλ

[
ln

dζλ
dν

]
= λEζλ

[
id[0,1]

]
− φν(λ) = λφ′ν(λ)− φν(λ)

−→
λ→λ?

λ? φ′ν(λ?)− φν(λ?) = KL(ζλ? , ν) ,

by continuity of φν and φ′ν . Combining this limit behaviour with inequality (47) leads to (46).

We now consider canonical one-parameter exponential models, for which normality is easily
obtained by the rewriting of L>inf as d.

Proposition 22 All canonical one-parameter exponential models Dexp are normal.

Proof We fix ν ∈ Dexp, a real x > E(ν) and consider a positive ε. As in the P[0, 1] case, the
required equality holds (both terms are infinite) when x >M(ν).

Assume now that x < M(ν). By equality (10), we recall that

L>inf(x, ν) = d
(
x,E(ν)

)
.

Using the basic properties of d (see Appendix C.3), namely that d
(
· ,E(ν)

)
is continuous at x and

is non-decreasing on (x,+∞) ⊂ [E(ν),+∞), this gives

L>inf(x, ν) = lim
y→x+

d
(
y,E(ν)

)
= inf

y∈(x,x+ε)

{
d
(
y,E(ν)

)}
= inf

{
KL(ζ, ν) : ζ ∈ D s.t. x+ ε > E(ζ) > x

}
.
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arm

mean

•

(1)

•

(2)

•
•

(j − 1)

•

(j)

•

•

(k)

•

(K)

x

µ(j−1)

•

•

Figure 1: Original bandit problem ν (in dark) and modifications made to arms (1) and (k) to obtain
an alternative bandit problem λ ∈ Altk,j,x(ν) (in red): in λ, arm (k) is the j − 1–th best
arm, while arm (1) = a?(ν) is at best the j–th best arm.

D.4. Proof of Theorem 12

We restate it for the convenience of the reader.

Theorem 12 Fix K > 2 and a normal model D. Consider a sequence of strategies which is
consistent and monotonous on D. For all generic bandit problems ν in D,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

26k6K
min

26j6k
inf

x∈[µ(j),µ(j−1))

{L>inf

(
x, ν(k)

)
j − 1

+
L<inf

(
x, ν?

)
j

}
.

Proof We fix a generic bandit ν in D and consider the following sets of alternative bandit problems,
indexed by triplets (k, j, x) satisfying 2 6 k 6 K and 2 6 j 6 k, as well as x ∈ [µ(j), µ(j−1)):

Altk,j,x(ν) =
{
λ in D : E

(
λ(1)

)
< x < E

(
λ(k)

)
< µ(j−1) and λa = νa for a /∈

{
(1), (k)

}}
;

in particular, an alternative problem λ in Altk,j,x(ν) only differ from the original bandit problem ν
at the best arm (1) and at the k–th best arm (k). Given x ∈

[
µ(j), µ(j−1)

)
and E

(
λ(1)

)
< x, arm

(1) is at best the j–th best arm of λ, but it can be possibly worse. Similarly, the same condition on
x and the fact that x < E

(
λ(k)

)
implies that arm (k) is exactly the j − 1–th best arm of λ. Both

facts are illustrated on Figure 1. Thus, by monotonicity of the strategy,

lim sup
T→+∞

Eλ
[
N(k)(T )

]
T

6 1

j − 1
and lim sup

T→+∞

Eλ
[
N(1)(T )

]
T

6 1

j
.

Given that the optimal arm in λ is different from the optimal arm (1) of ν, Lemma 6 may be applied;
together with the two upper bounds above, it yields

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> −

(
KL
(
λ(k), ν(k)

)
j − 1

+
KL
(
λ(1), ν

?
)

j

)
.
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We can now take the infimum over all bandit problems λ ∈ Altk,j,x(ν) and obtain the following
lower bound, where we define a quantity Ik,j,x(ν):

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − inf

λ∈Altk,j,x(ν)

{
KL
(
λ(k), ν(k)

)
j − 1

+
KL
(
λ(1), ν

?
)

j

}
def
= −Ik,j,x(ν) .

We prove below that

Ik,j,x(ν) =
L>inf

(
x, ν(k)

)
j − 1

+
L<inf

(
x, ν?

)
j

, (48)

from which the lower bound claimed in Theorem 12 will follow, by taking the supremum of
−Ik,j,x(ν) first over x ∈

[
µ(j), µ(j−1)

)
, then the maximum over 2 6 j 6 k, and finally, the

maximum over 2 6 k 6 K.
We now prove (48). The infimum over λ ∈ Altk,j,x(ν) may be split into two separate infima,

respectively over λ(k) and λ(1); given that each term of the sum of KL only depends either on λ(k),
or on λ(1), but not on both, we may write

Ik,j,x(ν) = inf
λ(1),λ(k)∈D :

E(λ(1))<x

x<E(λ(k))<µ(j−1)

{
KL
(
λ(k), ν(k)

)
j − 1

+
KL
(
λ(1), ν

?
)

j

}

=
1

j − 1
inf

λ(k)∈D :

x<E(λ(k))<µ(j−1)

KL
(
λ(k), ν(k)

)
︸ ︷︷ ︸

=L>inf(x,ν(k))

+
1

j
inf

λ(1)∈D :

E(λ(1))<x

KL
(
λ(1), ν

?
)

︸ ︷︷ ︸
=L<inf(x,ν?)

,

where we obtain L<inf

(
x, ν?

)
by definition while we rely on the normality of the model to obtain

L>inf

(
x, ν(k)

)
: we do so with ε = µ(j−1)−x, which is indeed positive as we considered x < µ(j−1).

D.5. Proof of Theorem 13

We restate it for the convenience of the reader.

Theorem 13 Fix K > 2 and a model D. Consider a consistent sequence of strategies on D. For
all generic bandit problems ν in D,

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − min

k 6=a?(ν)
inf

x∈[µk,µ?]
max

{
L>inf(x, νk),L<inf(x, ν

?)
}
.

Proof Let ν be a generic bandit problem. We fix k 6= a?(ν) and x ∈ [µk, µ
?], and prove that

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> −max

{
L>inf(x, νk),L<inf(x, ν

?)
}
,

from which the stated lower bound follows, by taking suprema. To do so, we consider the set of
alternative bandit problems

Altk,x(ν) =
{
λ in D : E

(
λa?(ν)

)
< x < E(λk) and λa = νa for a /∈

{
a?(ν), k

}}
;
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it is composed of bandit problems, only differing from ν at arms a?(ν) and k, and for which arm k
is better than arm a?(ν), with associated expectations separated by x. In particular, the optimal arm
in λ is different from the optimal arm a?(ν) of ν. Lemma 6 may therefore be applied; it states that

lim inf
T→+∞

1

T
lnPν

(
IT 6= a?(ν)

)
> − lim sup

T→+∞

Eλ
[
Nk(T )

]
T

KL(λk, νk) +
Eλ
[
Na?(ν)(T )

]
T

KL
(
λa?(ν), νa?(ν)

)
> −max

{
KL(λk, νk), KL

(
λa?(ν), νa?(ν)

)}
,

where we used, for the second inequality, the crude upper bound Nk(T ) +Na?(ν)(T ) 6 T . Taking
the supremum of the obtained lower bound over all λ ∈ Altk,x(ν) leads to the following inequality,
where we define the short-hand notation Ik,x(ν):

lim inf
T→+∞

1

T
lnPν(IT 6= a?(ν)) > − inf

λ∈Altk,x(ν)
max

{
KL(λk, νk),KL

(
λa?(ν), νa?(ν)

)} def
= −Ik,x(ν) .

The proof is concluded below by showing that Ik,x(ν) = max
{
L>inf(x, νk),L<inf(x, ν

?)
}

.
As in the proof of Theorem 12 (see Appendix D.4), we use a separation of the infima, in the

abstract form, for two functions f and g,

inf
u,v

max
{
f(u), g(v)

}
= max

{
inf
u
f(u) , inf

v
g(v)

}
.

Here, by definition of Altk,x(ν),

Ik,x(ν) = inf
λa?(ν),λk∈D
E(λa?(ν))<x

E(λk)>x

max
{

KL(λk, νk), KL
(
λa?(ν), νa?(ν)

)}

= max

 inf
λk∈D

E(λk)>x

KL(λk, νk), inf
λa?(ν)∈D

E(λa?(ν))<x

KL
(
λa?(ν), νa?(ν)

)
= max

{
L>inf(x, νk),L<inf(x, ν

?)
}
,

which concludes the proof.
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Appendix E. Additional comments for the literature review

This appendix is devoted to additional discussions concerning the fixed-budget literature. More
precisely, we discuss in detail two gap-based lower bounds that we believe are somewhat detached
from the spirit of the article, namely, the minimax lower bound of Carpentier and Locatelli (2016)
(Appendix E.1) and the Bretagnolle-Huber technique (Appendix E.2).

E.1. The minimax lower bound of Carpentier and Locatelli (2016)

Carpentier and Locatelli (2016) proved the following non-asymptotic minimax lower bound: for the
model D1/4 of Bernoulli distributions with parameters in [1/4, 3/4], for a given consistent strategy,
and each large enough budget T ,

∃ ν in D1/4,
1

T
lnPν

(
IT 6= a?(ν)

)
> − 400

lnK

( ∑
a6=a?(ν)

1

∆2
a

)−1

+ o(1)

> − 400

lnK
min

26k6K

∆2
(k)

k
+ o(1) , (49)

where the o(1) is with respect to T → +∞.

Different nature: a non-uniform lower bound. This result is different in nature from the lower
bounds considered in this article, as we now discuss. First and foremost, it improves the lower
bound (6) of Audibert et al. (2010) for only one (unspecified) bandit problem ν (belonging to a
known collection of K bandit problems). This is in strong contrast with the instance-dependent
lower bounds (bounds holding simultaneously for all bandit problems of the model) presented in
this article.

Second, the result is stated for the restricted Bernoulli model D1/4 and does not seem to be
easily generalized beyond this model or beyond similar models (e.g., the model Dσ2 of Gaussian
distributions with a fixed variance σ2 > 0). This is because of the truly gap-based arguments used
(see the second part of the proof below).

Asymptotic statement and proof. The bound (49) may actually be stated for a sequence of strate-
gies (as we do for all other bounds in this article) thanks to a straightforward adaptation of its proof
(relying on the pigeonhole principle). More precisely, the counterpart of (49) would be that there
exists an increasing sequence of budgets (Tn)n∈N such that

∃ ν in D1/4, lim inf
n→+∞

1

Tn
lnPν

(
ITn 6= a?(ν)

)
> − 400

lnK

( ∑
a6=a?(ν)

1

∆2
a

)−1

. (50)

We are actually able to slightly improve the numerical factor 400 into 100/3 by using a sharper
change-of-measure argument (namely, Lemma 6) than the original argument by Carpentier and
Locatelli (2016).

Proposition 23 Fix K > 3, consider the model D1/4 of Bernoulli distributions with parameters
in [1/4, 3/4], and a consistent sequence of strategies on D1/4. Then, there exists an increasing
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sequence of budgets (Tn)n∈N such that

∃ ν in D1/4, lim inf
n→+∞

1

Tn
lnPν

(
ITn 6= a?(ν)

)
> − 100

3 lnK

( ∑
a6=a?(ν)

1

∆2
a

)−1

.

Proof We begin the proof by introducing a collection of bandit problems (ν(k))16k6K in D1/4 and
associated notation. Let ν(1) be a Bernoulli bandit problem such that the mean of arm 1 is p1 = 1/2
and the mean of arm k ∈ {2, . . . ,K} is pk ∈ [1/4, 1/2). Let ∆k = 1/2 − pk denotes the gap of
arm k in ν(1). For k ∈ {2, . . . ,K}, we set ν(k) the bandit problem obtained by changing the arm k
of ν(1) to a Bernoulli distribution with mean 1− pk, hence a?

(
ν(k)

)
= k, and we define

H
(
ν(k)

)
=
∑
a6=k

1(
∆

(k)
a

)2 ,
where ∆

(k)
a is the gap of arm a in ν(k). As for a 6= k, we notice that

∆(k)
a = (1− pk)− pa = (1/2− pk) + (1/2− pa) = ∆k + ∆a ,

we have
H
(
ν(k)

)
=
∑
a6=k

1(
∆k + ∆a

)2 . (51)

Finally we define

H? =
K∑
k=2

1

∆2
kH
(
ν(k)

) . (52)

The proof consists of two steps. Firstly, we show that there exists k ∈ {2, . . . ,K} and an
increasing sequence of budgets (Tn)n∈N such that

lim inf
n→+∞

1

Tn
lnPν(k)

(
ITn 6= k

)
> − 10

H?

1

H
(
ν(k)

) . (53)

Then, in a second step, we set particular values of the (pk)26k6K and show that

H? > 3

10
lnK . (54)

Step 1: lower bound (53) for general values of (pk)k. We observe that, for each T ∈ N∗,

K∑
k=2

Eν(1)
[
Nk(T )

]
T

6 1 =
1

H?

K∑
k=2

1

∆2
kH
(
ν(k)

) =
K∑
k=2

1

H?∆2
kH
(
ν(k)

) ,
hence there exists an arm kT ∈ {2, . . . ,K} such that

Eν(1)
[
NkT (T )

]
T

6 1

H?∆2
kT
H(ν(kT ))

. (55)
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As there is a finite number of arms, by the pigeonhole principle, there exists an increasing sequence
(Tn)n∈N of budgets such that all arms (kTn)n∈N are the same. Letting k denotes this arm, (55) gives

lim sup
n→+∞

Eν(1)
[
Nk(Tn)

]
Tn

6 1

H?∆2
kH
(
ν(k)

) ,
and applying a slightly modified version of Lemma 6 (where we only consider the sequence of
budgets (Tn)n∈N) with bandit problems ν(k) and ν(1) respectively, we obtain

lim inf
n→+∞

1

Tn
lnPν(k)

(
ITn 6= k

)
> − lim sup

n→+∞

Eν(1)
[
Nk(Tn)

]
Tn

×KL
(
Ber(1− pk),Ber(pk)

)
> −KL

(
Ber(1− pk),Ber(pk)

)
H?∆2

kH
(
ν(k)

)
> − 10

H?

1

H
(
ν(k)

) ,
where, in the last inequality, we used that for all x ∈ [1/4, 1/2),

KL
(
Ber(1− x),Ber(x)

)
6 10

(1

2
− x
)2
,

which can be checked analytically. This concludes the proof of (53).

Step 2: control (54) of H? for specific values of (pk)26k6K . We proceed as Carpentier and
Locatelli (2016). We set, for k ∈ {2, . . . ,K},

pk =
1

2
− 1

4

k

K
or, equivalently, ∆k =

1

4

k

K
,

and show first that ∆2
kH
(
ν(k)

)
6 2k. Indeed, by (51):

∆2
kH
(
ν(k)

)
= ∆2

k

∑
a6=k

1(
∆k + ∆a

)2 =
∑
a<k

∆2
k(

∆k + ∆a

)2 +
∑
a>k

∆2
k(

∆k + ∆a

)2 ,
and, lower bounding ∆k + ∆a by ∆k in the first sum, and by ∆a in the second, we obtain

∆2
kH
(
ν(k)

)
6 k − 1 +

∑
a>k

(∆k

∆a

)2
= k − 1 +

∑
a>k

k2

a2
= k − 1 + k2

(1

k
− 1

K

)
6 2k .

We finally get (54) by plugging this inequality into the definition (52) of H?:

H? =

K∑
k=2

1

∆2
kH
(
ν(k)

) >
K∑
k=2

1

2k
=

1

2

(
ln(K + 1)− ln 2

)
> 3

10
ln(K) ,

the latter inequality being easily verified for K > 3.
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E.2. The Bretagnolle-Huber technique

An alternative (non-asymptotic) method to obtain lower bounds consists in using, together with the
data-processing inequality and the chain rule for the Kullback-Leibler divergence, the Bretagnolle-
Huber inequality (Bretagnolle and Huber, 1979), which states that, for p, q ∈ [0, 1],

p+ 1− q > 1

2
exp
(
−KL

(
Ber(p),Ber(q)

))
. (56)

Lower bound of Kaufman et al. (2016). The method was used by Kaufman et al. (2016) on the
model Dσ2 of Gaussian distributions with a fixed variance σ2 > 0. We state here an asymptotic
version of their result, that will be generalized to all models, possibly non-parametric, in Proposi-
tion 24. The statement relies on a measure of complexity

C(ν) =
∑

a6=a?(ν)

2σ2

∆2
a

.

It reads: for all strategies and for all bandit problems ν in Dσ2 with a unique optimal arm, there
exists a set of alternative bandit instances (ν(k))k 6=a?(ν) in Dσ2 such that the best arm of ν(k) is arm
k and, denoting νa

?(ν) = ν,

lim inf
T→+∞

1

T
ln

(
max

16k6K

{
Pν(k)

(
IT 6= k

)})
> −4C(ν)−1 > − 2

σ2
min

26k6K

∆2
(k)

k
, (57)

and ∀k 6= a?(ν), C
(
ν(k)

)
6 C(ν) .

(The adaptation to a bound for a sequence of strategies comes at a small cost: the original bound
proposed by Kaufman et al. (2016) for a given budget T only involved two bandit problems, ν and
a single alternative problem λ.)

Generalization to possibly non-parametric models. The Bretagnolle-Huber methodology read-
ily extends to general, possibly non-parametric, models. It leads to the following bound. However,
the issue is the lack of interpretability of that bound, as we discuss after the statement of the propo-
sition.

Proposition 24 Fix K > 2, a model D, and a sequence of strategies. Let ν be a bandit problem
in D with a unique optimal arm. Consider, for each k 6= a?(ν), a distribution ζk ∈ D such that
E(ζk) > µ?. Denoting by ν(k), for k 6= a?(ν), the bandit problem obtained from ν by changing arm
k to distribution ζk, and by ν(a?(ν)) the original bandit problem ν, we have

lim inf
T→+∞

1

T
ln

(
max

16k6K

{
Pν(k)

(
IT 6= k

)})
> −

( ∑
a6=a?(ν)

1

KL(νa, ζa)

)−1

.

Before proving this result, we provide a few comments concerning the (lack of) interpretability
of this result and explain how to derive the bound (57) for Gaussian models.

Lack of interpretability of the bound for general models. To derive an interesting and interpretable
bound from this result, one needs to choose carefully the distributions ζk: there is a tradeoff be-
tween obtaining the best possible bound by choosing ζk close to νk in terms of Kullback-Leibler
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divergences, and controlling the maximum of the misidentification probabilities. In particular, when
E(ζk) is close to µ?, the probability of misidentification under ν(k) will be larger, so that

max
16k6K

{
Pν(k)

(
IT 6= k

)}
� Pν

(
IT 6= a?(ν)

)
.

That is, the bound will become uninformative on the targeted quantity Pν
(
IT 6= a?(ν)

)
. This trade-

off seems to be unsolvable in general, unless there exist some specific properties for the Kullback-
Leibler divergence of the model, as we illustrate now.

The case of Gaussian models Dσ2 . For the model Dσ2 , we obtain (57) and the desired inequalities
on complexities by considering ζk = N (µ? + ∆k, σ

2), the Gaussian distribution of mean µ? + ∆k

and variance σ2. Indeed, we recall that

∀ν, ζ ∈ Dσ2 , KL(ζ, ν) =

(
E(ν)− E(ζ)

)2
2σ2

= KL(ν, ζ) .

Note a key property (actually stronger than symmetry), which will turn out to be useful in the
calculations below: the Kullback-Leibler divergence only depends on the expectation gaps between
the two distributions. Now, with the distributions ζk defined above, on the one hand, the bound of
Proposition 24 rewrites∑

a6=a?(ν)

1

KL(νa, ζa)
=

∑
a6=a?(ν)

2σ2(
E(νa)︸ ︷︷ ︸
µ?−∆a

− E(ζa)︸ ︷︷ ︸
µ?+∆a

)2 =
C(ν)

4
,

and on the other hand, for k 6= a?(ν), as the best arm of ν(k) is k, with associated expectation
µ? + ∆k,

C
(
ν(k)

)
=
∑
a6=k

2σ2

(µ? + ∆k − µa)2
=

2σ2

∆2
k

+
∑

a/∈{k,a?(ν)}

2σ2

(µ? + ∆k − µa)2

6 2σ2

∆2
k

+
∑

a/∈{k,a?(ν)}

2σ2

(µ? − µa)2
=

∑
a6=a?(ν)

2σ2

∆2
a

= C(ν) .

As underlined above, the calculations led are highly specific to the Gaussian model and exploit
the gap-based rewriting of the Kullback-Leibler divergence. They would only extend to models
for which gap-based rewritings of (or upper and lower bounds on) the Kullback-Leibler divergence
would be available.

Reverse order of the arguments in the KL. We observe that the bound of Proposition 24 involves
Kullback-Leibler divergences with arguments in reverse order compared to the lower bounds pre-
sented in Section 4. Indeed, taking the infimum of the lower bound over distributions ζk such that
E(ζk) > µ? would lead to a complexity in terms of the K>inf

(
νk, µ

?
)
, where

K>inf(ν, x)
def
= inf

{
KL(ν, ζ) : ζ ∈ D s.t. E(ζ) > x

}
,

rather than in terms of the L>inf

(
µ?, νk

)
. Given all bounds presented in this article, it does not seem

that this would be the correct notion of complexity for the fixed-budget best-arm identification.
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Proof of Proposition (24). We will prove that for all (ub)b 6=a?(ν) ∈ ΣK−1, where ΣK−1 is the
simplex of RK−1, we get

lim inf
T→+∞

1

T
ln

(
max

16k6K

{
Pν(k)

(
IT 6= k

)})
> − max

b 6=a?(ν)

{
ubKL(νb, ζb)

}
. (58)

The result will follow by choosing (ub)b 6=a?(ν) so as to maximize this lower bound, that is taking

ub =

( ∑
a6=a?(ν)

1

KL(νa, ζa)

)−1

× 1

KL(νb, ζb)
.

We now fix (ub)b 6=a?(ν) ∈ ΣK−1 and prove (58). Consider a given budget T and let b 6= a?(ν).
We get, as a?(ν) 6= b first, and by the Bretagnolle-Huber inequality (56) then,

Pν
(
IT 6= a?(ν)

)
+ Pν(b)

(
IT 6= b

)
> Pν

(
IT 6= a?(ν)

)
+ Pν(b)

(
IT = a?(ν)

)
> 1

2
exp
(
−KL

(
Ber(pT ),Ber(qT )

))
,

where pT
def
= Pν

(
IT 6= a?(ν)

)
and qT

def
= Pν(b)

(
IT 6= a?(ν)

)
. Applying the combination (43) of the

data-compressing inequality and the chain rule for Kullback-Leibler divergences leads to, as ν and
ν(b) only differ at arm b,

Pν
(
IT 6= a?(ν)

)
+ Pν(b)

(
IT 6= b

)
> 1

2
exp
(
−Eν

[
Nb(T )

]
KL(νb, ζb)

)
.

As max(u, v) > (u+ v)/2, we obtained so far

max
16k6K

{
Pν(k)

(
IT 6= k

)}
> max

{
Pν
(
IT 6= a?(ν)

)
,Pν(b)

(
IT 6= b

)}
> 1

4
exp
(
−Eν

[
Nb(T )

]
KL(νb, ζb)

)
. (59)

This bound holds for any b 6= a?(ν). In particular, as∑
b6=a?(ν)

Eν
[
Nb(T )

]
T

6 1 =
∑

b 6=a?(ν)

ub ,

we know that there exists b? 6= a?(ν) such that Eν
[
Nb?(T )

]
6 Tub? , and, applying (59) with b?,

max
16k6K

{
Pν(k)

(
IT 6= k

)}
> 1

4
exp
(
−Tub?KL(νb? , ζb?)

)
> 1

4
exp
(
−T max

b 6=a?(ν)

{
ubKL(νb, ζb)

})
,

or, to put it differently,

1

T
ln

(
max

16k6K

{
Pν(k)

(
IT 6= k

)})
> 1

T
ln

1

4
− max
b 6=a?(ν)

{
ubKL(νb, ζb)

}
.

We obtain (58) by taking the lim inf in T on that inequality.
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