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Introduction

Sophisticated modelling environments, often based on the principles of model-driven engineering (MDE) and software language engineering (SLE), are becoming increasingly ubiquitous. More and more disciplines, may it be avionics, automotive, constructional engineering, automation engineering or natural sciences, rely on such tools. These tools become all the more valuable if they provide deep insights into the correctness and fitness-for-purpose of the models1 used and apply model-based analysis to forecast properties of the things to be built. At the same time there is a community of analysis tool builders who distil mathematical and logic experience into analysis tools (cf. Chapter 2 of this book [START_REF]Composing Model-Based Analysis Tools[END_REF]) that rely on formalisms such as satisfiability modulo theories (SMT) formulae, transition systems or discrete event systems. Many of these analysis tools can be used beneficially in the aforementioned modelling environments if they are suitably integrated. In practice this usually means that user-facing models must be translated to the input formalism of the analysis tool, and the result of the analysis must be lifted back to the domain level. In addition, there are many use cases like in portfolio solvers, model checkers, simulation coupling, model-based testing and runtime verification where multiple existing analysis tools must be orchestrated to deliver value in the context of the modelling environment.

This chapter addresses the challenge of how to integrate and orchestrate external analysis tools into modelling environments. We first give a detailed description of the considered context several language engineers.

Then, at the bottom half of the figure, a common choice to gain insight3 into the models is to rely on existing proven and powerful analysis tools, such as model checkers, solvers or theorem provers. Analysis tools can even be expertly combined in order to bring more interesting, more complete or faster results. In this chapter, we make the assumption that the considered analysis tools are external -i.e., developed by different persons and communities than the ones involved in the modelling process shown in the top half -and black-boxes -i.e., they are taken off-theshelf and their internals are not known. An analysis tool typically takes an input conforming to a specific input format, and produces a result in either a loose (e.g., raw textual description) or a well-defined format. Some tools may also simultaneously require multiple different sources of input (e.g., a configuration file and a model), produce multiple different result artefacts (e.g., a counterexample and the state space used to discover it), or may even function in an incremental fashion. Analysis tools are developed by analysis tool engineers, which are experts in the theories and techniques implemented in the tools.

In order to enable the use of single or combined external tools for the analysis of models created in the modelling environment, there are at least two compelling prerequisites that must be fulfilled. First, we call tool integration the problem of actually being able to make use of each separate analysis tool (i.e., exchange data, make queries, start and stop tasks, etc.) within the modelling process. For instance, using a model checker requires at least to be able to (1) send it the model and the property to be checked, (2) ask it to start the analysis, and (3) retrieve the result. Second, we call tool orchestration the problem of configuring when and how analysis tools should be used and/or combined in a considered modelling process, which includes how these analysis tools should interact with each other. For instance, it must be possible to drive a sequence of actions such as "give the model in a certain format to the model checker, start the analysis, get the counterexample, translate it to a second format, feed it to a second tool to replay the trace, translate the replay result back to the domain expert".

Unfortunately, both, in between a modelling environment and analysis tools, and in between analysis tools themselves, there are semantic gaps -i.e., differences between their semantics -and technical gaps -i.e., differences between the technical spaces where each environment and tool operates, such as runtime environments, application programming interfaces (APIs) or frameworks -to take into account. Consequently, there are many obstacles to overcome in order to solve the tool integration and tool orchestration problems, such as: 1. A model created in the modelling environment conforms to a DSML that may entirely differ from the input format expected by a given analysis tool, thus first requiring a model transformation to make the model understandable by the tool.

2. Since a given analysis tool is not aware of the DSML and of the domain of expertise of the modeller (i.e., the domain expert), the result it produces is likely to be written in "words" that the domain expert cannot easily understand, thus requiring a second model transformation to lift the low-level result back into a format fitting the domain of interest, and thus the domain expert.

3. When combining analysis tools, the input and output formats that they use are rarely compatible among themselves, and thus require model transformations as well.

4. Each analysis tool may expose a specific interface (e.g., Java API, command line interface, network socket, etc.) for programmatically interacting with it, and possesses its own explicit or implicit protocol to use this interface (i.e., which sequences of actions provided by the interface are valid to achieve certain tasks).

5. The modelling environment and analysis tools may work in very different technical spaces, such as different data representations (e.g., graphs vs. trees), execution environments (e.g., Java vs. Python) or file formats (e.g., XMI vs. JSON). These differences add technical complexity over the task of defining sound transformations, both towards and from analysis tools.

All these concerns are rather well known, and have all been dealt with in the past in an ad-hoc basis in a great number of modelling environments -AF3, ASMETA, mbeddr, or Palladio to name a few (all described in Section 5.3.2). However, to our knowledge, little work has been made to provide general and systematic answers that could help dealing with the integration and the orchestration of analysis tools. Hence, as an exploratory attempt to address this issue, we present the following three contributions in this chapter. First, we propose a reference architecturealong with important concepts -that can be used to methodically integrate and orchestrate analysis tools into a modelling process. Second, we propose a set of requirements that qualify which analysis tools can be properly integrated in such an architecture. Third and last, we propose and formalise a first set of strategies that can be used to answer common integration and orchestration cases, especially when multiple analysis tools are combined together to provide one or multiple results. These strategies are illustrated using a selection of real-world examples of existing ad-hoc integrations and orchestrations of analysis tools.

State of the Art

This section provides a discussion of the state of the art of integrating and orchestrating modelbased analysis tools before we propose our concepts in the sections that follow. We first give an overview of related research on integrating and orchestrating tools and then give examples of existing modelling environments with integrated analysis tools that may serve as inspiration and illustration for the concepts proposed in this chapter.

Research on Integrating and Orchestrating Tools

A first step to systematically deal with the integration and orchestration of black-box analysis tools is to define how to generically interact with tools. To this end, significant work has been done in different research communities to consider tools as first-class entities.

Two early endeavours from the late 1990s are ToolBus [START_REF] Aldert | The ToolBus coordination architecture[END_REF] and the electronic tool integration (ETI) platform [SMB97; BMW97] (with some extensions made in the 2000s [START_REF] Margaria | jETI: A Tool for Remote Tool Integration[END_REF][START_REF] Margaria | Web services-based tool-integration in the ETI platform[END_REF]). Both these approaches have assumptions and goals rather similar to what we stated in the previous section: being able to integrate existing tools into foreign processes is an important problem, which requires proper data exchange and communication mechanisms with said tools. These approaches already sketch important concepts such as tool adapters, type transformers, tool coordination, or coordination universe. However, these approaches try to tackle a more generic problem, as they make no assumptions on the context in which tools are integrated and combined. They notably do not discuss the problem of lifting analysis results to the domain of interest. While we do take inspiration from these early generic proposals, the present chapter specifically focuses on the integration and orchestration of analysis tools into a modelling environment. Moreover, our proposal also aims at providing a set of requirements for integrating analysis tools, along with a set of interesting re-usable strategies for orchestrating them.

In the 2000s, a slightly similar proposal was made, called Model Bus [START_REF] Blanc | Model Bus: Towards the Interoperability of Modelling Tools[END_REF]. In a pure MDE context, this approach aims at providing an environment where both a set of metamodels and a set of services built for these metamodels -such as model transformations and code generators -can be registered. These services can then easily be called and chained thanks to a communication bus called the Model Bus. This approach is mostly targeting MDE practitioners who need to organise a set of model manipulation services, and does not discuss the case of external tools, or the problem of lifting back analysis results.

More recently, some approaches solely focus on the problem of combining the analysis tools. Dwyer et al. [START_REF] Dwyer | Unifying verification and validation techniques[END_REF] proposed a vision where tools can be combined using the notion of evidence as a pivotal concept. In other words, the authors advocate for a common representation and storage of analysis results, and means to compose these results in a meaningful way. Rather aligned with this vision, and following a proposal from Rushby [START_REF] Rushby | An Evidential Tool Bus[END_REF], Cruanes et al. [START_REF] Cruanes | Tool Integration with the Evidential Tool Bus[END_REF] designed the evidential tool bus (ETB), a "distributed framework for integrating diverse tools into coherent workflows for producing claims supported by explicit evidence". While the approach is very interesting, and in some ways in the steps of ETI, it mostly focuses on the problem of storing and sharing analysis results between distributed formal analysis tools. Questions such as the lifting of results back to the domain, or how to soundly transform domain-specific models for analysis tools, or what common orchestration strategies can be used, are not considered.

Examples of Modelling Environments with Integrated Analysis Tools

In the following, we provide examples of modelling environments that integrate various external analysis tools. All our examples are based on open-source and freely available environments. However, commercial environments (e.g., Simulink4 and Scade5 ) face the same challenges when integrating external analysis tools. These examples can be seen as existing ad-hoc applications of the general concepts presented in this chapter.

AF36 [Ara+15] is an environment for modelling and specification of embedded systems. It offers support for modelling requirements, the logical and technical architectures and deployment. AF3 integrates NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF] for verifying models and Z3 [START_REF] De | Z3: An Efficient SMT Solver[END_REF] for generating optimal deployments.

ASMETA7 [Arc+11; GRS08] (ASM mETAmodeling) is a modelling environment for the abstract state machines (ASMs) formal method. It is based on the integration of different tools for performing validation and verification activities on ASM models; it integrates different external analysis tools such as the NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF] model checker for performing property verification and SMT solvers to support correct model refinement verification [START_REF] Arcaini | SMT-Based Automatic Proof of ASM Model Refinement[END_REF] and runtime verification [START_REF] Arcaini | Using SMT for dealing with nondeterminism in ASM-based runtime verification[END_REF].

FASTEN8 [RGS19] is a modelling environment for the specification and design of safetycritical systems. Regarding formal analyses, the main focus of FASTEN is to experiment with usability of formal specification and transition between informal to formal specifications. FAS-TEN integrates various external analysis tools such as NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF], Spin [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF], Z3 [START_REF] De | Z3: An Efficient SMT Solver[END_REF] and PRISM [START_REF] Kwiatkowska | PRISM 4.0: Verification of Probabilistic Real-time Systems[END_REF]. mbeddr9 is a modelling environment for the development of embedded systems. It integrates various formal analysis tools that work at model level as well as those that work on C code. Examples of model-level analyses are checking for consistency and completeness of decision tables [Rat+12a; Rat+12b] using Z3 [START_REF] De | Z3: An Efficient SMT Solver[END_REF]; examples of code-level analyses are checking assertions from C programs [Rat+13; MVR14] using CBMC [START_REF] Clarke | A Tool for Checking ANSI-C Programs[END_REF] or applying the model-driven code checking method [RU19] using Spin [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF].

OpenCert 10 is an integrated environment for specification and certification of cyber-physical systems (CPS). OpenCert uses modelling languages based on SysML [START_REF]OMG Systems Modeling Language (OMG SysML)[END_REF] and integrates the OCRA [START_REF] Cimatti | OCRA: A Tool for Checking the Refinement of Temporal Contracts[END_REF] and NuXmv [START_REF] Cavada | The nuXmv Symbolic Model Checker[END_REF] formal verification tools for checking properties expressed using temporal logic.

Palladio is a tool-supported approach to modelling and analysing software architectures for various quality properties [START_REF] Reussner | Modeling and Simulating Software Architectures -The Palladio Approach[END_REF]. It integrates various analysis tools to predict and reason about these quality properties into a modelling environment. Details on the Palladio approach and the associated tooling are described in Chapter 11 of this book [START_REF]Composing Model-Based Analysis Tools[END_REF].

VCES 11 [GLO11] is an Eclipse-based environment for the modelling and analysis of softwareintensive systems. It includes an implementation of a higher-level modelling language (named SAMLsystem analysis and modelling language) that is an intermediate, automata-based language between arbitrary high-level engineering languages like SysML [START_REF]OMG Systems Modeling Language (OMG SysML)[END_REF] and the input languages of analysis tools. VCES features model transformations from SAML to the input of verification tools like NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF] and PRISM [START_REF] Kwiatkowska | PRISM 4.0: Verification of Probabilistic Real-time Systems[END_REF]. Results of the verification are lifted in the VCES integrated development environment (IDE) and presented in a user-friendly manner.

Why3 12 [FP13] is a platform for deductive program verification for the WhyML language. It integrates a wide range of both automatic and interactive external theorem provers (more than 19 as of today), and any prover can be chosen to perform any of the proofs. While Why3 is not a modelling environment per se -since WhyML is a programming language mostly used as an intermediate language to verify programs written in C, Java, or Ada -, it directly deals with the problem of integrating and orchestrating a great number of homogeneous external tools, here using an abstraction layer dedicated to theorem provers.

TopCased 13 [START_REF] Farail | The TOPCASED project: a Toolkit in Open source for Critical Aeronautic SystEms Design[END_REF] is an environment for critical applications and systems development, using modelling languages such as UML [Obj15], SysML [START_REF]OMG Systems Modeling Language (OMG SysML)[END_REF] or AADL [START_REF] Feiler | The Architecture Analysis & Design Language (AADL): An Introduction[END_REF]. The environment relies on the Fiacre language [START_REF] Berthomieu | Fiacre: an Intermediate Language for Model Verification in the Topcased Environment[END_REF] as an intermediary language to translate models to analysis tools -such as model checkers -and to lift verification results back to the domain expert. While TopCased is not maintained since 2013, it was one of the first successful attempts to bridge MDE and formal verification in an single environment.

A Reference Architecture for Integrating Analysis Tools

A reference architecture is known in software engineering as a general structure for applications in a particular domain, which may partially or fully implement the reference architecture [START_REF] Sommerville | Software Engineering[END_REF]. We transferred the notion of a reference architecture to the problem of integrating analysis tools into modelling environments. The reference architecture for the integration of one or multiple analysis tools into a modelling environment is depicted in Figure 5.2. Note, in the figure we depict two analysis tools to indicate that multiple analysis tools can be integrated, while the number of analysis tools to be integrated is not limited.

The modelling environment is responsible for both, interacting with analysis tools and interacting with the domain expert wishing to perform analyses based on domain-specific models. The modelling environment comprises four components: (a) the DSMLs, (b) a set of toolse.g., editors, checkers and code generators -to create, manipulate or verify models conforming of constituents required for integrating analysis tools into modelling environments. It therefore addresses aforementioned obstacles for tool integration and tool orchestration by providing a template for model transformation, result lifting, explicit interfaces and protocols of analysis tools as well as hiding technical complexity of the different tools involved. We do not go into the details of soundness of the transformations and liftings in the reminder of this chapter. The interested reader is referred to Chapter 4, on composition of languages, models and analyses, as well as to Chapter 7, on exploiting tool results, of this book [START_REF]Composing Model-Based Analysis Tools[END_REF] for further details.

Requirements for Analysis Tool Integration and Orchestration

The reference architecture described in the previous section presumes that several requirements are satisfied by the considered analysis tools. In this section, we describe such a set of requirements, such that analysis tools satisfying these requirements can be easily integrated and orchestrated into modelling environments. We base these requirements on our experience as authors -both in academia and in industry -with building and using modelling environments and integrating analysis tools. We categorise these requirements along two dimensions: requirements for the integration of analysis tools (Section 5.5.1), and requirements for the orchestration of analysis tools (Section 5.5.2). The first set of requirements is about the integration of individual tools, the second set is focused on orchestrating complex use-cases with one or more analysis tools.

Integration Requirements

The following are basic requirements to analysis tools which are essential to enable their integration into modelling environments. R1.1 Explicit input language. In order to enable the integration of an analysis tool into a modelling environment, it shall have a precisely defined input language (both when the analysis tool consumes textual files as well as when it exposes its functionality via APIs).

R1.2 Explicit output language. While most analysis tools have a well-defined input language (i.e. to specify models to analyse), much fewer have a explicitly defined language (syntax and semantics) in which analysis results are presented. We need the syntactic definition of the result representation (aka. "output format") in order to enable parsing -e.g., having XML or JSON format for the output of the analysis tool dramatically helps in parsing the results. Besides the syntax, the semantics of the output needs to be precise enough in order to enable interpretation of analysis results.

R1.3 Explicit protocol to interact with the analysis tool. We have identified three scenarios when an explicit protocol is needed for the integration. 1) Many analysis tools can be used in an interactive fashion, and in these cases the protocol of commands accepted by the tools shall be explicitly defined -e.g., the NuSMV model checker [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF] offers an interactive mode that is superior to the automated interaction mode by providing a finer granular interaction protocol (i.e., sequence of NuSMV commands) that can be used to guide the analysis. 2) In the case when the analysis tool provides an API, the order in which the API functions should be called is essential for the integration -e.g., the Z3 solver [START_REF] De | Z3: An Efficient SMT Solver[END_REF] comes with a Java API that specifies the order of function calls and this eases the integration into modelling environments. 3) Many analysis tools can be called several times for performing a certain analysis, each call using some information provided in a previous call -e.g., C bounded model checker (CBMC) [START_REF] Clarke | A Tool for Checking ANSI-C Programs[END_REF], a bounded model checker for C and C++, can be called first to collect the properties to analyse and subsequently to analyse certain properties of interest.

R1.4 Robustness in handling long-running analyses. Many times the analyses to be performed are complex and, such as the case of formal verification, they might take hours, days or more to complete. From a tool-integrator perspective, an analysis tool needs to provide mechanisms to handle such situations either by, e.g., setting timeouts, giving feedback about the analysis progress, or enabling a "nice" cancel of analyses -e.g., the Z3 solver enables its users to specify timeouts for managing long-running analyses.

R1.5 Witness for certification and assurance. When an analysis tool is used for checking properties of safety critical systems, it shall provide an independently checkable witness of all analysis results. In this manner, the confidence in the correct functioning of analysis tools can be drastically increased -e.g., the software verification competition requires competing tools to provide both correctness and violation witnesses15 .

Orchestration Requirements

In the following, we present a set of requirements for analysis tools that aim to facilitate their orchestration in modelling environments. Orchestration is often about result exchange and coordination which brings us to these requirements.

R2.1 Re-use partial results between analyses. Many uses of analysis tools via an IDE imply the integration of the analysis tool into a modelling workflow. Modelling happens today in an incremental and agile fashion, with continuous changes. The interested reader is referred to Chapter 6 of this book [START_REF]Composing Model-Based Analysis Tools[END_REF]. Ideally, the efforts required to re-analyse a model once changes are performed shall be proportional with the size of the change and not the size of the input model -e.g., caching partial verification results which make subsequent analyses faster or more tractable; another example is the ordering of binary decision diagrams (BDDs) variables can be saved by NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF].

R2.2 Provide partial results. In case when the analysis is incomplete, partial results about what has been successfully covered are essential for the users -e.g., there are tools like CPAChecker [START_REF] Beyer | Partial Verification and Intermediate Results as a Solution to Combine Automatic and Interactive Verification Techniques[END_REF] that support their users by providing partial verification results for the cases when, e.g., the verification is untractable.

R2.3 Coordination of portfolio analysers. In case of portfolio solvers, several tools can be started simultaneously to analyse the same property. Coordinating these tools needs to be done today at low level. Furthermore, depending on the kind of the input models and the checked property, one or another of the integrated solvers in a portfolio might be more efficient. Having explicit information about the strengths of the different solvers (with respect to the model under analysis and the checked property) could be used to increase the analysis efficiency at high-level. A notable example of portfolio solvers is, e.g. why3 [START_REF] Bobot | Why3: Shepherd Your Herd of Provers[END_REF], that offers a unified interface for integrating and coordinating portfolios of SMT solvers.

Orchestration Strategies

A modelling environment may require the use of a single analysis tool or the coordinated use of a number of analysis tools. In the reference architecture presented earlier in this chapter, such coordination is achieved using so-called orchestration strategies, each one responsible for controlling the different tool drivers and exchanging data between tool drivers and the workspace of the modelling environment. In this section, we describe and define a selection of orchestration strategies that, from our own experience, are both, common and relevant, for composing analysis tools.

Orchestration Strategy Overview

An overview of the different types of strategies marked by capital letters is depicted in Figure 5.3 and introduced in an informal way hereafter before we give precise definitions. Note that, when pert. Refining the result of one analysis tool by another is an example of the sequential analysis orchestration strategy.

Orchestration Strategy Definition

After giving an overview and introduction to different orchestration strategies we now give a precise definition of each strategy.

Elements: We identify the following primitives in order to define the orchestration strategies from Figure 5.3.

• Analysis Tool, A T . It has explicit (i.e., precise format and semantics) language to express the tool input I A T and explicit language to express the tool output O A T (by basic requirements); we can define A T = (I A T , activity(A T ), O A T );

• Input, I. It is the input given to an analysis tool and is expressed in a DSML of the modelling environment;

• Output, O. It is the output result of an analysis tool and is expressed in a DSML of the modelling environment;

• Transformation, T (I, I A T ). It is a mapping from the input I given in a DSML of the modelling environment to the input I A T of the analysis tool A T ;

• Lifting, L(O A T , O). It is a mapping from the output O A T of the analysis of the tool A T to the output O expressed in a DSML of the modelling environment;

• Tool Driver, T D(A T ). It is a software component that defines how to make use of a specific analysis tool, including how to translate a domain-specific model into a valid input for the tool, how to lift back the analysis result into a form that makes sense at the abstraction level of a domain-specific model, as well as the protocol to exchange messages and information with the tool; therefore, it is defined as a tuple

T D(A T ) =< T (I, I A T ), L(O A T , O), protocol(A T ) >
where T (I, I A T ) is the transformation to provide adequate input to the analysis tool A T , L(O A T , O) is the lifting to make the analysis result useful at the abstraction level of a domain-specific model, and protocol (A T ) is the protocol to exchange messages and information with the tool A T . Transformation T and lifting L may be the identity mapping in case the tool A T uses/returns a model in the same language that the modelling environment uses.

A tool driver can make use of a number of different transformations and liftings, not necessarily coupled, since the supported tool A T may require more than one input model and may return more than one result model. Therefore, we can extend the definitions of transformation and lifting in the aforementioned definition of tool driver as follows while m, n ∈ N >0 :

T (I, I A T ) =< T 1 (I, I 1A T ), . . . , T n (I, I nA T ) > L(O A T , O) =< L 1 (O 1A T , O), . . . , L m (O mA T , O) >
Further, the input to a given analysis tool may comprise more than one domain-specific model. Also the output of a given analysis tool may comprise more than one domain-specific model. In this chapter, we consider input and output each to be a single domain-specific model to not overly complicate the explanations and definitions given.

Orchestration strategies: We define the orchestration strategies depicted in Figure 5.3 as follows while i ∈ N >0 , j, k, m, n ∈ N >1 and m ≤ n. • Cooperating analysis orchestration (D): a number n of (not necessary different) tool drivers T D(A T 1 ), T D(A T 2 ), . . . , T D(A Tn ) are used in a cooperating way. The modelling environment provides input I to a first analysis tool A T 1 by a tool driver T D(A T 1 ) which applies the transformation T (I, I A T 1 ). According to a cooperation schema of the modelling environment, at each cooperation step, the output of a tool A T i is then given as input to another tool A T j (even if already used in previous steps) by applying the transformation T (L(O A T i , O i ), I A T j ) which involves also the cooperation between protocol (T D(A T i )) and protocol (T D(A T j )); upon a stop criteria (e.g., a fixed point) -defined in the cooperation schema -is reached, the modelling environment gets the output O by applying the lifting L(O A T k , O) of the tool driver T D(A T k ) for a given k.

• Sequential analysis orchestration (E): a number n of (not necessary different) tool drivers T D(A T 1 ), T D(A T 2 ), . . . , T D(A Tn ) are used is sequence. By T D(A T 1 ) the modelling environment provides input I to a first analysis tool A T 1 (the transformation T (I, I A T 1 ) is applied); at each sequential step, the output of the tool A T i is then given as input to the subsequent tool A T i+1 by applying the transformation

T (L(O A T i , O i ), I A T i+1
) in a cooperation between protocol (T D(A T i )) and protocol (T D(A T i+1 )); upon end of the sequential use of the orchestrated tools, the modelling environment gets the output O by applying the lifting L(O A Tn , O).

Combinations or nested compositions of the above orchestration strategies are possible in order to perform complex model-based analyses that require tools orchestrated in a more sophisticated way. Combined strategies might also require more powerful tool drivers that can share transformations towards specific formats and are able to combine output results. Indeed, in case different tools are used according to a complex schema such as the orchestration strategy F in Figure 5.3, where a number n of (not necessary different) analysis tools A T 1 , A T 2 , . . . , A Tn are used, the unique tool driver needs a complex transformation able to transform the input model (or suitable parts of it) into the inputs of specific tools, and combine/aggregate (in a suitable way) all or some output results before lifting the analysis result back to the modelling environment.

However, orchestration strategies whose transformation and lifting require to share information and combine results are not in the focus of this chapter, and therefore the formalisation of orchestration strategies such as the case F is an open topic that needs to be addressed in future research.

Examples of Orchestration Strategy Application

This section provides examples for each of the strategies defined in the previous section to illustrate their application in existing modelling environments.

Single analysis orchestration (A):

Model-based simulation is an example of the application of the single analysis orchestration strategy. For example, the Palladio [Reu+16] software architecture modelling and analysis approach (cf. Chapter 11 of this book [START_REF]Composing Model-Based Analysis Tools[END_REF]) uses various analysis techniques to predict quality properties of software systems. The Palladio-Bench corresponds to the modelling environment. To conduct a quality analysis of a software system, an architectural model of the system is created by domain experts in the Palladio-Bench. Several analysis tools can be selected to be executed based on the model. One of these analysis tools is the performance simulator SimuCom [START_REF] Becker | Coupled Model Transformations for QoS Enabled Component-Based Software Design[END_REF]. The Palladio-Bench transforms the domainspecific model (i.e. architectural model) into simulation code of SimuCom, which is executed for performance simulation. After the simulation has been finished, the result is lifted back to the Palladio-Bench. The Palladio-Bench in turn displays the result to the domain experts.

Similarly, the single analysis orchestration strategy is used in the ASMETA modelling environment [START_REF] Arcaini | A model-driven process for engineering a toolset for a formal method[END_REF] to perform model-based analysis of the ASM specifications. The ASMETA modelling environment can invoke a number of tools for model validation (e.g., interactive or random simulation by the simulator AsmetaS, animation by the animator AsmetaA, scenario construction and validation by the validator AsmetaV) and verification (e.g., static analysis by the model reviewer AsmetaMA, proof of temporal properties by the model checker AsmetaSMV, proof of correct model refinement [START_REF] Arcaini | SMT-Based Automatic Proof of ASM Model Refinement[END_REF]). All these tools are orchestrated in a similar way: An ASM model is given as input to a given tool by means of a transformation that translates the input model into an adequate input for the target tool; the result of the analysis is then lifted back in a way that it is understandable by the domain expert.

The modelling environments mbeddr [START_REF] Voelter | Mbeddr: An Extensible C-Based Programming Language and IDE for Embedded Systems[END_REF], FASTEN [START_REF] Ratiu | FASTEN: An Open Extensible Framework to Experiment with Formal Specification Approaches: Using Language Engineering to Develop a Multi-Paradigm Specification Environment for NuSMV[END_REF] and AF3 [START_REF] Vincent Aravantinos | AutoFOCUS 3: Tooling Concepts for Seamless, Model-based Development of Embedded Systems[END_REF] all also use this orchestration strategy. Domain-specific models are translated into the input language of analysis tools, let them run and subsequently lift the results at model level so that they are understandable to domain experts.

Separate parallel analysis orchestration (B):

Typical examples of strategy B are portfolio solvers which use multiple solver tools to run in parallel in order to tackle computationally difficult problems. A well known modelling environment for different analysis tools -e.g., SMT solvers -is Why3 [START_REF] Bobot | Why3: Shepherd Your Herd of Provers[END_REF]. Why3 takes input models described in a high-level language which aims at maximal expressiveness without sacrificing efficiency of automated proof search. Based on the input models, Why3 applies transformations that will gradually translate Why3's logic into the logic of different provers (e.g., Z3 [START_REF] De | Z3: An Efficient SMT Solver[END_REF], CVC4 [START_REF] Barrett | CVC4[END_REF], Yices [START_REF] Dutertre | Yices 2.2[END_REF]). The transformations are controlled by a configuration file, called a driver, associated to any prover supported by Why3. The results of the external provers are then interpreted and (to some extent) lifted at the level of the input language.

The ASMETA modelling environment also implements the separate parallel analysis orchestration strategy for ASM model validation. The domain expert can invoke the parallel execution of the simulator AsmetaS and the animator AsmetaA on a same input model; results of these analysis tools are lifted back to the modelling environment to show possible states where inconsistent updates (i.e., the same location is simultaneously updated to different values) or invariant violations are detected.

mbeddr features analyses both at model level [START_REF] Ratiu | Language engineering as an enabler for incrementally defined formal analyses[END_REF] and at code level [START_REF] Molotnikov | Automated domain-specific C verification with mbeddr[END_REF]. Modellevel analyses such as checking the consistency and completeness of decision tables are faster but less precise than analyses on code level since they do not take into account the C language semantics with respect to arithmetic, floating points or pointers. Tools that implement these analyses can be run in parallel to combine the advantages of analyses on both levels. Results of the analysis tools can be collected and presented at the level of the domain-specific model.

Combined analysis orchestration (C):

CoMA [AGR11] is a tool for runtime verification of Java code with respect to its ASM specification. It observes the behaviour of a Java object O and checks whether it conforms to the expected behaviour captured by an ASM specification M O . CoMA works as modelling environment having two languages: Java for specifying the structure and the behaviour of the object O, and AsmetaL to model the ASM M O . Code annotation in O is used for establishing a suitable link between fields and methods of O and the state signature (i.e., a set of locations) of M O . The operation of CoMA exploits the orchestration strategy C on two tool drivers: that of the Java virtual machine (JVM) and that of the AsmetaS simulator. Transformations T are the identity mappings in both cases, while lifting L of the JVM tool driver reports back the state (i.e., a set of memory values) of a Java object and that of the AsmetaS tool driver lifts back the state of an ASM (i.e., a set of locations' values). At a generic step of the runtime verification, CoMA invokes the simulation of O on the JVM. When a changing method (i.e., a method that the domain expert wants to observe and that has been linked to the model) of O is executed, the tool driver of JVM lifts back the current state s O of O, and the modelling environment invokes the simulator AsmetaS on the model M O to perform a computation step. The tool driver of AsmetaS lifts back the current model state s M O . The modelling environment then checks whether a conformance relation holds between current states s O and s M O . If they conform, the simulation of the Java object can continue and the orchestration of the two tools starts again, otherwise a lack of conformance between code and specification is reported, so concluding the runtime monitoring. According to our formal definition of the orchestration strategy C, the function combine is the conformance checking predicate since its truth value is computed by combining information from the outputs of the tool drivers of the JVM and the AsmetaS simulator.

Further, the IDE VCES [START_REF] Güdemann | Tool Supported Model-Based Safety Analysis and Optimization[END_REF] follows the combined analysis orchestration strategy. VCES can be used for both qualitative and quantitative analyses by using two analysis tools, namely NuSMV [START_REF] Cimatti | NuSMV 2: An OpenSource Tool for Symbolic Model Checking[END_REF] and PRISM [START_REF] Kwiatkowska | PRISM 4.0: Verification of Probabilistic Real-time Systems[END_REF]. Results of these analysis tools are lifted back to and can be combined in VECS.

Cooperating analysis orchestration (D): An example of the cooperating analysis orchestration strategy is simulation coupling. For instance, maritime simulation (MariSim) 16 comprises four simulation tools that are related to Navy and maritime scenarios. The simulation tools cooperating in MariSim are Naval Surface Tactical Maneuvering Simulation System, Navigation Nafety, Strait Traffic Monitoring Simulation and Maritime Border Surveillance Federation. These four simulation tools can interact, for example, in order to analyse tactical formations at sea. The MariSim modelling environment is used to model and control the interaction between the simulation tools. Simulation parameters (e.g., time of day or wind direction) are described in a domain-specific model in the MariSim modelling environment and transformed for the corresponding simulation tools by tool drivers. Simulation results are lifted back to the modelling environment and passed on to another simulation tool for interaction purposes. Simulating tactical formations at sea requires continuous interaction among the simulation tools, i.e., exchange of information by transformation and lifting, until a certain stop criteria is reached.

Another example of exploiting the cooperating analysis orchestration strategy is CoMA-SMT [START_REF] Arcaini | Using SMT for dealing with nondeterminism in ASM-based runtime verification[END_REF], which has been developed for runtime verification of Java code with respect to an ASM model in case of non-deterministic behaviour. Coma-SMT is a modelling environment using, as languages, Java for specifying the structure and the behaviour of an object, and Yices for representing (initial state and transitions of) a non-deterministic ASM capturing the code behaviour as context of the SMT-solver. Coma-SMT orchestrates the tool driver of the JVM for the simulation of Java code and that of the SMT-solver Yices for satisfiability checking of a context theory. Transformations T are the identity mappings in both cases, while lifting L of the JVM tool driver reports back the state (i.e., a set of memory values) of a Java object and that of the Yices tool driver lifts back the result of a context satisfiability checking. At a generic step of the runtime verification, the CoMA-SMT modelling environment invokes the Java simulation on the JVM. When a changing method (i.e., a method that the domain expert wants to observe) is invoked, the tool driver of the JVM lifts back the current state of the Java object, and the SMT solver is triggered by the modelling environment: the transformation consists in extending the (current) Yices logical context by asserting a set of formulas stating the values of the observed elements in the current state of the Java object. Yices is then used to check satisfiability of the logical context. If the context is unsatisfiable, then the implementation does not conform with the model and the runtime verification stops (failure fixed point is reached, see definition of strategy D); otherwise the modelling environment continues the runtime verification by invoking a new computation step of the Java program (in this case the transformation from the output model of Yices to the input model of JVM is empty) until an end point of the computation (successful fixed point) is reached.

Sequential analysis orchestration (E):

The ASMETA modelling environment also exploits this kind of strategy to orchestrate the sequential use of two different tools to implement an approach for the automatic generation of scenarios (or abstract test cases) for refined ASM models starting from abstract scenarios of abstract ASM models [START_REF] Arcaini | Automatic Refinement of ASM Abstract Test Cases[END_REF]. This approach is extremely useful to allow reuse of artefacts in model refinement, and is based on a classical test generation technique by exploiting counterexample generation by model checking. In this approach, the ASMETA modelling environment first invokes a tool that transforms the abstract scenario S A of the abstract ASM model A into a suitable temporal logic formula ψ; ψ (usually called trap property) is then model checked against the refined model R of A, and a counterexample c ex is returned to the modelling environment. The counterexample c ex represents a simulation trace of R characterised by ψ. c ex is then transformed into a scenario S R and given as input to the validator tool AsmetaV on the refined model R. AsmetaV then reports back the result of the scenario execution to the modelling environment.

The sequential analysis orchestration strategy is also used in ASMETA for model-based testing of Java code [START_REF] Arcaini | Closing the gap between the specification and the implementation: the ASMETA way[END_REF]. The modelling environment invokes the ASM-based test generator ASM tests generation tool (ATGT) to derive a test suite T from an ASM specification model of a piece of Java code. Tests in T are then instrumented as JUnit tests by suitable transformation. The results of running JUnit tests on the Java code are then lifted back to the modelling environment. A similar orchestration strategy has been used in [START_REF] Bonfanti | Design and validation of a C++ code generator from Abstract State Machines specifications[END_REF] to implement an approach that translates abstract test sequences, either generated randomly or through model checking, and scenarios to concrete C++ unit tests using the Boost library 17 . In this case, the orchestrated tools are ATGT or AsmetaV on one side, and the platform to run C++ test drivers on the other side.

Nested orchestration strategies: AdaptiveFlow [Sir+19; For+20] is a modelling environment for flow management in track-based systems. In AdaptiveFlow, we have nested orchestration strategies; a smaller step using single analysis orchestration (strategy A) within a sequential analysis orchestration (strategy E), together being executed in a loop. AdaptiveFlow can be used in different application domains like for fleet management of collaborating heavy machines in a quarry, coordinating robots in factory aisles, and resource management of smart transport hubs in a city.

Figure 5.4 shows AdaptiveFlow and two analysis tools, the Rebeca model checker (RMC) and the state space analyzer (SSA). RMC [START_REF] Tool | [END_REF] is a customised analysis tool for the Rebeca language and its timed extension [START_REF] Sirjani | Modeling and Verification of Reactive Systems using Rebeca[END_REF][START_REF] Sirjani | Theory and Practice of Formal Methods -Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday[END_REF]. SSA [START_REF] Forcina | Safe Design of Flow Management Systems Using Rebeca[END_REF] is developed specifically for into the SSA tool for performance evaluation of the system. The output of this tool shows the performance measures for different configurations that are checked in different iterations. This output is lifted to be usable for the domain expert once a certain stop criteria is reached. The output is checked by the domain expert, and helps the domain expert in decision making for adjusting the configuration and improving the performance.

This example is explained in more detail in Chapter 13 of this book [START_REF]Composing Model-Based Analysis Tools[END_REF], together with other similar examples representing different orchestration strategies.

Conclusion and Outlook

This chapter discussed the challenge of how to integrate and orchestrate external analysis tools into modelling environments. We first gave a detailed overview of the considered context and problem to be addressed. Then, we proposed a reference architecture along with important concepts that can be used to methodically integrate and orchestrate analysis tools into a modelling environments. We specified a set of requirements that qualify which analysis tools can properly be integrated and orchestrated based on the reference architecture. Finally, we proposed and formalised a first set of strategies that can be used to answer common integration and orchestration cases and showed examples of the application of these strategies in real-world modelling environments.

Further investigation on additional ways of tool integration and orchestration is needed. These include strategies whose transformations and liftings require to share information and combine results like we sketched for case F in this chapter. The formalisation of orchestration strategies as the case F needs to be addressed in the future. Another open topic is to support the specification of new orchestration strategies by providing primitives, languages and processes for defining orchestration strategies that may build upon the concepts proposed in this chapter. Furthermore, the soundness of the transformations and liftings proposed in this chapter may be examined in the future. Work on language engineering is required to precisely define the transformation of analysis inputs and the lifting of analysis results.

•

  Single analysis orchestration (A): a single tool driver T D(A T ) is used, which provides input I to a tool A T by applying transformation T (I, I A T ) and gets the output O by applying the lifting L(O A T , O). T 1 ), T D(A T 2 ), . . . , T D(A Tn ) are used in parallel; each T D(A T i ) provides input to the analysis tool A T i by applying the transformation T (I i , I A T i ) and lifts back the output O i to the modelling environment by applying the lifting L(O A T i , O i ). The input I i can be the same input I for all T D(A T i ), or suitably customised by applying protocol(A T i ) of T D(A T i ).It is up to the domain expert to decide about the use of the outputs O 1 , O 2 , . . . , O m (m can be equal to n): to keep all of them, to select one of them, etc.• Combined analysis orchestration (C): a number n of (not necessary different) tool driversT D(A T 1 ), T D(A T 2 ), . . . ,T D(A Tn ) are used in parallel; each T D(A T i ) provides input to the analysis tool A T i by applying the transformation T (I i , I A T i ) and gets the output O i by applying the lifting L(O A T i , O i ). The modelling environment assembles the output O as the result of the (internal) operation combine(O 1 , O 2 , . . . , O

	• Separate parallel analysis orchestration (B): a number n of (not necessary different) tool
	drivers T D(A

m ) for a number m of outputs (m can be equal to n).

Note, while Chapter

of this book[START_REF]Composing Model-Based Analysis Tools[END_REF] postulates analysis input as three kinds of models -of system, of property and of context -we stay with the term model in this chapter since a distinction of the kind of model is not relevant here.

We may be interested in insights into models such as correctness and well-formedness of models, or quality properties of the modelled system.
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