
HAL Id: hal-03792614
https://hal.science/hal-03792614

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration and Orchestration of Analysis Tools
Robert Heinrich, Erwan Bousse, Sandro Koch, Arend Rensink, Elvinia

Riccobene, Daniel Ratiu, Marjan Sirjani

To cite this version:
Robert Heinrich, Erwan Bousse, Sandro Koch, Arend Rensink, Elvinia Riccobene, et al.. Integration
and Orchestration of Analysis Tools. Robert Heinrich; Francisco Durán; Carolyn Talcott; Steffen
Zschaler. Composing Model-Based Analysis Tools, Springer International Publishing, pp.71-95, 2021,
978-3-030-81914-9. �10.1007/978-3-030-81915-6_5�. �hal-03792614�

https://hal.science/hal-03792614
https://hal.archives-ouvertes.fr


Chapter 5

Integration and Orchestration of

Analysis Tools

Robert Heinrich, Erwan Bousse, Sandro Koch, Arend Rensink, Elvinia Ric-

cobene, Daniel Ratiu, Marjan Sirjani

Abstract. This chapter addresses the integration and orchestration of external analysis tools
into modelling environments. We first give a detailed overview of the considered context and
problem statement. Then, a solution in the form of a reference architecture for the integration
of analysis tools into modelling environments is presented. We collect a set of requirements that
analysis tools must satisfy in order to enable (a) the integration of these analyses into modelling
environments and (b) the orchestration of these analysis tools to produce overall results. Finally,
we give an overview of different orchestration strategies for the integration of analysis tools and
show examples.

This core chapter addresses Challenge 2 introduced in Chapter 3 of this book [Hei+21] (the
practical implications — how to integrate and orchestrate existing analysis tools).

5.1 Introduction

Sophisticated modelling environments, often based on the principles of model-driven engineering
(MDE) and software language engineering (SLE), are becoming increasingly ubiquitous. More
and more disciplines, may it be avionics, automotive, constructional engineering, automation
engineering or natural sciences, rely on such tools. These tools become all the more valuable if
they provide deep insights into the correctness and fitness-for-purpose of the models1 used and
apply model-based analysis to forecast properties of the things to be built. At the same time
there is a community of analysis tool builders who distil mathematical and logic experience into
analysis tools (cf. Chapter 2 of this book [Hei+21]) that rely on formalisms such as satisfiability
modulo theories (SMT) formulae, transition systems or discrete event systems. Many of these
analysis tools can be used beneficially in the aforementioned modelling environments if they are
suitably integrated. In practice this usually means that user-facing models must be translated
to the input formalism of the analysis tool, and the result of the analysis must be lifted back to
the domain level. In addition, there are many use cases like in portfolio solvers, model checkers,
simulation coupling, model-based testing and runtime verification where multiple existing analysis
tools must be orchestrated to deliver value in the context of the modelling environment.

This chapter addresses the challenge of how to integrate and orchestrate external analysis
tools into modelling environments. We first give a detailed description of the considered context

1Note, while Chapter 2 of this book [Hei+21] postulates analysis input as three kinds of models — of system,
of property and of context — we stay with the term model in this chapter since a distinction of the kind of model
is not relevant here.

61





5.2. CONTEXT AND PROBLEM STATEMENT 63

several language engineers.

Then, at the bottom half of the figure, a common choice to gain insight3 into the models is
to rely on existing proven and powerful analysis tools, such as model checkers, solvers or theorem
provers. Analysis tools can even be expertly combined in order to bring more interesting, more
complete or faster results. In this chapter, we make the assumption that the considered analysis
tools are external — i.e., developed by different persons and communities than the ones involved
in the modelling process shown in the top half — and black-boxes — i.e., they are taken off-the-
shelf and their internals are not known. An analysis tool typically takes an input conforming to
a specific input format, and produces a result in either a loose (e.g., raw textual description) or
a well-defined format. Some tools may also simultaneously require multiple different sources of
input (e.g., a configuration file and a model), produce multiple different result artefacts (e.g., a
counterexample and the state space used to discover it), or may even function in an incremental
fashion. Analysis tools are developed by analysis tool engineers, which are experts in the theories
and techniques implemented in the tools.

In order to enable the use of single or combined external tools for the analysis of models
created in the modelling environment, there are at least two compelling prerequisites that must
be fulfilled. First, we call tool integration the problem of actually being able to make use of each
separate analysis tool (i.e., exchange data, make queries, start and stop tasks, etc.) within the
modelling process. For instance, using a model checker requires at least to be able to (1) send
it the model and the property to be checked, (2) ask it to start the analysis, and (3) retrieve
the result. Second, we call tool orchestration the problem of configuring when and how analysis
tools should be used and/or combined in a considered modelling process, which includes how
these analysis tools should interact with each other. For instance, it must be possible to drive
a sequence of actions such as “give the model in a certain format to the model checker, start
the analysis, get the counterexample, translate it to a second format, feed it to a second tool to
replay the trace, translate the replay result back to the domain expert”.

Unfortunately, both, in between a modelling environment and analysis tools, and in between
analysis tools themselves, there are semantic gaps — i.e., differences between their semantics
— and technical gaps — i.e., differences between the technical spaces where each environment
and tool operates, such as runtime environments, application programming interfaces (APIs) or
frameworks — to take into account. Consequently, there are many obstacles to overcome in order
to solve the tool integration and tool orchestration problems, such as:

1. A model created in the modelling environment conforms to a DSML that may entirely
differ from the input format expected by a given analysis tool, thus first requiring a model
transformation to make the model understandable by the tool.

2. Since a given analysis tool is not aware of the DSML and of the domain of expertise of
the modeller (i.e., the domain expert), the result it produces is likely to be written in
“words” that the domain expert cannot easily understand, thus requiring a second model
transformation to lift the low-level result back into a format fitting the domain of interest,
and thus the domain expert.

3. When combining analysis tools, the input and output formats that they use are rarely
compatible among themselves, and thus require model transformations as well.

4. Each analysis tool may expose a specific interface (e.g., Java API, command line interface,
network socket, etc.) for programmatically interacting with it, and possesses its own explicit
or implicit protocol to use this interface (i.e., which sequences of actions provided by the
interface are valid to achieve certain tasks).

3We may be interested in insights into models such as correctness and well-formedness of models, or quality
properties of the modelled system.



64 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

5. The modelling environment and analysis tools may work in very different technical spaces,
such as different data representations (e.g., graphs vs. trees), execution environments (e.g.,
Java vs. Python) or file formats (e.g., XMI vs. JSON). These differences add technical
complexity over the task of defining sound transformations, both towards and from analysis
tools.

All these concerns are rather well known, and have all been dealt with in the past in an ad-hoc
basis in a great number of modelling environments — AF3, ASMETA, mbeddr, or Palladio to
name a few (all described in Section 5.3.2). However, to our knowledge, little work has been made
to provide general and systematic answers that could help dealing with the integration and the
orchestration of analysis tools. Hence, as an exploratory attempt to address this issue, we present
the following three contributions in this chapter. First, we propose a reference architecture —
along with important concepts — that can be used to methodically integrate and orchestrate
analysis tools into a modelling process. Second, we propose a set of requirements that qualify
which analysis tools can be properly integrated in such an architecture. Third and last, we
propose and formalise a first set of strategies that can be used to answer common integration
and orchestration cases, especially when multiple analysis tools are combined together to provide
one or multiple results. These strategies are illustrated using a selection of real-world examples
of existing ad-hoc integrations and orchestrations of analysis tools.

5.3 State of the Art

This section provides a discussion of the state of the art of integrating and orchestrating model-
based analysis tools before we propose our concepts in the sections that follow. We first give
an overview of related research on integrating and orchestrating tools and then give examples of
existing modelling environments with integrated analysis tools that may serve as inspiration and
illustration for the concepts proposed in this chapter.

5.3.1 Research on Integrating and Orchestrating Tools

A first step to systematically deal with the integration and orchestration of black-box analysis
tools is to define how to generically interact with tools. To this end, significant work has been
done in different research communities to consider tools as first-class entities.

Two early endeavours from the late 1990s are ToolBus [BK96] and the electronic tool inte-
gration (ETI) platform [SMB97; BMW97] (with some extensions made in the 2000s [MNS05;
Mar05]). Both these approaches have assumptions and goals rather similar to what we stated in
the previous section: being able to integrate existing tools into foreign processes is an important
problem, which requires proper data exchange and communication mechanisms with said tools.
These approaches already sketch important concepts such as tool adapters, type transformers,
tool coordination, or coordination universe. However, these approaches try to tackle a more
generic problem, as they make no assumptions on the context in which tools are integrated and
combined. They notably do not discuss the problem of lifting analysis results to the domain of
interest. While we do take inspiration from these early generic proposals, the present chapter
specifically focuses on the integration and orchestration of analysis tools into a modelling envi-
ronment. Moreover, our proposal also aims at providing a set of requirements for integrating
analysis tools, along with a set of interesting re-usable strategies for orchestrating them.

In the 2000s, a slightly similar proposal was made, called Model Bus [BGS05]. In a pure
MDE context, this approach aims at providing an environment where both a set of metamodels
and a set of services built for these metamodels — such as model transformations and code
generators — can be registered. These services can then easily be called and chained thanks to a
communication bus called the Model Bus. This approach is mostly targeting MDE practitioners



5.3. STATE OF THE ART 65

who need to organise a set of model manipulation services, and does not discuss the case of
external tools, or the problem of lifting back analysis results.

More recently, some approaches solely focus on the problem of combining the analysis tools.
Dwyer et al. [DE10] proposed a vision where tools can be combined using the notion of evidence
as a pivotal concept. In other words, the authors advocate for a common representation and
storage of analysis results, and means to compose these results in a meaningful way. Rather
aligned with this vision, and following a proposal from Rushby [Rus05], Cruanes et al. [Cru+13]
designed the evidential tool bus (ETB), a “distributed framework for integrating diverse tools into
coherent workflows for producing claims supported by explicit evidence”. While the approach is
very interesting, and in some ways in the steps of ETI, it mostly focuses on the problem of
storing and sharing analysis results between distributed formal analysis tools. Questions such as
the lifting of results back to the domain, or how to soundly transform domain-specific models for
analysis tools, or what common orchestration strategies can be used, are not considered.

5.3.2 Examples of Modelling Environments with Integrated Analysis Tools

In the following, we provide examples of modelling environments that integrate various external
analysis tools. All our examples are based on open-source and freely available environments.
However, commercial environments (e.g., Simulink4 and Scade5) face the same challenges when
integrating external analysis tools. These examples can be seen as existing ad-hoc applications
of the general concepts presented in this chapter.

AF3 6 [Ara+15] is an environment for modelling and specification of embedded systems. It
offers support for modelling requirements, the logical and technical architectures and deployment.
AF3 integrates NuSMV [Cim+02] for verifying models and Z3 [MB08] for generating optimal
deployments.

ASMETA 7 [Arc+11; GRS08] (ASM mETAmodeling) is a modelling environment for the ab-
stract state machines (ASMs) formal method. It is based on the integration of different tools for
performing validation and verification activities on ASM models; it integrates different external
analysis tools such as the NuSMV [Cim+02] model checker for performing property verification
and SMT solvers to support correct model refinement verification [AGR16] and runtime verifica-
tion [AGR14].

FASTEN 8 [RGS19] is a modelling environment for the specification and design of safety-
critical systems. Regarding formal analyses, the main focus of FASTEN is to experiment with
usability of formal specification and transition between informal to formal specifications. FAS-
TEN integrates various external analysis tools such as NuSMV [Cim+02], Spin [Hol03], Z3 [MB08]
and PRISM [KNP11].

mbeddr 9 is a modelling environment for the development of embedded systems. It integrates
various formal analysis tools that work at model level as well as those that work on C code.
Examples of model-level analyses are checking for consistency and completeness of decision tables
[Rat+12a; Rat+12b] using Z3 [MB08]; examples of code-level analyses are checking assertions
from C programs [Rat+13; MVR14] using CBMC [CKL04] or applying the model-driven code
checking method [RU19] using Spin [Hol03].

4Simulink: https://www.mathworks.com/products/simulink.html
5SCADE: https://www.ansys.com/products/embedded-software/ansys-scade-suite
6AF3: https://download.fortiss.org/public/projects/af3/help/index.html
7ASMETA: http://asmeta.sourceforge.net/
8FASTEN: https://sites.google.com/site/fastenroot/home
9mbeddr: http://mbeddr.com



66 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

OpenCert 10 is an integrated environment for specification and certification of cyber-physical
systems (CPS). OpenCert uses modelling languages based on SysML [Obj12] and integrates the
OCRA [CDT13] and NuXmv [Cav+14] formal verification tools for checking properties expressed
using temporal logic.

Palladio is a tool-supported approach to modelling and analysing software architectures for
various quality properties [Reu+16]. It integrates various analysis tools to predict and reason
about these quality properties into a modelling environment. Details on the Palladio approach
and the associated tooling are described in Chapter 11 of this book [Hei+21].

VCES 11 [GLO11] is an Eclipse-based environment for the modelling and analysis of software-
intensive systems. It includes an implementation of a higher-level modelling language (named
SAML - system analysis and modelling language) that is an intermediate, automata-based lan-
guage between arbitrary high-level engineering languages like SysML [Obj12] and the input lan-
guages of analysis tools. VCES features model transformations from SAML to the input of
verification tools like NuSMV [Cim+02] and PRISM [KNP11]. Results of the verification are
lifted in the VCES integrated development environment (IDE) and presented in a user-friendly
manner.

Why3 12 [FP13] is a platform for deductive program verification for the WhyML language. It
integrates a wide range of both automatic and interactive external theorem provers (more than
19 as of today), and any prover can be chosen to perform any of the proofs. While Why3 is not
a modelling environment per se — since WhyML is a programming language mostly used as an
intermediate language to verify programs written in C, Java, or Ada —, it directly deals with
the problem of integrating and orchestrating a great number of homogeneous external tools, here
using an abstraction layer dedicated to theorem provers.

TopCased
13 [Far+06] is an environment for critical applications and systems development,

using modelling languages such as UML [Obj15], SysML [Obj12] or AADL [FGH06]. The envi-
ronment relies on the Fiacre language [Ber+08] as an intermediary language to translate models
to analysis tools — such as model checkers — and to lift verification results back to the domain
expert. While TopCased is not maintained since 2013, it was one of the first successful attempts
to bridge MDE and formal verification in an single environment.

5.4 A Reference Architecture for Integrating Analysis Tools

A reference architecture is known in software engineering as a general structure for applications in
a particular domain, which may partially or fully implement the reference architecture [Som15].
We transferred the notion of a reference architecture to the problem of integrating analysis tools
into modelling environments. The reference architecture for the integration of one or multiple
analysis tools into a modelling environment is depicted in Figure 5.2. Note, in the figure we depict
two analysis tools to indicate that multiple analysis tools can be integrated, while the number of
analysis tools to be integrated is not limited.

The modelling environment is responsible for both, interacting with analysis tools and in-
teracting with the domain expert wishing to perform analyses based on domain-specific models.
The modelling environment comprises four components: (a) the DSMLs, (b) a set of tools —
e.g., editors, checkers and code generators — to create, manipulate or verify models conforming

10OpenCert: https://www.eclipse.org/opencert/
11VCES: https://cse.cs.ovgu.de/cse/researchareas/vecs/
12Why3: http://why3.lri.fr/
13

TopCased: http://www.topcased.org/





68 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

of constituents required for integrating analysis tools into modelling environments. It therefore
addresses aforementioned obstacles for tool integration and tool orchestration by providing a
template for model transformation, result lifting, explicit interfaces and protocols of analysis
tools as well as hiding technical complexity of the different tools involved. We do not go into
the details of soundness of the transformations and liftings in the reminder of this chapter. The
interested reader is referred to Chapter 4, on composition of languages, models and analyses, as
well as to Chapter 7, on exploiting tool results, of this book [Hei+21] for further details.

5.5 Requirements for Analysis Tool Integration and Orchestra-

tion

The reference architecture described in the previous section presumes that several requirements
are satisfied by the considered analysis tools. In this section, we describe such a set of require-
ments, such that analysis tools satisfying these requirements can be easily integrated and orches-
trated into modelling environments. We base these requirements on our experience as authors
— both in academia and in industry — with building and using modelling environments and
integrating analysis tools. We categorise these requirements along two dimensions: requirements
for the integration of analysis tools (Section 5.5.1), and requirements for the orchestration of
analysis tools (Section 5.5.2). The first set of requirements is about the integration of individual
tools, the second set is focused on orchestrating complex use-cases with one or more analysis
tools.

5.5.1 Integration Requirements

The following are basic requirements to analysis tools which are essential to enable their integra-
tion into modelling environments.

R1.1 Explicit input language. In order to enable the integration of an analysis tool into a
modelling environment, it shall have a precisely defined input language (both when the analysis
tool consumes textual files as well as when it exposes its functionality via APIs).

R1.2 Explicit output language. While most analysis tools have a well-defined input language
(i.e. to specify models to analyse), much fewer have a explicitly defined language (syntax and
semantics) in which analysis results are presented. We need the syntactic definition of the result
representation (aka. “output format”) in order to enable parsing — e.g., having XML or JSON
format for the output of the analysis tool dramatically helps in parsing the results. Besides the
syntax, the semantics of the output needs to be precise enough in order to enable interpretation
of analysis results.

R1.3 Explicit protocol to interact with the analysis tool. We have identified three scenarios
when an explicit protocol is needed for the integration. 1) Many analysis tools can be used in an
interactive fashion, and in these cases the protocol of commands accepted by the tools shall be
explicitly defined — e.g., the NuSMV model checker [Cim+02] offers an interactive mode that
is superior to the automated interaction mode by providing a finer granular interaction protocol
(i.e., sequence of NuSMV commands) that can be used to guide the analysis. 2) In the case
when the analysis tool provides an API, the order in which the API functions should be called is
essential for the integration — e.g., the Z3 solver [MB08] comes with a Java API that specifies
the order of function calls and this eases the integration into modelling environments. 3) Many
analysis tools can be called several times for performing a certain analysis, each call using some
information provided in a previous call — e.g., C bounded model checker (CBMC) [CKL04], a
bounded model checker for C and C++, can be called first to collect the properties to analyse
and subsequently to analyse certain properties of interest.

R1.4 Robustness in handling long-running analyses. Many times the analyses to be performed
are complex and, such as the case of formal verification, they might take hours, days or more



5.6. ORCHESTRATION STRATEGIES 69

to complete. From a tool-integrator perspective, an analysis tool needs to provide mechanisms
to handle such situations either by, e.g., setting timeouts, giving feedback about the analysis
progress, or enabling a “nice” cancel of analyses — e.g., the Z3 solver enables its users to specify
timeouts for managing long-running analyses.

R1.5 Witness for certification and assurance. When an analysis tool is used for checking
properties of safety critical systems, it shall provide an independently checkable witness of all
analysis results. In this manner, the confidence in the correct functioning of analysis tools can
be drastically increased — e.g., the software verification competition requires competing tools to
provide both correctness and violation witnesses15.

5.5.2 Orchestration Requirements

In the following, we present a set of requirements for analysis tools that aim to facilitate their
orchestration in modelling environments. Orchestration is often about result exchange and coor-
dination which brings us to these requirements.

R2.1 Re-use partial results between analyses. Many uses of analysis tools via an IDE imply
the integration of the analysis tool into a modelling workflow. Modelling happens today in an
incremental and agile fashion, with continuous changes. The interested reader is referred to
Chapter 6 of this book [Hei+21]. Ideally, the efforts required to re-analyse a model once changes
are performed shall be proportional with the size of the change and not the size of the input
model — e.g., caching partial verification results which make subsequent analyses faster or more
tractable; another example is the ordering of binary decision diagrams (BDDs) variables can be
saved by NuSMV [Cim+02].

R2.2 Provide partial results. In case when the analysis is incomplete, partial results about
what has been successfully covered are essential for the users — e.g., there are tools like CPAChecker [Bey16]
that support their users by providing partial verification results for the cases when, e.g., the ver-
ification is untractable.

R2.3 Coordination of portfolio analysers. In case of portfolio solvers, several tools can be
started simultaneously to analyse the same property. Coordinating these tools needs to be done
today at low level. Furthermore, depending on the kind of the input models and the checked
property, one or another of the integrated solvers in a portfolio might be more efficient. Having
explicit information about the strengths of the different solvers (with respect to the model under
analysis and the checked property) could be used to increase the analysis efficiency at high-level.
A notable example of portfolio solvers is, e.g. why3 [Bob+12], that offers a unified interface for
integrating and coordinating portfolios of SMT solvers.

5.6 Orchestration Strategies

A modelling environment may require the use of a single analysis tool or the coordinated use
of a number of analysis tools. In the reference architecture presented earlier in this chapter,
such coordination is achieved using so-called orchestration strategies, each one responsible for
controlling the different tool drivers and exchanging data between tool drivers and the workspace
of the modelling environment. In this section, we describe and define a selection of orchestration
strategies that, from our own experience, are both, common and relevant, for composing analysis
tools.

5.6.1 Orchestration Strategy Overview

An overview of the different types of strategies marked by capital letters is depicted in Figure 5.3
and introduced in an informal way hereafter before we give precise definitions. Note that, when

15https://sv-comp.sosy-lab.org/2020/rules.php





5.6. ORCHESTRATION STRATEGIES 71

pert. Refining the result of one analysis tool by another is an example of the sequential analysis
orchestration strategy.

5.6.2 Orchestration Strategy Definition

After giving an overview and introduction to different orchestration strategies we now give a
precise definition of each strategy.

Elements: We identify the following primitives in order to define the orchestration strategies
from Figure 5.3.

• Analysis Tool, AT . It has explicit (i.e., precise format and semantics) language to express the
tool input IAT

and explicit language to express the tool output OAT
(by basic requirements);

we can define AT = (IAT
, activity(AT ), OAT

);

• Input, I. It is the input given to an analysis tool and is expressed in a DSML of the
modelling environment;

• Output, O. It is the output result of an analysis tool and is expressed in a DSML of the
modelling environment;

• Transformation, T (I, IAT
). It is a mapping from the input I given in a DSML of the

modelling environment to the input IAT
of the analysis tool AT ;

• Lifting, L(OAT
, O). It is a mapping from the output OAT

of the analysis of the tool AT to
the output O expressed in a DSML of the modelling environment;

• Tool Driver, TD(AT ). It is a software component that defines how to make use of a specific
analysis tool, including how to translate a domain-specific model into a valid input for the
tool, how to lift back the analysis result into a form that makes sense at the abstraction level
of a domain-specific model, as well as the protocol to exchange messages and information
with the tool; therefore, it is defined as a tuple

TD(AT ) =< T (I, IAT
), L(OAT

, O), protocol(AT ) >

where T (I, IAT
) is the transformation to provide adequate input to the analysis tool AT ,

L(OAT
, O) is the lifting to make the analysis result useful at the abstraction level of a

domain-specific model, and protocol(AT ) is the protocol to exchange messages and infor-
mation with the tool AT . Transformation T and lifting L may be the identity mapping in
case the tool AT uses/returns a model in the same language that the modelling environment
uses.

A tool driver can make use of a number of different transformations and liftings, not nec-
essarily coupled, since the supported tool AT may require more than one input model
and may return more than one result model. Therefore, we can extend the definitions of
transformation and lifting in the aforementioned definition of tool driver as follows while
m,n ∈ N>0:

T (I, IAT
) =< T1(I, I1AT

), . . . , Tn(I, InAT
) >

L(OAT
, O) =< L1(O1AT

, O), . . . , Lm(OmAT
, O) >

Further, the input to a given analysis tool may comprise more than one domain-specific
model. Also the output of a given analysis tool may comprise more than one domain-specific
model. In this chapter, we consider input and output each to be a single domain-specific
model to not overly complicate the explanations and definitions given.



72 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

Orchestration strategies: We define the orchestration strategies depicted in Figure 5.3 as
follows while i ∈ N>0, j, k,m, n ∈ N>1 and m ≤ n.

• Single analysis orchestration (A): a single tool driver TD(AT ) is used, which provides input
I to a tool AT by applying transformation T (I, IAT

) and gets the output O by applying
the lifting L(OAT

, O).

• Separate parallel analysis orchestration (B): a number n of (not necessary different) tool
drivers TD(AT1

), TD(AT2
), . . . , TD(ATn) are used in parallel; each TD(ATi

) provides input
to the analysis tool ATi

by applying the transformation T (Ii, IATi
) and lifts back the output

Oi to the modelling environment by applying the lifting L(OATi
, Oi). The input Ii can be the

same input I for all TD(ATi
), or suitably customised by applying protocol(ATi

) of TD(ATi
).

It is up to the domain expert to decide about the use of the outputs O1, O2, . . . , Om (m
can be equal to n): to keep all of them, to select one of them, etc.

• Combined analysis orchestration (C): a number n of (not necessary different) tool drivers
TD(AT1

), TD(AT2
), . . . , TD(ATn) are used in parallel; each TD(ATi

) provides input to the
analysis tool ATi

by applying the transformation T (Ii, IATi
) and gets the output Oi by

applying the lifting L(OATi
, Oi). The modelling environment assembles the output O as

the result of the (internal) operation combine(O1, O2, . . . , Om) for a number m of outputs
(m can be equal to n).

• Cooperating analysis orchestration (D): a number n of (not necessary different) tool drivers
TD(AT1

), TD(AT2
), . . . , TD(ATn) are used in a cooperating way. The modelling environ-

ment provides input I to a first analysis tool AT1
by a tool driver TD(AT1

) which applies
the transformation T (I, IAT1

). According to a cooperation schema of the modelling en-
vironment, at each cooperation step, the output of a tool ATi

is then given as input to
another tool ATj

(even if already used in previous steps) by applying the transformation
T (L(OATi

, Oi), IATj
) which involves also the cooperation between protocol(TD(ATi

)) and

protocol(TD(ATj
)); upon a stop criteria (e.g., a fixed point) — defined in the cooperation

schema — is reached, the modelling environment gets the output O by applying the lifting
L(OATk

, O) of the tool driver TD(ATk
) for a given k.

• Sequential analysis orchestration (E): a number n of (not necessary different) tool drivers
TD(AT1

), TD(AT2
), . . . , TD(ATn) are used is sequence. By TD(AT1

) the modelling en-
vironment provides input I to a first analysis tool AT1

(the transformation T (I, IAT1
) is

applied); at each sequential step, the output of the tool ATi
is then given as input to the

subsequent tool ATi+1
by applying the transformation T (L(OATi

, Oi), IATi+1
) in a coopera-

tion between protocol(TD(ATi
)) and protocol(TD(ATi+1

)); upon end of the sequential use
of the orchestrated tools, the modelling environment gets the output O by applying the
lifting L(OATn

, O).

Combinations or nested compositions of the above orchestration strategies are possible in
order to perform complex model-based analyses that require tools orchestrated in a more sophis-
ticated way. Combined strategies might also require more powerful tool drivers that can share
transformations towards specific formats and are able to combine output results. Indeed, in case
different tools are used according to a complex schema such as the orchestration strategy F in
Figure 5.3, where a number n of (not necessary different) analysis tools AT1

, AT2
, . . . , ATn are

used, the unique tool driver needs a complex transformation able to transform the input model
(or suitable parts of it) into the inputs of specific tools, and combine/aggregate (in a suitable way)
all or some output results before lifting the analysis result back to the modelling environment.

However, orchestration strategies whose transformation and lifting require to share informa-
tion and combine results are not in the focus of this chapter, and therefore the formalisation of
orchestration strategies such as the case F is an open topic that needs to be addressed in future
research.



5.7. EXAMPLES OF ORCHESTRATION STRATEGY APPLICATION 73

5.7 Examples of Orchestration Strategy Application

This section provides examples for each of the strategies defined in the previous section to illus-
trate their application in existing modelling environments.

Single analysis orchestration (A): Model-based simulation is an example of the application
of the single analysis orchestration strategy. For example, the Palladio [Reu+16] software ar-
chitecture modelling and analysis approach (cf. Chapter 11 of this book [Hei+21]) uses various
analysis techniques to predict quality properties of software systems. The Palladio-Bench cor-
responds to the modelling environment. To conduct a quality analysis of a software system, an
architectural model of the system is created by domain experts in the Palladio-Bench. Several
analysis tools can be selected to be executed based on the model. One of these analysis tools
is the performance simulator SimuCom [Bec08]. The Palladio-Bench transforms the domain-
specific model (i.e. architectural model) into simulation code of SimuCom, which is executed for
performance simulation. After the simulation has been finished, the result is lifted back to the
Palladio-Bench. The Palladio-Bench in turn displays the result to the domain experts.

Similarly, the single analysis orchestration strategy is used in the ASMETA modelling envi-
ronment [Arc+11] to perform model-based analysis of the ASM specifications. The ASMETA
modelling environment can invoke a number of tools for model validation (e.g., interactive or
random simulation by the simulator AsmetaS, animation by the animator AsmetaA, scenario
construction and validation by the validator AsmetaV) and verification (e.g., static analysis by
the model reviewer AsmetaMA, proof of temporal properties by the model checker AsmetaSMV,
proof of correct model refinement [AGR16]). All these tools are orchestrated in a similar way:
An ASM model is given as input to a given tool by means of a transformation that translates the
input model into an adequate input for the target tool; the result of the analysis is then lifted
back in a way that it is understandable by the domain expert.

The modelling environments mbeddr [Voe+12], FASTEN [RGS19] and AF3 [Ara+15] all also
use this orchestration strategy. Domain-specific models are translated into the input language
of analysis tools, let them run and subsequently lift the results at model level so that they are
understandable to domain experts.

Separate parallel analysis orchestration (B): Typical examples of strategy B are portfolio
solvers which use multiple solver tools to run in parallel in order to tackle computationally difficult
problems. A well known modelling environment for different analysis tools — e.g., SMT solvers
— is Why3 [Bob+12]. Why3 takes input models described in a high-level language which aims
at maximal expressiveness without sacrificing efficiency of automated proof search. Based on the
input models, Why3 applies transformations that will gradually translate Why3’s logic into the
logic of different provers (e.g., Z3 [MB08], CVC4 [Bar+11], Yices [Dut14]). The transformations
are controlled by a configuration file, called a driver, associated to any prover supported by Why3.
The results of the external provers are then interpreted and (to some extent) lifted at the level
of the input language.

The ASMETA modelling environment also implements the separate parallel analysis orches-
tration strategy for ASM model validation. The domain expert can invoke the parallel execution
of the simulator AsmetaS and the animator AsmetaA on a same input model; results of these
analysis tools are lifted back to the modelling environment to show possible states where incon-
sistent updates (i.e., the same location is simultaneously updated to different values) or invariant
violations are detected.

mbeddr features analyses both at model level [Rat+12a] and at code level [MVR14]. Model-
level analyses such as checking the consistency and completeness of decision tables are faster
but less precise than analyses on code level since they do not take into account the C language
semantics with respect to arithmetic, floating points or pointers. Tools that implement these



74 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

analyses can be run in parallel to combine the advantages of analyses on both levels. Results of
the analysis tools can be collected and presented at the level of the domain-specific model.

Combined analysis orchestration (C): CoMA [AGR11] is a tool for runtime verification of
Java code with respect to its ASM specification. It observes the behaviour of a Java object O and
checks whether it conforms to the expected behaviour captured by an ASM specification MO.
CoMA works as modelling environment having two languages: Java for specifying the structure
and the behaviour of the object O, and AsmetaL to model the ASM MO. Code annotation
in O is used for establishing a suitable link between fields and methods of O and the state
signature (i.e., a set of locations) of MO. The operation of CoMA exploits the orchestration
strategy C on two tool drivers: that of the Java virtual machine (JVM) and that of the AsmetaS
simulator. Transformations T are the identity mappings in both cases, while lifting L of the
JVM tool driver reports back the state (i.e., a set of memory values) of a Java object and
that of the AsmetaS tool driver lifts back the state of an ASM (i.e., a set of locations’ values).
At a generic step of the runtime verification, CoMA invokes the simulation of O on the JVM.
When a changing method (i.e., a method that the domain expert wants to observe and that
has been linked to the model) of O is executed, the tool driver of JVM lifts back the current
state sO of O, and the modelling environment invokes the simulator AsmetaS on the model MO

to perform a computation step. The tool driver of AsmetaS lifts back the current model state
sMO

. The modelling environment then checks whether a conformance relation holds between
current states sO and sMO

. If they conform, the simulation of the Java object can continue and
the orchestration of the two tools starts again, otherwise a lack of conformance between code
and specification is reported, so concluding the runtime monitoring. According to our formal
definition of the orchestration strategy C, the function combine is the conformance checking
predicate since its truth value is computed by combining information from the outputs of the
tool drivers of the JVM and the AsmetaS simulator.

Further, the IDE VCES [GLO11] follows the combined analysis orchestration strategy. VCES
can be used for both qualitative and quantitative analyses by using two analysis tools, namely
NuSMV [Cim+02] and PRISM [KNP11]. Results of these analysis tools are lifted back to and
can be combined in VECS.

Cooperating analysis orchestration (D): An example of the cooperating analysis orchestra-
tion strategy is simulation coupling. For instance, maritime simulation (MariSim)16 comprises
four simulation tools that are related to Navy and maritime scenarios. The simulation tools
cooperating in MariSim are Naval Surface Tactical Maneuvering Simulation System, Navigation
Nafety, Strait Traffic Monitoring Simulation and Maritime Border Surveillance Federation. These
four simulation tools can interact, for example, in order to analyse tactical formations at sea.
The MariSim modelling environment is used to model and control the interaction between the
simulation tools. Simulation parameters (e.g., time of day or wind direction) are described in
a domain-specific model in the MariSim modelling environment and transformed for the corre-
sponding simulation tools by tool drivers. Simulation results are lifted back to the modelling
environment and passed on to another simulation tool for interaction purposes. Simulating tac-
tical formations at sea requires continuous interaction among the simulation tools, i.e., exchange
of information by transformation and lifting, until a certain stop criteria is reached.

Another example of exploiting the cooperating analysis orchestration strategy is CoMA-
SMT [AGR14], which has been developed for runtime verification of Java code with respect
to an ASM model in case of non-deterministic behaviour. Coma-SMT is a modelling environ-
ment using, as languages, Java for specifying the structure and the behaviour of an object, and
Yices for representing (initial state and transitions of) a non-deterministic ASM capturing the
code behaviour as context of the SMT-solver. Coma-SMT orchestrates the tool driver of the JVM

16MariSim: https://sites.google.com/site/okantopcu/marisim



5.7. EXAMPLES OF ORCHESTRATION STRATEGY APPLICATION 75

for the simulation of Java code and that of the SMT-solver Yices for satisfiability checking of a
context theory. Transformations T are the identity mappings in both cases, while lifting L of the
JVM tool driver reports back the state (i.e., a set of memory values) of a Java object and that of
the Yices tool driver lifts back the result of a context satisfiability checking. At a generic step of
the runtime verification, the CoMA-SMT modelling environment invokes the Java simulation on
the JVM. When a changing method (i.e., a method that the domain expert wants to observe) is
invoked, the tool driver of the JVM lifts back the current state of the Java object, and the SMT
solver is triggered by the modelling environment: the transformation consists in extending the
(current) Yices logical context by asserting a set of formulas stating the values of the observed
elements in the current state of the Java object. Yices is then used to check satisfiability of the
logical context. If the context is unsatisfiable, then the implementation does not conform with the
model and the runtime verification stops (failure fixed point is reached, see definition of strategy
D); otherwise the modelling environment continues the runtime verification by invoking a new
computation step of the Java program (in this case the transformation from the output model
of Yices to the input model of JVM is empty) until an end point of the computation (successful
fixed point) is reached.

Sequential analysis orchestration (E): The ASMETA modelling environment also exploits
this kind of strategy to orchestrate the sequential use of two different tools to implement an
approach for the automatic generation of scenarios (or abstract test cases) for refined ASM models
starting from abstract scenarios of abstract ASM models [AR19]. This approach is extremely
useful to allow reuse of artefacts in model refinement, and is based on a classical test generation
technique by exploiting counterexample generation by model checking. In this approach, the
ASMETA modelling environment first invokes a tool that transforms the abstract scenario SA
of the abstract ASM model A into a suitable temporal logic formula ψ; 6 ψ (usually called trap
property) is then model checked against the refined model R of A, and a counterexample cex is
returned to the modelling environment. The counterexample cex represents a simulation trace
of R characterised by ψ. cex is then transformed into a scenario SR and given as input to the
validator tool AsmetaV on the refined model R. AsmetaV then reports back the result of the
scenario execution to the modelling environment.

The sequential analysis orchestration strategy is also used in ASMETA for model-based testing
of Java code [AGR18]. The modelling environment invokes the ASM-based test generator ASM
tests generation tool (ATGT) to derive a test suite T from an ASM specification model of a piece of
Java code. Tests in T are then instrumented as JUnit tests by suitable transformation. The results
of running JUnit tests on the Java code are then lifted back to the modelling environment. A
similar orchestration strategy has been used in [BGM20] to implement an approach that translates
abstract test sequences, either generated randomly or through model checking, and scenarios to
concrete C++ unit tests using the Boost library17. In this case, the orchestrated tools are ATGT
or AsmetaV on one side, and the platform to run C++ test drivers on the other side.

Nested orchestration strategies: AdaptiveFlow [Sir+19; For+20] is a modelling environ-
ment for flow management in track-based systems. In AdaptiveFlow, we have nested orchestra-
tion strategies; a smaller step using single analysis orchestration (strategy A) within a sequential
analysis orchestration (strategy E), together being executed in a loop. AdaptiveFlow can be used
in different application domains like for fleet management of collaborating heavy machines in a
quarry, coordinating robots in factory aisles, and resource management of smart transport hubs
in a city.

Figure 5.4 shows AdaptiveFlow and two analysis tools, the Rebeca model checker (RMC)
and the state space analyzer (SSA). RMC [Reb19] is a customised analysis tool for the Rebeca
language and its timed extension [Sir+04; SK16]. SSA [For+20] is developed specifically for

17Boost library: https://www.boost.org/





5.8. CONCLUSION AND OUTLOOK 77

into the SSA tool for performance evaluation of the system. The output of this tool shows the
performance measures for different configurations that are checked in different iterations. This
output is lifted to be usable for the domain expert once a certain stop criteria is reached. The
output is checked by the domain expert, and helps the domain expert in decision making for
adjusting the configuration and improving the performance.

This example is explained in more detail in Chapter 13 of this book [Hei+21], together with
other similar examples representing different orchestration strategies.

5.8 Conclusion and Outlook

This chapter discussed the challenge of how to integrate and orchestrate external analysis tools
into modelling environments. We first gave a detailed overview of the considered context and
problem to be addressed. Then, we proposed a reference architecture along with important con-
cepts that can be used to methodically integrate and orchestrate analysis tools into a modelling
environments. We specified a set of requirements that qualify which analysis tools can properly
be integrated and orchestrated based on the reference architecture. Finally, we proposed and
formalised a first set of strategies that can be used to answer common integration and orches-
tration cases and showed examples of the application of these strategies in real-world modelling
environments.

Further investigation on additional ways of tool integration and orchestration is needed. These
include strategies whose transformations and liftings require to share information and combine
results like we sketched for case F in this chapter. The formalisation of orchestration strategies as
the case F needs to be addressed in the future. Another open topic is to support the specification
of new orchestration strategies by providing primitives, languages and processes for defining
orchestration strategies that may build upon the concepts proposed in this chapter. Furthermore,
the soundness of the transformations and liftings proposed in this chapter may be examined in
the future. Work on language engineering is required to precisely define the transformation of
analysis inputs and the lifting of analysis results.

Bibliography

[AGR11] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “CoMA: Conformance
Monitoring of Java Programs by Abstract State Machines”. In: Runtime Verification
- Second International Conference. 2011, pp. 223–238. doi: 10.1007/978-3-642-
29860-8_17.

[AGR14] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “Using SMT for dealing
with nondeterminism in ASM-based runtime verification”. In: Electronic Communi-
cations of the EASST 70 (2014), pp. 1–15. doi: 10.14279/tuj.eceasst.70.
970.

[AGR16] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “SMT-Based Automatic
Proof of ASM Model Refinement”. In: Software Engineering and Formal Methods -
14th International Conference. 2016, pp. 253–269. doi: 10.1007/978-3-319-
41591-8_17.

[AGR18] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “Closing the gap between
the specification and the implementation: the ASMETA way”. In: Models: Concepts,
Theory, Logic, Reasoning and Semantics - Essays Dedicated to Klaus-Dieter Schewe
on the Occasion of his 60th Birthday. 2018, pp. 242–263.

[AR19] Paolo Arcaini and Elvinia Riccobene. “Automatic Refinement of ASM Abstract
Test Cases”. In: IEEE International Conference on Software Testing, Verification
and Validation Workshops. 2019, pp. 1–10. doi: 10.1109/ICSTW.2019.00025.



78 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

[Ara+15] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and Bernhard
Schätz. “AutoFOCUS 3: Tooling Concepts for Seamless, Model-based Development
of Embedded Systems”. In: 8th International Workshop on Model-based Architecting
of Cyber-Physical and Embedded Systems. 2015, pp. 19–26. url: http://ceur-
ws.org/Vol-1508/paper4.pdf.

[Arc+11] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. “A
model-driven process for engineering a toolset for a formal method”. In: Software:
Practice and Experience 41.2 (2011), pp. 155–166. doi: https://doi.org/10.
1002/spe.1019.

[Bar+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Proceedings
of the 23rd International Conference on Computer Aided Verification, CAV. 2011,
pp. 171–177.

[Bec08] Steffen Becker. Coupled Model Transformations for QoS Enabled Component-Based
Software Design. Universitätsverlag Karlsruhe, 2008. url: https://publikationen.
bibliothek.kit.edu/1000009095.

[Ber+08] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert
Garavel, Pierre Gaufillet, Frederic Lang, and François Vernadat. “Fiacre: an Inter-
mediate Language for Model Verification in the Topcased Environment”. In: 4th Eu-
ropean Congress ERTS Embedded Real Time Software. Jan. 2008, 8p. url: https:
//hal.inria.fr/inria-00262442.

[Bey16] Dirk Beyer. “Partial Verification and Intermediate Results as a Solution to Com-
bine Automatic and Interactive Verification Techniques”. In: Leveraging Applications
of Formal Methods, Verification and Validation: Foundational Techniques. 2016,
pp. 874–880.

[BGM20] Silvia Bonfanti, Angelo Gargantini, and Atif Mashkoor. “Design and validation of
a C++ code generator from Abstract State Machines specifications”. In: Journal of
Software: Evolution and Process 32.2 (2020). doi: 10.1002/smr.2205.

[BGS05] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. “Model Bus: Towards
the Interoperability of Modelling Tools”. In: European Workshop on Model Driven
Architecture. 2005, pp. 17–32. doi: 10.1007/11538097_2.

[BK96] Johannes Aldert Bergstra and Paul Klint. “The ToolBus coordination architecture”.
In: Coordination Languages and Models. 1996, pp. 75–88. doi: 10.1007/3-540-
61052-9_40.

[BMW97] Volker Braun, Tiziana Margaria, and Carsten Weise. “Integrating tools in the ETI
platform”. In: International Journal on Software Tools for Technology Transfer 1.1-2
(Dec. 1997), pp. 31–48. doi: 10.1007/s100090050004.

[Bob+12] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich.
“Why3: Shepherd Your Herd of Provers”. In: Boogie 2011: First International Work-
shop on Intermediate Verification Languages (May 2012).

[Cav+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
“The nuXmv Symbolic Model Checker”. In: Computer Aided Verification. 2014,
pp. 334–342.

[CDT13] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. “OCRA: A Tool for
Checking the Refinement of Temporal Contracts”. In: International Conference on
Automated Software Engineering. 2013, pp. 702–705.



BIBLIOGRAPHY 79

[Cim+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. “NuSMV
2: An OpenSource Tool for Symbolic Model Checking”. In: 14th International Con-
ference on Computer Aided Verification, CAV, Proceedings. 2002, pp. 359–364.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C
Programs”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Vol. 2988. 2004, pp. 168–176.

[Cru+13] Simon Cruanes, Gregoire Hamon, Sam Owre, and Natarajan Shankar. “Tool Inte-
gration with the Evidential Tool Bus”. In: International Workshop on Verification,
Model Checking, and Abstract Interpretation. 2013, pp. 275–294. doi: 10.1007/
978-3-642-35873-9_18.

[DE10] Matthew B. Dwyer and Sebastian Elbaum. “Unifying verification and validation
techniques”. In: Proceedings of the FSE/SDP workshop on Future of software engi-
neering research. 2010. doi: 10.1145/1882362.1882382.

[Dut14] Bruno Dutertre. “Yices 2.2”. In: Computer Aided Verification. 2014, pp. 737–744.

[Far+06] Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe LE Camus, David Sci-
amma, Pierre Michel, Xavier Crégut, and Marc Pantel. “The TOPCASED project:
a Toolkit in Open source for Critical Aeronautic SystEms Design”. In: European
Congress on Embedded Real Time Software. 2006. url: https://hal.archives-
ouvertes.fr/hal-02270461.

[FGH06] Peter Feiler, David Gluch, and John Hudak. The Architecture Analysis & Design
Language (AADL): An Introduction. Tech. rep. CMU/SEI-2006-TN-011. Software
Engineering Institute, Carnegie Mellon University, 2006. url: http://resources.
sei.cmu.edu/library/asset-view.cfm?AssetID=7879.

[For+20] Giorgio Forcina, Ali Sedaghatbaf, Stephan Baumgart, Ali Jafari, Ehsan Khames-
panah, Pavle Mrvaljevic, and Marjan Sirjani. “Safe Design of Flow Management
Systems Using Rebeca”. In: J. Inf. Process. 28 (2020), pp. 588–598.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 — Where Programs Meet
Provers”. In: European Symposium on Programming Languages and Systems. 2013,
pp. 125–128. doi: 10.1007/978-3-642-37036-6_8.

[GLO11] Matthias Güdemann, Michael Lipaczewski, and Frank Ortmeier. “Tool Supported
Model-Based Safety Analysis and Optimization”. In: Proceedings of the 17th IEEE
Pacific Rim International Symposium on Dependable Computing. Jan. 1, 2011. url:
http://ieeexplore.ieee.org/abstract/document/6133100/.

[GRS08] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. “A Metamodel-based
Language and a Simulation Engine for Abstract State Machines”. In: Journal of
Universal Computer Science 14.12 (2008), pp. 1949–1983. doi: 10.3217/jucs-
014-12-1949.

[Hei+21] Robert Heinrich, Francisco Durán, Carolyn L. Talcott, and Steffen Zschaler (eds.)
Composing Model-Based Analysis Tools. Springer, 2021.

[Hol03] Gerard Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. 23rd International Conference on Com-
puter Aided Verification. Vol. 6806. 2011, pp. 585–591.

[Mar05] Tiziana Margaria. “Web services-based tool-integration in the ETI platform”. In:
Software & Systems Modeling 4.2 (May 2005), pp. 141–156. doi: 10.1007/s10270-
004-0072-z.



80 CHAPTER 5. INTEGRATION AND ORCHESTRATION OF ANALYSIS TOOLS

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems. 2008, pp. 337–340.

[MNS05] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. “jETI: A Tool for Remote Tool
Integration”. In: Tools and Algorithms for the Construction and Analysis of Systems.
2005, pp. 557–562. doi: 10.1007/978-3-540-31980-1_38.

[MVR14] Zaur Molotnikov, Markus Völter, and Daniel Ratiu. “Automated domain-specific
C verification with mbeddr”. In: International Conference on Automated Software
Engineering. 2014, pp. 539–550. doi: 10.1145/2642937.2642938.

[Obj12] Object Management Group. OMG Systems Modeling Language (OMG SysML), Ver-
sion 1.3. 2012. url: http://www.omg.org/spec/SysML/1.3/.

[Obj15] Object Management Group. UML 2.5. Tech. rep. formal/2015-03-01. Object Man-
agement Group, 2015.

[Rat+12a] Daniel Ratiu, Bernhard Schaetz, Markus Voelter, and Bernd Kolb. “Language en-
gineering as an enabler for incrementally defined formal analyses”. In: 1st Interna-
tional Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches. 2012, pp. 9–15. doi: 10.1109/FormSERA.2012.6229790.

[Rat+12b] Daniel Ratiu, Markus Voelter, Zaur Molotnikov, and Bernhard Schaetz. “Imple-
menting Modular Domain Specific Languages and Analyses”. In: Proceedings of the
Workshop on Model-Driven Engineering, Verification and Validation. 2012, pp. 35–
40. doi: 10.1145/2427376.2427383.

[Rat+13] Daniel Ratiu, Markus Voelter, Bernd Kolb, and Bernhard Schaetz. “Using Language
Engineering to Lift Languages and Analyses at the Domain Level”. In: NASA Formal
Methods Symposium. 2013, pp. 465–471. doi: 10.1007/978-3-642-38088-
4_35.

[Reb19] Rebeca. Afra Tool. http://rebeca-lang.org/alltools/Afra. 2019.

[Reu+16] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek,
Heiko Koziolek, Max Kramer, and Klaus Krogmann. Modeling and Simulating Soft-
ware Architectures – The Palladio Approach. MIT Press, 2016. url: https://
mitpress.mit.edu/books/modeling- and- simulating- software-

architectures.

[RGS19] Daniel Ratiu, Marco Gario, and Hannes Schoenhaar. “FASTEN: An Open Extensible
Framework to Experiment with Formal Specification Approaches: Using Language
Engineering to Develop a Multi-Paradigm Specification Environment for NuSMV”.
In: Proceedings of the 7th International Workshop on Formal Methods in Software
Engineering. 2019, pp. 41–50. doi: 10.1109/FormaliSE.2019.00013.

[RU19] Daniel Ratiu and Andreas Ulrich. “An integrated environment for Spin-based C code
checking - Towards bringing model-driven code checking closer to practitioners”.
In: International Journal of Software Tools for Technology Transfer 21.3 (2019),
pp. 267–286. doi: 10.1007/s10009-019-00510-w.

[Rus05] John Rushby. “An Evidential Tool Bus”. In: Formal Methods and Software Engi-
neering. 2005, pp. 36–36. doi: 10.1007/11576280_3.

[Sir+04] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. “Modeling and
Verification of Reactive Systems using Rebeca”. In: Fundamenta Informaticae 63.4
(2004), pp. 385–410.

[Sir+19] Marjan Sirjani, Giorgio Forcina, Ali Jafari, Stephan Baumgart, Ehsan Khames-
panah, and Ali Sedaghatbaf. “An Actor-Based Design Platform for System of Sys-
tems”. In: 43rd IEEE Annual Computer Software and Applications Conference. 2019,
pp. 579–587.



BIBLIOGRAPHY 81

[SK16] Marjan Sirjani and Ehsan Khamespanah. “On Time Actors”. In: Theory and Practice
of Formal Methods - Essays Dedicated to Frank de Boer on the Occasion of His 60th
Birthday. 2016, pp. 373–392.

[SMB97] Bernhard Steffen, Tiziana Margaria, and Volker Braun. “The Electronic Tool Inte-
gration platform: concepts and design”. In: International Journal on Software Tools
for Technology Transfer 1.1-2 (Dec. 1997), pp. 9–30. doi: 10.1007/s100090050003.

[Som15] Ian Sommerville. Software Engineering. Pearson, 2015.

[Voe+12] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. “Mbeddr: An
Extensible C-Based Programming Language and IDE for Embedded Systems”. In:
3rd Annual Conference on Systems, Programming, and Applications: Software for
Humanity. 2012, pp. 121–140. doi: 10.1145/2384716.2384767.


