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Abstract

In Stackelberg security games, a leader locates security resources to
protect a set of targets from strategic adversaries that aim to attack these
targets after observing the leader’s strategy. In this setting, the leader de-
cision problem is to optimize an uncertain reward that can take a discrete
set of values with a probability distribution that depends on the decision
variable.

We show how diverse risk aversion models of the leader decision prob-
lem can be formulated as tractable optimization problems, such as im-
posing: a bound on the expected disutility, chance constraints, bounded
distortion risk, first and second order stochastic dominance constraints,
or optimizing a value-at-risk and conditional value-at-risk. We detail the
resulting optimization problems and present computational results that
show how the solution changes in two specific settings: 1) an entropic risk
measure or value-at-risk minimization with a quantal response follower
and 2) a prospect theory model with optimal follower response.

Keywords— Stackelberg Security Games, Risk aversion, Quantal Response, Convex
Optimization, Mixed-Integer Programming

1 Introduction

A Stackelberg game models the strategic interaction between a leader and one or more
followers, where the leader decides on a strategy to maximize its utility knowing that
followers will observe this strategy when deciding their own utility maximizing action
[34]. In particular, Stackelberg game models have been used in security applications to
represent the interaction between defenders (that act as the leader) and attackers (cor-
responding to followers) [5, 6, 19]. We denote by a Stackelberg security games (SSGs)
a Stackelberg game where the leader is the defender that locates security resources to
protect a subset of targets that can be attacked by one or more adversaries (followers)
[26, 17]. Such SSGs have been successfully deployed in real-world security applications
to help locate the patrols conducted by the Los Angeles International Airport Police
on the LAX airport and the US Federal Air Marshal Service on transatlantic flights
[17], the LA Sheriff department on Los Angeles’ subway system [12], and the US Coast
Guard on the ports and waterways in Boston and New York City [1].



In an SSG both the defender and attacker receive a penalty or a reward depending
whether the defender strategy locates security resources on the target attacked by the
follower strategies. Therefore, the players’ utility functions depend on the strategies
selected by the adversaries. Assuming that players use mixed strategies, i.e. a prob-
ability distribution over possible actions, the utility of a player for a given strategy is
uncertain, depending on the outcome of the combined mixed strategies. Note that this
means that the uncertainty of the utility functions depends on the decision variables.

Different expressions of the uncertain utility can be considered to solve these SSG
with decision variables that modify the probability distribution of the utility function.
It is natural to consider that players, individually, optimize the expected value of
these uncertain utility functions [25, 26, 17]. In other words, players optimize the
expectation of a reward that is stochastic due to the uncertainty of the adversary’s
strategy. In a security setting, however, the expected reward utility function does
not always provide an accurate model of player interaction, see [8]. If an expected
utility model is used, the adversary response can be misrepresented which can lead to
less than optimal strategies. Also, by optimizing the expected utility, the outcome of
catastrophic unlikely events is not explicitly considered. Doing so can provide mixed
strategy solutions that are fragile, or that have high likelihood of very bad outcomes.
Both effects can be modeled with nonlinear distortion functions that transform the
uncertain reward objective, such as prospect theory [18], and risk measures [2, 21].

In this work, we investigate how to efficiently formulate and solve an SSG with
decision variables that influence the uncertainty distribution of the utility function.
We consider a single follower and a finite set of actions for each player. In particular
we focus on modeling risk-averse behavior with respect to the uncertainty due to the
adversary’s probability distribution over actions (i.e. its mixed strategy). We present
different mathematical optimization formulations to represent chance constrained, per-
turbed utility functions, stochastic dominance, value at risk (VaR), and conditional
value at risk (CVaR). We also present computational results for important examples
that do not consider the expected reward utility function. In particular we consider
Stackelberg security game models where the leader either uses an entropic risk mea-
sure [28] and a Quantal Response model [24], or a model that uses Prospect Theory
[18]. We briefly describe these three concepts below.

An entropic risk measure amplifies the importance of outcomes that exceed a
given threshold to model risk-adverse behavior against the attacker’s probability over
actions. The entropic risk measure of parameter o > 0 of a random variable Y is
defined by a/In E[ey/ *]. While all outcomes are weighted, scenarios with a payoff larger
than « contribute more to this measure. Therefore, the parameter o corresponds to a
payoff value of risky outcomes and must be chosen carefully to tune the risk aversion
level of the decision maker.

The Quantal Response (QR) Equilibrium model presented in [24] assumes that
human adversaries do not behave rationally, sometimes selecting actions that do not
maximize their utility. In this model, followers use a logit discrete choice model to
decide between n possible actions, where action ¢ (that gives a payoff U;) is selected
with probability:

1 AU
Z;}:l U; )
where the parameter A represents a degree of rationality, with perfect rationality (A —
00) or indifference (A = 0) as special cases. The QR model has been used to model
human behavior in various settings, including economics [16, 31], game theory [36],
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transportation engineering [4], marketing [15], and security applications [37].

Prospect theory [18] explicitly represents player biases, modeling risk averse and
risk seeking behavior. It does so by considering perturbation functions on both the re-
ward values and the probability distribution of possible outcomes. That is, if outcome
i has a probability of occurrence p; and payoff U;, prospect theory proposes players
perceive the following expected utility

n

Vip,U) = w(p)V(U:) -

=1

Where 7(-) and V() are perturbation functions with specific properties that model
how players perceive both payoffs and the likelihood of occurrence. Prospect theory
has contributed in economics [32], politics [23], online auctions [7], and security [37]
applications.

In the next section we present the SSG problem and fix the notation. Section 3
formulates an SSG problem for different risk aversion models. Section 4 presents the
algorithms for computing VaR and CVaR with an uncertainty that depends on decision
variables. We present some preliminary computational results in 7 and conclude the
paper in Section 8.

2 Notation and Basic Assumptions

We begin introducing the Stackelberg security game considered, which is similar to
the problem in [20]. The SSG assumes there is a finite set of targets denoted by
I ={1,...n}. The attacker decides between n actions that indicate which target to
attack. Ome of the targets can represent the decision not to attack. The defender
actions determines where to locate security resources to protect or cover a subset of
targets. A defender action, or pure strategy, z C I indicates which targets are cov-
ered simultaneously and depends on physical constraints, such as number of defender
resources, capacity of defender resources or target compatibility. Let Z denote the set
of feasible defender actions. The payoff of each player depends only on whether the
attacked target ¢ € I is protected by the defender action z € Z, denoted by i € z,
or not. Given actions ¢ € I and z € Z the reward received by the defender (by the
attacker) is either a reward R; (a penalty P;) if i € z or a penalty P; (a reward R;) if
i € z. Here R;, R; > 0 and P;, P; < 0. Therefore, under actions i € I and z € Z, the
utilities of the defender and attacker, respectively, are:

Ri 1 E 2 P; 1€ 2z

“D(i’z):{ﬁi idz uA(i’Z):{Ri idz.

We assume players decide on mixed strategies, or probability distributions over their
set of actions, denoted by y € T = {y € [0,1]" : >" ;ys =1} and g€ Z = {q €
[0,1)12! > .cz 4= = 1}. Since player payoff only depends on whether the attacked
target is protected or not, we consider the more succinct © € X = {z € [0,1]" : z; =
Y ezics = 4 € Z}. The set X is the projection on [0,1]" of the feasible mixed
strategies of the defender and, for x € X, the value z; is the frequency with which
target ¢ is protected by a mixed strategy in Z. The players’ rewards as a function of
the mixed strategies, denoted by Up(y,z) and Ua(y, z) for the defender and attacker
respectively, are discrete random variables. For example the defender utility equals P;
with probability 3;(1 — ;) and equals R; with probability y;x;. If ¥ and ¥ denote



statistics for the leader and follower utilities, we can write the problem that optimizes
the leader utility as the following bilevel problem:

max U (Up(y,z))
st. xedX
y = argmax V' (Ua(y,x))
sa. yel.

(1)

The solution to this problem determines the strong Stackelberg equilibrium of the
Stackelberg game, where the follower breaks ties in favor of the leader [20].

For any mixed strategy © € X, we let y(z) denote the follower’s best response,
given by the solution to the subproblem in (1). Then the leader’s disutility D(z) =
—Up(y(x),z) is a discrete random variable that takes the value —R; with proba-
bility x;y;(x) and —P; with probability (1 — x;)y:(x). All the possible disutilities
{=P,,—Ri}icq1,..ny can be referred to as {V, }vey, with |V| = 2n outcomes that do
not depend on the decision variables x. Without loss of generality we assume these
values are sorted in increasing order: Vi < Vo < ... < Vh,,. However, the probabilities
of these discrete outcomes p,(z) := P[D(z) = V,] depend on z.

Different forms of the best response y(z) are due to the specifics of the subproblem
being solved. In the classic Stackelberg setting, the statistic for the subproblem ¥’
is the expectation, making the subproblem a linear optimization problem, which has
optimal pure strategies. Non-linear statistics, such as variance or distortion functions
— as in prospect theory — can generate a mixed strategy best response. A quantal
response (QR) model of the follower replaces the second level problem with the as-
sumption that a follower selects an alternative following the probability distribution

e)\UA(i,z)

yl(x) = Z?:l e Ua(,z) "

If we assume that the utility statistic of the leader is the expected value, then
U[-Up(y(z),z)] = E[D(x)] = > o\ Vopu(z). We can then express the leader’s opti-
mization problem as

;21;{1 Vopo () .
veV

We show in the next Section that, under reasonable conditions, this kind of problem
and generalizations of the form

min {foz) : /(z) < 0} (2)
can be tackled efficiently. The generalization considered is able to represent different
methods to handle and model the uncertainty present in the leader’s utility including
chance constraints, risk distortion functions, and stochastic dominance constraints.

3 Efficient Leader Problem Formulations
Here we present reformulations of (1) in the situation where, there is a known follower

best response y(x), the disutility function D(z) takes 2n values that do not depend
on z with probabilities that depend on z.



The formulations considered will aim to either maintain some risk measure of the
disutility D(x) under a given treshold — translated by some constraints f(z) < 0 —
or minimize a risk measure of D(z), which translates into minimizing some function
fo(z). We will transform these different problem formultations to constraints over the
set of decision variables x € X of the form

> ()& <E, (3)

v>T

for a real valued vector (£v),cy, such that &1 < &2 < ... <&y, some index v € V, and
a right-hand side = € R.

Notice that we can assume that & > 0 for v > v. If this is not the case, simply
define ¢ := max,>5(—&,)+ and construct the following non-negative vector £, = &, + ¢
if v > and £, = ¢ for v < ¥ — 1. Then constraint (3) is equivalent to

E+(>) pol@)E

Constraints of the form (3) are easy to solve if the dependency of x through the
probability functions p,(x) form convex constraints on X. We now show situations
where enforcing bounded risk of the leader can be modeled with type (3) constraints,
for different choices of v, £ and =.

3.1 Maximum expected disutility

Given a reference disutility E[D(Z)] coming from some known solution 7 € X we
want to find some z € X having an expected disutility that is no worse than the
reference disutility from Z. In other words, = must satisfy the following constraint:
E[D(z)] < E[D(Z)], which is by definition equivalent to the generic constraint (3) with
E:=E[D(@)], & =V, for every v € V and v := 1, i.e.

S pe(@)Ve <EID@)] -

veV

3.2 Chance constraints

Given a threshold value V € R and a tolerance € € [0,1], a chance constraint [22, 9]
on the disutility D(z) bounds the likelihood that D(x) > V by € , that means:

ﬂmmzﬂgﬂ 4)

This constraint over € X is equivalent to the generic constraint (3) taking E = e,
& =1 for every v € V and ¥ := argmin,ep{V, : Vi, > V}, ie.

va(x) <e. (5)
V>0
3.3 Bounded distortion risk

A distortion risk measure [3] is a real valued function p taking as argument a random
variable Z that can be described as:

p:Z—d " (E[AZ)]),



where d : R — R is an increasing bijective disutility function. The entropic risk
measure Z — alnE[e?/%] of parameter o > 0 is a particular distortion risk measure.
A constraint that bounds a distortion risk is a constraint over z € X so that the
distortion risk is less than a given threshold p, i.e.

p(D(z)) <75 . (6)

Constraint (6) is equivalent to E[d(D(x))] < d(p), i.e. >, oy, Po(2)d(Vy) < d(p), which
is exactly the generic constraint (3) with = = d(p), & = d(V,) for every v € V, and
v = 1. Because d is increasing, we indeed have §1 < &2 < ... < &)y

3.4 First order stochastic dominance constraints

Let Fz : t — P[Z < t] denote the cumulative distribution of a random variable Z.
Given two random variables Z and T, Z is said to stochastically dominate 7" in the
first order, Z =1y T, if Fz(t) > Fr(t) for all t € R [14].

Given a reference random variable D (Z), we can write a constraint over € X such
that D(x) stochastically dominates D (Z) in the first order, i.e. D(x) =1y D(Z). In our
context where both random variables D(z) and D(Z) have the same discrete support,
this can be rewritten as follows: for every v € V we must have Fp(,) (V) > Fp) (Va),
ie. Y opo(x) > >, <5 Pu(Z). In other words:

S opu(@) <1 pu(@) YoeV. (7)

v>0+1 v<v

The first order stochastic dominance constraint D(x) >y D(Z) can thus be repre-
sented by the |V| constraints in (7) which are of type (3) with 2 =1—-73" _-p.(Z),
& =1for every v €V, and v =0 + 1. -

3.5 Second order stochastic dominance constraints

The second order cumulative distribution function of a random variable Z is given by:
@) !
F;7(n) = Fz(t)dt .

Given two random variables Z and 7', Z is said to stochastically dominate 7" in the
second order, Z =2 T, if Fg)(n) > Ff)(n) for all n € R, [14].

Given a reference random variable D (Z), we want to enforce the fact that D(z)
stochastically dominates D () in the second order, i.e. D(z) =2y D (Z). A result
from [13] states that D(z) =) D (T) is equivalent to

E[(Vs —D(z)),] >E[(Vs — D (7)), ] VoeV.
We can rewrite this equivalently as:
=3 pe@) (Vs = Va)y <= pu(@ (Vs — Va)s VeV . ®)
veEV veV

In consequence, the second order stochastic dominance constraint D(z) >(2) D(Z)
can be represented by the |V| constraints in (8) which are of type (3) with = =
= ey Do (@) (Vo = Vo), o =1 and & = —(V5 — V4,) + for every v € V. Note that &,
are also in increasing order.



3.6 Some difficult risk models

We say that constraint (3) is tractable if it describes a convex set on the decision
variables or can be reasonably approximated with a handful of binary variables. While
the previous examples show that the risk-aversion constraints can be expressed in a
tractable form, there are some examples for which it is not clear whether there is a
tractable transformation or not.

For example, constraining the variance of D(z) to be under a given threshold o2,
i.e. V[D(x)] < o2, boils down to

va(l’)Vf - (va(m)vv) < 0'2»

veV veY

which is a complicated constraint for general probability functions p,(z). The same
can be said about the upper semideviation USD : Z — E[(Z —E[Z])+] where enforcing
USD(D(z)) < U is equivalent to:

va(l') (VU - Z pu’(x)vv’> < [7
+

veV v/ eV

Both these constraints suggest non-convex constraints on the decision variables.

Interestingly, in a classic stochastic optimization setting where the probabilities are
fixed and the uncertainty is affecting the payoffs alone, modelling chance constraints
or using the value-at-risk turns the resulting problem NP-hard in general, whereas in
our context, chance constraints are perfectly tractable computationally.

3.7 Minimizing a risk

We now make use of all the machinery available for risk-inducing constraints in the
context of minimizing risk measures. First, the generic problem (2) can be equivalently
recast as:

st. n> fo(z)

f(z) <0

For several of the aforementioned risk measures such as distortions in Subsection 3.2
or the probability of having a poor outcome in Subsection 3.3, f; for any ¢ can be of
the form

fo: xz— Z fgpu(m)

v=2Tg
fir w—= > Epe(x) —
V2T,

with 0<& <& <. <y

Following the ideas in [30, 10], we can iteratively make guesses about the optimal
value n* with a binary search: when fixing n = 7, the latter problem reduces to



investigate whether there exists z € X’ satisfying:
Z gipv (3:) <

V2T,

v=20q

iy Vi

Vv
—

[1]

In the end, considering a risk measure in the objective is not harder - modulo the
binary search - than considering a constraint equivalent.

4 VaR and CVaR minimization

In this section we consider two classic risk measures: the value at risk and the con-
ditional value at risk. It remains open if it is possible to express these risk models in
a tractable form. However, we see below that it is possible to minimize them in our
context.

4.1 Value at Risk

The objective in this subsection is to minimize the Value-at-Risk of parameter e €]0, 1]
(VaRe) of the disutility of the defender. The Value-at-Risk-€ of a disutility random
variable D(z) is defined as VaR((Z) := inficr {t : Fz(t) > 1 — €}. Because D(z) has a
discrete and finite probability distribution, the only values VaR. (D(z)) can possibly

take are the payoffs (V3),c,- In consequence, we have that

VaRe (D(z)) =minq Vs : > pu(z) >1—¢

veEV <
v<v

The problem of finding a defence strategy x € X that minimizes VaRe (D(x)) can then
be cast as follows:

min V5:va(w)21—e . 9)

TEX,VEV ol
v<v

After rearranging the minimizations in the latter problem (9), we obtain:

i > i : v >1-— .
min Vv+¥g§(l 0 Zp (z) >1—c¢ (10)

veEV po
v<v

Notice that the inner problem (10) in z given v € V is a feasibility problem that only
requires to check if there exists some € X such that Y, _-p.(x) > 1 — ¢, which is

equivalent to
Z po(z) <e.
v>U+1

Proposition 1. The feasibility of the inner problem in x from Problem (10) can be
checked as follows: the inner problem in x is feasible iff the optimal objective value uz
of the following problem is lesser than or equal to €:

up = min Do(). (11)



The last problem simulates the fact that if the chosen v € V is associated to a
value V5 that is too low to guarantee that Fp(,) (Vz) > 1 — € for at least one x € X,
then it is an underestimator of the optimal objective value of the original problem (9).
In consequence, the optimal objective value must lie strictly above V3, which allows
us to eliminate from the candidates for the optimal objective value all the outcomes
V., such that v <.

On another hand, if the chosen v € V is associated to a value V5 that guarantees
that Fip(yy (Vo) > 1—e for some x € X, then it is either an overestimator of the optimal
objective value of the original problem (9), or the optimal objective value itself. In
consequence, the optimal objective value must lie at V5 or under, which allows us to
eliminate from the candidates for the optimal objective value all the outcomes V,, such
that v > v.

These observations suggest a binary search scheme iteratively looking for the index
v™ € V that corresponds to the true optimal value V= of Problem (9). We summarize
the procedure in Algorithm 1 where the routine solve(v) takes as argument an index
v € V and returns a tuple (CCT), Ug) corresponding respectively to an optimal solution
and the optimal value of Problem (11).

Algorithm 1:

Data: An instance of problem (9)
Result: An optimal solution z* for (9)
(x*,u):=solve(l);
if u>1— ¢ then

L return z*;

(x*,u):=solve(|V]);
U:=|V]; L:=1;
while U > L +1 do
v:=[(L+U)/2];
(z,u):=solve(v);
if u>1—¢€ then
10 | U= 2" =
11 else

12 L L:=v;

w N

© 0 N O T s

13 return z*;

Proposition 2. Algorithm 1 returns an optimal solution for Problem (9) by solving
O (log, |V|) times a minimization problem (11) with different values of v.

4.2 Conditional Value At Risk

The objective in this subsection is to minimize the Conditional Value-at-Risk of pa-
rameter € €]0, 1] (CVaR.) of the disutility of the defender, defined as

CVaR«(D(x)) = inf {t+e'E[(D(x)—1t),]}.



Furthermore, as shown in [29], the minimum in ta is attained at t* = VaR. (D(z)) so
that we also have the following alternative identity:

CVaRe(D(z)) := VaRe (D(z)) + e 'E [(D(m) — VaRe (D(x)))+] .

‘We now want to determine an & € X that minimizes the Conditional Value-at-Risk
of D(z), which is modeled by the following optimization problem

w* = min . {t+ € 'E [(D(z) — t)+] }. (12)

TEX tE
Recalling that D(z) follows a discrete probability distribution, we also have:

w* := min {t +e !t va(ﬂf) (Vo — t).,.} . (13)

rzEX ,tER
vey

In the previous section, we saw that VaR. (D(z)) € supp (D(z)) = {(V4)

v)pey }» Mean-
ing that (13) is equivalent to

* P — ] '~ 71 — ~
YT X ey {Vv te Zpu(a:) (Ve V”)+} :

veEV

A basic algorithm First, notice that for any optimal solution (z*,t*) of (13), we
have

* . * -1 *
w .—grg;l{t +e€ va(a:)(Vv —t )+}
veEVY
In consequence, we can “guess” the optimal value of t by fixing it to Vi for every v € V,
then solve the corresponding problem in z € X
wy=Vy+e ! min > pul@) (Vo = Vi), -
veV
Because the outcomes are sorted in increasing order, the latter can be rewritten as

~ — ~ -1 ] — ~
wp =V +e min > pu(@) (Vo = Vi), (14)

v>Uv+1

uy

whose optimal solution is denoted #”. Keeping track of the values wy, we find w* :=
arg min,cy w, and return z°  as an optimal solution of the original problem (13). The
procedure has to solve |V| = 2n times problem (14). We summarize the procedure
in Algorithm 2 where the routine solve(v) takes as argument an index ¥ € V and
returns a tuple (xg,u;,) corresponding respectively to an optimal solution and the
optimal value of (14).

An improved algorithm Notice that Algorithm 2 requires to solve 2n optimiza-
tion problems (14) with different values of v, whereas minimizing VaR, only O (log, n)
problems must be solved; as opposed to the classical optimization setting (where the
uncertainty affects only the outcomes and the probabibilities are constant) where min-
imizing VaR is NP-hard whereas minimizing CVaR can be modelled via additional
linear constraints and continuous variables. We now present a way to decrease the
number of problems we need to solve.

10



Algorithm 2: Minimize CVaR

Data: An instance of problem (13)
Result: An optimal solution z* for (13)
v =1;
w* = 400;
while v # |V| do

(z,u):=solve(v);

if w* >V, + ¢ lu then

PO~ Y-, B NI CR

¥ =
w* =V, + e tu;
v+ +;

return z*;

o]

©

Proposition 3. The function t — t + ¢ ' mingex ZUEV po(2)[Vo — t]+ is continuous
and piecewise concave with breakpoints (Vy)vev. Unfortunately, there is no guarantee
that even the same function in its discrete form - i.e. restricting its domain to (V,), ¢y
- is conver. However, we can find a locally optimal solution for the original problem
solving O (log, n) problems in x € X with t fized to some V.

The last proposition allows us to return an upper bound that is hopefully better
than just solving the problems in a sequential order. Together with the next proposi-
tion, we show how to prune values V, without solving the problem they are associated
with.

Proposition 4. Recalling that VaR. (D(z)) < CVaR. (D(z)), each time we solve a
problem with fixed t = Vi, we can eliminate from the list of candidates all the Vi, ’s lying
over wy as they cannot possibly produce a solution improving the current best objective
value. Marking each v € V when we solve its corresponding problem in x during the
local minimization via binary search in v, or when we eliminate it by bounds, we can
accelerate the practical convergence of the first algorithm.

Notice that in the worst case we will solve at most |V| = 2n problems, which is no
worse than using Algorithm 2. We summarize the procedure in Algorithm 3 where the
routine binary_search(V") takes as argument a subset V¥ C V of marked outcomes
and returns a locally optimal solution x found by binary search with its objective value
u and the outcome number v it is associated with. The routine also updates the set
V1 with the previously nonmarked outcomes it visited during the binary search.

5 Quantal response (QR)

5.1 Defining the response probabilities p,(z)

Recalling that the expected utility of the attacker when the target i is attacked is
Ui(xz;) = z: P; + (1 — x;) Ry, if the attacker is not perfectly rational and follows a QR

11



Algorithm 3: Improved CVaR Algorithm

Data: An instance of problem (13)
Result: An optimal solution z* for (13)

1Vt =0

2 w' = +o0;

3 while VT £V do

4 (x,u,v):=binary_search(V");

5 if w* >V, + e 1u then

6 ¥ = ux;

7 w* =V, + e tu;

8 VE=ytu{ eV:iw <V}
9 return x*;

of rationality factor A\ > 0 [24], the probability that target ¢ is attacked is given by:
eMi(zi)

yi(e) = 55— (15)
Z e)\Uj(z]-)
j=1

Defining R := max;e1,....n} fi, for theoretical complexity and computational tractabil-
ity purposes, it is better [10] to divide by e both the numerator and denomina-

tor in (15): ysi(x) = eA(Ui(zi)fﬁi)/Zzzl HMUs(=)-R) Defining 8; := M=% > 0,
i == AMR; — P;) 2 0 and &; := R; — P; > 0 we obtain that

vilw) = 5 ———
> BieTnit
j=1

We link the QR Stackelberg security game with the generic notation as follows: The
set of payoffs is {(Vu)vevi={1,...2n} } = {(=FPi)ici1,...n}, (—Ri)icq1,...n}} i-e. the set
of all possible disutilities sorted in increasing order. Letting i(v) being the target
associated to outcome V,, - be it a penalty or a reward - the probabilities of having
each outcome are as follows:

n
Ty Piuye” T [ H 7 BreT If outcome V,, is a reward
i=1

po(T) = n
(1 - zi@)) Bi(wye” T i) / 21 Bje~ %% If outcome V, is a penalty
i=

For convenience, let define for each target ¢ € {1,...,n} the index oF (7) (respectively
v®(7)) corresponding to the payoff of its penalty (respectively reward).

5.2 Efficient solution

We now see that any constraint of type (3) can be put in a tractable way in any
optimization framework: In fact, they can be either piecewise linearly approximated

12



or in some reasonable cases, be equivalent to convex constraints. Because the adversary
follows a QR, any type (3) constraint becomes

Bie Vi Bie i
Z &oriy—m——— (L—=z) + Z k()% <

1

i P ()>0 > Bje % soR (i) >0 > Bje 1%
j=1 j=1
ie. Z £, P )ﬂz —ViTi (1— ) Z E R )Bz Vi, EZ e ViTi
P (i) >7 iR i=1

(16)

Proposition 5. The following statements hold:

1. The left-hand side of (16) is separable in the variables x; and can be consequently
piecewise linearly approrimated via the use of integer variables [33].

2. If the vector & is such that & < &2 < ... < &y, (16) can be cast as a the following
convex constraint:

Z é-vp(z)ﬂlzl - '—'Z /Bzzz

i:vP (i) >o
+ Z fp(l zzlnzl Z £R()ﬂz,lnzl<0
i:vP (i) >0 iR (i) >0
after using the change of variables x; := —1n(z;)/7:-

Proof. The first part is immediate. For the second part, after using the change of
variables x; := —In(z;) /i, we obtain

Z évp(z)ﬁlzz - —'Z /Bzzz

i:vP (i) >0
+ Z &P zl Inz; — Z &, R(Z ZZ Inz; <O0. a7
v P (i) >0 iR (i) >0

Because of the last term in the left hand side, it is not obvious that constraints (17)
define a convex set. However, if a term appears in the last sum of the left-hand
side, it also appears in the penultimate term given that 1) v (i) > v™(i) and 2) the
components &, are in increasing order. Let us consider a single target ¢ that appears
in the complicating last term: its “contribution” wrt each z; in constraint (17) is:

§oP(i)Bizi — Efizi + EUP(,-)%ZQ Inzi — &rey %zz In z;. (18)

The first two terms in (18) do not cause any harm to the overall convexity because of
their linearity whereas the two last terms can be factored into:

(EUP(i) - §UR(2')) %21 In z;. (19)

By hypothesis we have £, r ;) > §,r(;), making the term (19) convex. O

13



The last Proposition tells us that whenever the adversary follows a QR, using
risk-aversion inducing constraints or objective functions is tractable in practice. More
precisely, if X is defined by linear constraints,

1. the first result of Proposition 5 tells us that the full optimization problem can
be cast as a mixed-integer linear optimization problem, and

2. the second part tells us that if X' is defined by r linear inequalities with non-
negative coefficients (a?) Tz < b;,Vj € {1,...,7}, then the constraints defining
X after the change of variables x; := —In(z;)/7; translate into the r following
convex constraints:

n 7

— Z 4 In(z;) < b, vie{l,..,r}
= Vi

which is readily solvable by off the shelf interior point algorithms (e.g. [27, 35])

6 Prospect Theory

Another case in which problem (1) can lead to a tractable solution problem has to
do with approximate solutions of the SSG when both leader and follower consider a
Prospect Theory decision model. As mentioned in Section 1 prospect theory assumes
players deviate from the expected objective through distortion functions that modify
the valuations and the probability of occurrence. Under this model the disutility of

the leader is
PT(D(z)) = Zﬂ(pv)y(vv) ,
veV

where, given parameters A, a, 3 > 0 and § € [0, 1], the distortion functions are

(z—C)* if z>C _ z’
V(Z)*{ “AM-z4+0C) ifz<C and ﬂx)im .

Where C represents the reference point for the valuation function. Similar expressions
are used for the follower for its own distortion functions 7’ and v/’

To propose a tractable model we assume that the follower selects an optimal pure
strategy (a target to attack), i.e. y € {0,1}". An assumption that holds for a linear
objective of the subproblem. Since p, is either y;(,)Ti(v) OF Yi(v) (1 — Ti(v)), we have
that 7(py) is either y;()7(Ti(v)) OF Yi(w)T(1 — 4(v)). Therefore we express (1) as:

max Zyi [W(xi)l/(Ri) + (1l — wz)z/(P,)}
s.t. .fc:é X

y = argmax Zyi [W'(Jci)u/(P,-) + 7r/(1 — :L‘i)l/(R,-)]

i=1
st Y yi=1, ye{0,1}".
i=1

This problem with non-linear objectives in both problems can be solved approxi-
matedly with piecewise linear approximations and integer variables. For this consider
that every x; variable is partitioned into K segments with breakpoints co,ci,...,ck,
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with co = 0 and cx = 1. The perturbation functions m and 7’ take values b;, and bﬁc at
breakpoints ci for k € K. To simplify the constraints we will use a variable z;x4+1 = 0.

max vy
st. zeX

Syi=1, ye{o,1}"

=1

S zik=1, ze{0,1}" iel

ke K

> zu=1, 2 e {0, 1}1% iel

keK

S wi =1, wi €01~ iel

ke K

Zwik:L w; € [0,1]"%! 1€l

ke K

Wik < Zik + Zikg1, Wik < Zik + Zikt1 iel,ke K

Ti= Y. CRWik, 1—x; = Y. cpllik i1el
KEK kek

g = Y, brwik, G = Y, b 1el
keK ke K

= 3 Y, d= 3 b el
keK kEK

0<a—[gv(P)+ ¢V (R) <M(1—vy;) i€l

M1 —yi) + [qiv(Ri) + Giv(P)] >~ iel

Here variables z;x, Zir indicate which interval of the of the piecewise approximation
is used for x; and for 1 — x; respectively. The value of the convex combination is
given by variables w;; and w;x, respectively. The values qi, §:, ¢;, and §, give the
expresions of 7(z;), m(1 — z;), 7' (x;), and 7' (1 — x;), respectively. We consider that
this approximate mixed integer optimization problem is a tractable model for the
prospect theory approach.

7 Computational results

7.1 Expected value and Entropy minimization with QR
adversaries

In [10], we studied risk-neutral and risk-averse objective models that minimize either
the expected value E[D(z)] or an entropic risk measure alnE[exp(D(z)/a)]. The
resulting models were able to solve instances within an hour with up to n = 10.000
targets for 1) a basic model where

Xy = {x e[0,1]™: sz < m}
i=1

and 2) a more concrete model with disjunctive and precedence constraints

Xi=Qz€Xo: » i <1,Vde{l,...D},z; <a;,9(i,5) €

i€Dy
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Table 1: Difference of the optimal strategies in function of « as a % of the E

Objective minimized
statistic Ea=1 Ea=o Ea=s Ea=r
\% -32 -26 -17 -12
E -15 -5 -2 -1
Worst case P -68 -44 -14 -11
VaR._10% -9 -10 -6 -5
Exec. time (s) || 6.324 5.131 4.085 3.862

solution’s statistics (Xj,n = 1000,m = 100).

All payoffs R;, R;, P; and P; belong to [—10,10] in this subsection and the next.

As we can see in Figure 1,the cumulative distributions corresponding to the risk
averse strategies (i.e. minimizing entropic risk measures of parameters o« = 5 and
a = 10) are stochastically dominating the risk neutral strategies (i.e. minimizing the
expected loss) in the tail of the distribution.

1.0
0.8
0.6
0.4
0.2

v

T

T

T

T

=t — T I I I

0
-10 -7 -4 -1 2 ) 8 W,

Figure 1: Loss CDFs of the minimizers of £, and maximizers of E with Xy (left)

and X (right)

Further, we studied the influence of the entropic risk parameter a: in Table 1 we
can see that as « increases - i.e. the defender becomes less risk-averse - the benefit
in terms of variance, VaR._19% and the worst case probability reduction becomes less
important but is significant for lower values of a; On another hand, these benefits
come at the moderate cost of having an increased expected loss by about 1-15%.

E (V)

1.0
0.8
0.6
0.4
0.2

T

T

T

0 ‘ ‘
-10 -7 -4 -1

7.2 VaR, and P[D(z) > V] minimization

Some preliminar experiments were conducted on minimizing VaR. and P[D(z) > 17]
with mid-sized instancgs of Xy with n = 400, m = 60. The thresholds V used when
minimizing P[D(z) > V| where chosen to be 100%, 50% and 20% of the worst case

disutility —V1, noted respectively Pioo, Pso and Pao.

The results are summarized in Table 2 where we can see that the variance is con-
sistently decreased by using risk measures instead of the expected value, and the more
risk averse the defender is, the greater the loss in expected outcome. Because mini-
mizing VaR involves the solution of O(log, n) subproblems, it is significantly slower

than minimizing the probability of being over a threshold.
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Objective minimized
statistic VaRyoy, VaRigyq, VaRsy, VaRijg ‘ Pigo Pso Py
\Y -9 -18 -26 -36 +9 41 -34
E +6 +17 +29 +49 +10 +2 445
VaR,.—a9 -10 -6 -4 +5 +18 +5 +4
CVaR,._s9 -4 -10 -10 -8 +8 +3 -9
Exec. time (%) +576 +595 +606 +600 -25  -36 -31

Table 2: Statistics of the optimal strategies for different objectives as a % of the
E solution’s (Xyp,n = 400,m = 60).

7.3 Prospect Theory

Here we present computational results evaluating the change in the solution of using
and not using a prospect theory model over a small random instance with n = 8 targets.
Payoffs are generated from [—10,10]. We consider seven instances with this data,
changing the number of security resources that the leader uses, with m = {1,2,...,7}.
We consider a piecewise linear approximation of the probability distortion function
by partitioning [0, 1] in five uniformly spaced break points K = 5. We consider three
different models, depending on which player considers a prospect theory or an expected
utility objective. In particular, model Neither assumes both the leader and follower
minimize the expected utility; model Only Follower has a follower with prospect theory
and the leader with expected utility; and model Both assumes both players use a
prospect theory objective.

In Table 3 we present the leader utility objective (expected utility for Neither and
Only Follower) and a prospect theory objective in Both over the different instances.
We observe as instance number increases (and more security resources are used) the
disutility decreases for all models. In addition, notice that changing the follower utility
function does not cause significant change on the leader utility. Finally, the decrease
in leader utility when the leader uses prospect theory is related to the diminishing
returns of the utility perturbation because 0 < o < 1.

Instances
Model 1 2 3 4 5 6 7
Neither 4.4 5.8 3.8 5.5 1.1 1.6 0.5
Only Follower 4.2 5.9 3.7 5.7 0.9 1.2 0.6
Both 1.1 1.9 1.1 1.8 0.2 0.1 0

Table 3: Leader utility objective function. Model identifies if objective is
prospect theory or expected utility.

In Table 4 we present the change in leader expected utility as we modify the
reference point C. The change is given as the difference between the leader expected
utility of the Only Follower model minus the Neither model. As we change the follower
reference point from —10 to 10 for all instances the leader expected utility difference
is U-shaped. This difference decreases and then increases. An explanation for this
is because for a reference point close to 0, the distortion of the utility value of the
follower is not so large and thus does not change much from the expected utility

17



behavior. Largest changes are for extreme reference values in instances 3, 4 and 5.
Because in this situation leader policy can be more different. In instance 1 most targets
are not protected while in instance 7 most targets are protected.

Reference Instances

Point 1 2 3 4 5 6 7
-10 0 -0.1 1.5 4.3 3 1.8 0.7
-8 0 -0.1 1.5 3.3 2.9 1.8 0.7
-6 -0.1 -0.1 1.5 2.2 2.8 1.7 0.7
-4 -0.1 -0.1 1.5 2 2.1 1.6 0.7
-2 -0.1 0 1.9 2.9 2.7 1.8 0.7
0 -0.2 0.1 -0.1 0.2 -0.2 -04 0.1

2 0 0 0 0.4 0.5 0.3 0.1

4 -3 -0.7 1.4 1.8 1.3 0.8 0.2

6 -2.3 1.3 3 2.7 1.9 1.2 0.2

8 -1.9 2 3.5 3.2 2.1 1.2 0.2
10 0.4 3.2 3.8 3.4 2.1 1.2 0.2

Table 4: Expected leader utility difference (Only Follower — Neither) for dif-
ferent follower reference points.

8 Conclusions

The Stackelberg Security Game considered has a leader utility that results in a discrete
random variable where the probability of the events depend on the players’ decisions.
The more common situation in optimization under uncertainty is that the decision
variables influence the utility values, not the probability distribution.

We present several formulations for risk models of uncertainty, that for the leaders
utility, provide convex constraints or that can be approximated efficiently with a few
integer variables. These are referred to as tractable models. We show that the difficulty
of computing certain statistics changes depending on whether the decision variables
determine the probability or the utility. In particular VaR becomes tractable while
variance seems intractable for the leader utility, a situation that is reversed when the
probabilities are given and utility values depend on decision variables.

Our computational results illustrate the tractability of the approach in two situa-
tions, when the follower uses a quantal response model and when the follower responds
with pure strategies which enables the use of distortion functions (prospect theory)
for the leader and follower. In the former we show that we can compute different risk
measures (entropic risk, VaR, and chance constraint), in the later we compare the use
or not of prospect theory for different players and the effect of the reference point. In
[11], some particular cases of this model are studied. Specifically, that work considers
explicitly the possibility of multiple adversaries. Extending this work for the multiple
adversaries setting presented in [11] is straight forward, since the derivations in Section
3 can be used in every utility function and the leader utility is the weighted sum of
the interaction between the leader with each follower. Further work is necessary to
evaluate the tractability of a multiple follower SSG if the utilities depend in a more
complicated non-linear way of the multiple players decisions. Another line of future
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research is exploring the use of these formulations in other stochastic optimization
problems where the decision variables influence the probability distribution.
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