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Abstract— Collective Perception Messages (CPM) enable ve-
hicles to share their perceived objects with their neighbors
in V2X network. These perception data extend local vehicles’
perception and consequently improve road safety awareness.
However, attacks on perception data are challenging and re-
quire advanced and efficient misbehavior detection mechanism
especially in specific road scenarios where contradictory infor-
mation need to be analysed. In this work, we introduce a trust
management framework to detect misbehaving nodes through
transmitted CPM messages. Our framework is based on trust
assessment built through several processing steps. It addresses
conflict situation when contradictory data are received using
the Subjective Logic mechanism. The results show that our
solution is effective in detecting misbehaving nodes based on
their attributed trust scores. In addition, we show the impact
of our solution and some CPM configuration parameters on
safety services and especially on risk anticipation in intersection
scenarios.

I. INTRODUCTION

Autonomous vehicles are equipped with several sensors
that enable the detection of dynamic objects on the road.
However, sensor perception of the surrounding objects is
limited to their Field Of View (FOV) and blocked by the
occluding obstacles. Collective Perception (CP) services are
designed to enable vehicles to extend their local perception of
the environment with additional perception data. These data
are sent by their neighbors through Collective Perception
Messages (CPM) [1]. In this service, neighboring vehicles or
Road-Side-Units (RSU) broadcast the list of their local sen-
sors’ perceived objects in the V2X (Vehicle-to-Everything)
network. The receiving vehicles merge these data with their
local perceived objects to elaborate an extended view of the
environment. The generalized architecture proposed in [2] is
one of the first proposed architectures where V2X exchanged
messages are considered as an additional virtual sensor along
with the local embedded sensors. The global perception
information is then used by high level ITS services such
as collision warning, obstacle avoidance and others, to take
appropriate driving decisions.

However, such cooperative system leaves the opportunity
for an attacker to broadcast erroneous perception information
in his neighborhood intentionally. It is also possible that a
perception device module is faulty and thus provides false
perception information. In general, to enable ITS services to
function correctly, it is mandatory to validate and to verify
the consistency and the trustworthiness of each received
CPM data when it is fused with the local perception and

with other received V2X messages data. These operations
are part of the misbehavior detection process [3].

So far, several works exist on Misbehavior detection in
the literature [4] [5]. However, most of them are mainly
addressing manipulation attacks of the kinematic senders’
data. Such attacks consist on, for a given ego vehicle,
modifying its own kinematic information transmitted in the
beacon information (e.g. through the Cooperative Awareness
Messages, CAM). Misbehavior attacks on CPM data, on the
other hand, consist essentially on modifying the perceived
scene data by manipulating the perceived objects kinematic
characteristics. Smart attackers are even able to report con-
tinuously consistent and correct perceived scene but which
may lead safety application to take inappropriate decisions
and then create severe safety damages. These new attacks im-
pose additional detection challenges. For instance, a typical
complex situation occurs when an ego vehicle receives two
contradictory statements on one or several perceived objects
from its neighbors. To handle this conflict situation, the ego
needs to detect accurately the misbehaving sender and to
react appropriately to that. In this paper, we propose and
implement a misbehavior assessment framework based on
an enhanced trust management model at several levels of
the misbehavior detection process. Our framework covers a
large set of collective perception attacks ranging from basic
attacks to advanced attacks leading to conflict situations. Our
trust management model takes into consideration specific
communication parameters and realistic perception scenarios.
It integrates at a certain level the subjective logic mechanism
which allows the fusion of several incoming data from the
neighborhood when a conflict situation is detected.

The paper is organized as follows: section II presents the
related work to the addressed topic. Section III details our
proposed framework which is experimented and evaluated in
section V. Finally, section VI concludes the paper and gives
some perspectives.

II. RELATED WORK

Misbehavior detection in cooperative vehicular systems
captures a lot of attention in the past few years. Giving
the ephemeral aspects of the communication links in such
systems, existing solutions are mainly based on data-centric
techniques [3]. The main idea is to analyse the transmitter’s
kinematic data to verify their plausibility and consistency [5].
Some methods use either direct verification or probabilistic
techniques while other methods deploy machine learning



techniques [6] [7]. Even if they show encouraging detection
results, the focus of these work was limited to data manipu-
lation attacks on beacon messages (such as CAM messages).

Recently, some works addressed the misbehavior attacks
on collective perception data. [8] proposes a generic frame-
work for misbehaviour detection using collective perception.
Their framework is based on several levels of detection. The
work elaborates a useful generic view giving details on how
to proceed with data verification for collective perception but
does not give a concrete solution nor validation results of the
proposed framework.

There is another category of works which is based on
assessing trust based on the reported neighbors messages. [9]
is one of the first works that propose to attribute trust to data
rather than nodes in the context of ephemeral networks such
as the vehicular network. They propose a generic framework
template where they attribute trust for each individual piece
of information called evidence reporting a specific event
at different phases. The ultimate trust establishment phase
is based on different data fusion techniques. The authors
show that using the Dempster Shafer theory in the fusion
process works well when there is a high uncertainty about the
event while the Bayesian inference performs best when the a
prior knowledge are provided. The author of [10] propose a
misbehavior detection approach based on Bayesian filter to
estimate the trust of the received collective perception data.
They mainly address the manipulation of perceived object
attacks and show that their solution is effective for these
attacks. However their approach does not take into consider-
ation the particularities of the perception environment which
is quite dynamic.

The work in [11] from the multi-sensor fusion field
addresses a similar issue which is the detection of faulty
perception sensor in a distributed sensor network to support
automated driving. The proposed model takes into consid-
eration realistic perception situations and the fusion process
is based on the Dempster Shafer (DS) belief theory. Even if
the DS shows promising results in fingerprinting the faulty
behavior, it have been proven that it may produce counter-
intuitive results in conflict situations.

Subjective logic (SL) [12] [13] is another data fusion
approach which provides a formalism to represent opinions
as belief, disbelief, and uncertainty. Some previous works
use SL for Misbehavior detection in V2X systems [14]
[15] and show promising results. Our proposed solution is
inspired by the generic framework of [9] and is implemented
in the context of collective perception. From the different
trust assessment phases which consider realistic perception
situations, our approach integrates the SL in the final step
when a certain level of conflict is reached.

III. MISBEHAVIOR DETECTION FOR COLLECTIVE
PERCEPTION SERVICES

A. Attacker Model

We consider an attacker which is part of the cooperative
vehicular system. The attacker is able to send and to receive
the V2X messages. This is because he is authenticated

and the integrity of his V2X messages is validated by the
receivers. The attacker is able to change intentionally the
data contained in the CPM message. Specifically, he may
change the values of the attributes of the perceived objects
continuously. For instance, as shown in Fig.1(a), the attacker

(a) Omission attacks (b) Ghost attacks

Fig. 1: Examples of advanced attacks on cooperative percep-
tion

may omit the transmission of a perceived vehicle in an
intersection. The perception of the ego vehicle, that is about
to perform an insertion maneuver, is limited due to the
existence of obstacles such as buildings. This scenario is
particularly dangerous especially if the omitted vehicle is not
equipped with communication capabilities and may generate
a high risk of accident. Fig.1(a) illustrates an other attack
scenario. The attacker may create a ghost object on the
intersection and sends it in the CPM message. Consequently,
the attacker will gain the priority even if we suppose that the
ego vehicle has the highest priority to perform the insertion
maneuver.

B. Problem Statement and contributions

In the previous section, we illustrate two examples of ad-
vanced attacks on collective perception services. Compared
to attacks where data are not plausible or are not consis-
tent in several consecutive CPMs, these attacks are more
challenging to detect. First, the attacker sends periodically
consistent information in the consecutive CPMs. Second,
the ego vehicle has a limited FoV and thus is not able to
verify the correctness of the CPM sent information (e.g.
either the omitted object or the ghost object in Fig.1. Third,
the scenario may generate a word against word situation
where the attacker sends a false confirmation about an
omitted (or a ghost) object, whereas a benign vehicle (the
blue vehicle in Fig.1) sends a totally opposite statement. In
addition to all these challenges, it is also known that road
perception environments are highly changing and that sensors
information are potentially uncertain.

Our contribution will address all the already presented
challenges. We propose a misbehavior detection framework
based on trust assessment that

1) detects basic as well as advanced collective perception
attacks.

2) considers communication and perception environment
particularities to assign trust scores.

3) addresses the conflict situation where an ago receives
contradictory CPM data.



IV. TRUST ASSESSMENT APPROACH

A. Preliminaries

We denote each perceived environmental entity with an
identity (e.g. vehicles, RSUs, pedestrians, and etc). All the
existing nodes can be sources or objects. The source nodes
can communicate with each others (i.e., send and receive
V2X data). The object nodes which are the environment
entities perceived and reported by a source are not equipped
with V2X capabilities. In the following, we present the
classes of nodes that we assume in our approach. The classes
depend on two criteria, the perception of a node and its
validity.

Fig. 2: Node types

1) Source Node Perception:

• Directly visible, it means that ego can perceive the node
directly thanks to its onboard sensors. It is the case of
the source node A1 or the object node C2 in Fig.2.

• Indirectly visible, the node cannot be perceived directly
by ego, but its existence can be proved by more than
one source (i.e. at least two neighbors reporting in their
CPM that they perceive the node or at least the node
itself sends a CAM and another neighbor reports its
existence through a CPM). In Fig.2, this is the case of
node A2 reported by node B through a CPM and by
itself through a CAM and A3 reported by both node B
and D through CPM.

• Invisible, the node cannot be perceived directly by ego
and no one can prove its existence. This is the case of
node C1 which is only reported by a CPM sent by node
B as illustrated in Fig.2.

2) Source Node Validity:

• Valid source, we assume that the directly visible source
and the indirectly visible source are valid sources that
pass through the process of misbehavior detection with
success and there is no detected conflict in its perception
data with both the ego’s data and the neighbors data.

• Non valid source are sources that are either invisible
(both directly and indirectly) to the ego or that are
detected as misbehaving or there is a possible conflict
in their data.

B. Trust assessment Framework

We designed a trust assessment framework based on four
phases as illustrated in Fig.3. This trust assessment frame-
work combining with the misbehavior detection part and
the decision logic part can help us detect majority of naive
attacks (e.g. kinematic data modification) and determine the
misbehaving node from a controversial event.

Fig. 3: General Framework

1) Initialization: The initialization phase assigns an initial
trust value to all the sources. For instance, we may consider
the source type (i,e. vehicle, RSU) or the source permissions
(i,e. ordinary vehicle, police vehicle, etc). We assign the
default trustworthiness for different source types at different
levels. When ego receives the first V2X message from a new
source, ego assigns a trustworthiness value to this new source
depend on the source type. For instance, ego assigns a higher
value for RSUs than to ordinary vehicles. This is because we
assume that RSUs are more protected than usual OBUs (On
Bord Units) embedded in cars.

2) Trust revision L1: Status Evaluation: In a trust system,
the establishment of trustworthiness should consider the
environmental factors. The communication lifetime with the
ego is an attribute of particular importance. It is reasonable to
consider that the node which has a longer connection period
with the ego (i.e. neighborhood period) is assigned a higher
trust value. In addition, when the ego perceives a source
directly with its own sensors, it would assigns it a higher
trust value. As shown in Fig.4, First, when ego receives a new
V2X message from a neighboring source, ego should check if
it has received a V2X message from this source in the past
(N > 1, N is the number of received messages from the
same source) and if this source is a valid source (as defined
in Section IV-A.2). Then, ego should check if this source is
within its local perception range. If ego perceives directly
this source, ego should attribute an offset of +δ to the trust



Fig. 4: Trust revision L1: Environment Assessment Module

score of the source. Next, ego considers the communication
lifetime with the source as an environment state factor to
compute the trust score. The environment state evaluation
function f1 is defined as follows:

f1 =
α1

1 + e−β1n+γ1
, f1 ∈ [0,∆max] (1)

We think that environment factors should not give a high
weight to the global trust evaluation. The trust bonus is
limited to ∆max = 1

α1
, n represents the number of received

messages from the source, which gives an indication of
the neighborhood communication lifetime. The parameters
α1,β1,γ1 are positive calibration parameters. We choose
α1 = 0.1, β1 = 1, γ1 = 8. We limit the maximum trust
bonus ∆max related to the communication lifetime at 0.1. We
assume this maximum value would not impact considerably
the global trust value. In our case, ego starts to increase the
trustworthiness of a valid transmitting source after 2 seconds
since the target changed its own state from invalid to valid.
Then, after receiving 12 seconds, the trust bonus of lifetime
achieves its maximum.

Second, if the new V2X message (CPM) is from an invalid
source and ego has already attributed the trust bonus to the
local perception or to the environment factors to this source,
we employ the penalty functions to decrease the already
attributed trust bonus. We design two penalty functions as
follows, that considers two situations.

• Lost target: when ego looses a source target which has
been tracked by its perception module for a certain time,
ego should reduce the trust until removing the whole
given offset +δ. The loss of trustworthiness over time
is computed through the f2 function as follows:

f2 = −α2nL + β2, f2 ∈ [−δ, 0] (2)

nL is the number of received messages from the source
since it can not be perceived by ego. δ, α2, β2 are positive
calibration parameters. To be sure that the perceived
object has left the FoV of the ego and that it is not
coasting in the FoV (I,e: leaving and re-entering the FoV),
we choose a function defined by parts to compute the

trustworthiness T at a given time t as presented in Eq.3
T0, nL ≤ β2

α2

Tt+1 = Tt − |f2(nL(t))− f2(nL(t−1))|,
β2

α2
< nL ≤ δ + β2

α2

T0 − δ, nL >
δ + β2

α2
(3)

In this work, we choose δ = 0.2, α2 = 0.04, β2 = 0.08.
We assume that when the source object is lost for more
than 2 seconds its trustworthiness starts to decrease. If the
source object leaves the FoV of the ego for more than 7
seconds, the maximum trust discount is attributed.

• Valid source changes to invalid: In a dynamic environ-
ment, the nodes sometimes change their state (e.g. valid
sources can change to invalid and vice versa). When a
valid (considered as reliable) source changes to invalid
(considered as unreliable), ego should update the created
trust relationship. This penalty function is a symmetric
function of Eq.1 to the x axis, as follows:

f3 =
−α3

1 + e−β3np+γ3
, f3 ∈ [−∆max, 0] (4)

The parameters α3,β3,γ3 are positive calibration param-
eters, where α3 = α1, β3 = β1, γ3 = γ1. np represents
the number of received messages from the source since it
changed its valid status to invalid.
3) Trust revision L2: Misbehavior detection: The second

important phase of our framework is the misbehavior de-
tection performed on the CPM data. These attacks could be
kinematic data modification, ghost injection, object omission
etc. This phase allows to detect the majority of naive
attacks via plausibility and consistency checks. Plausibility
checks verifies if an attribute value (e.g., the velocity of
the perceived object) is within an acceptable interval. The
consistency checks verify if two attributes are consistent or
if a received attribute value is consistent with the previous
ones. We use the same misbehavior detectors specified in [4].
In this paper, we are more focused on addressing advanced
attacks which create conflict situations. The misbehavior
detection step consists of two verification levels:

– Source reliability verification
Ego should ensure that the neighbor sources are reliable.

The CPM has to provide plausible and consistent kinematic
data about the neighbor itself, as shown in Fig.5.

• For invisible source, ego can employ some basic detec-
tors to verify the received data. We use data plausibility
checks and data consistency checks (such as checking
the consistency of the current data with the previous
received data from the same neighbor source) etc.

• For directly visible source and indirectly visible source,
ego can employ other advanced detectors. Ego can
compare the received data with its local perception data
or the received perception data from other sources.

– Perception data reliability verification
Ego should check the plausibility of the perception data

provided by the neighboring sources. Ego should also check



Fig. 5: Source Reliability Verification Module

Fig. 6: Perception Data Reliability Verification Module

the consistency of the perception data over the past received
perception information by the same source.

As shown in Fig.6, ego should determine the reported
object by other sources, whether the reported object is in
ego’s local perception or not. If the reported object has al-
ready been in the local perception, the ego’s local perception
check has the highest priority. Then, ego should check the
plausibility and consistency of the perception data with the
previous data received from the same source. If this reported
object is also in other sources’ perception range, ego should
check the conflict and the redundancy among these sources
which have common perception. Hence, we use a cumulative
sum operator to assess the misbehavior degree at the end
of the misbehavior detection step. If the returned result is
greater than the predefined misbehavior threshold θmis, we
assume that the new received V2X message is sent by a
misbehaving source. It needs to be noted here, this predefined
misbehavior threshold θmis does not associate with the trust,
but it indicates a misbehavior degree.
Trust Revision after detection of conflict

The trust in a misbehaving vehicle would decrease to zero
in this step. When ego detects the conflict among the data
provided by the neighboring sources, ego should reduce the
trustworthiness of all sources which are associated to the
conflict event. We define a conflict penalty function g(E).

g(E) =

N∏
e=1

αconf(e), e ∈ E (5)

αconf(e) represents the penalty coefficient of the conflict

event, N represents the number of conflict events associated
with the source, E represents a set of conflict events.

4) Trust revision L3: Opinions fusion: Opinions fusion
module is the last phase of our framework. In case of
conflict between the incoming CPMs, the trust into nodes
should be revised when their reported opinions have more
conflict degrees Eq.9 with other nodes’ opinions reporting
on the same information statement. In this paper, we used
the Subjective Logic [12] approach.

The trust revision L3 consists of the following steps:
1) Source Opinion Construction

The ego vehicle considers each received CPM as evi-
dence by the emitting node C of the presence or absence
of the conflict object X . The Ego can evaluate the
opinion wC

X of vehicle C in the existence of conflict
object X using the framework of subjective logic [12].
Let r represent positive evidence, i.e. the number of
received CPMs from C where the conflict object X is
present. Similarly, let s be the negative evidence, i.e. the
number of CPMs where the conflict object X is absent.
Then wC

X takes the form:

wC
X ⇒


b(x) =

r

r + s+W

b(x̄) =
s

r + s+W

u =
W

r + s+W

(6)

The non-informative prior weight is expressed as a
constant W , normally set to W = 2.

2) Trust Discounting
Ego’s referral trust in C can be expressed as a binomial
opinion where the opinions are defined as trust and
distrust. Then, via the C’s advice opinion about X , the
ego’s derived opinion about X is expressed as follows:

w
|Ego:C|
X ⇒



b
[Ego:C]
X (x) = PEgo

C (t)bCX(x)

b
[Ego:C]
X (x̄) = PEgo

C (t)bCX(x̄)

uX = 1− PEgo
C (t)

∑
x∈X

bCX(x)

a
[Ego:C]
X (x) = aEgo

X (x)

(7)

3) Calculation of the reference opinion
The reference opinion is a simple average belief fusion
[12] which relates to calculate the the degree of conflict.

wRef
X = ⊕C∈C(w

|Ego:X|
X ) (8)

4) Calculation of the degree of conflict
The trust in sources should be revised as a function of
the degree of conflict (DC) which was defined in [12]:

DC(wC
x ) =

1

2
(1−uRef

X )(1−uC
X)

∑
x∈X

|PRef
X (x)−PC

X (x)|

(9)
5) Trust Revision

In this step, ego revises the trust in sources whose
degree of conflict is over the average. The revision
mechanism is defined in [13].



MC(wC
X) = max

C∈C
DC(wC

X) (10)

AC(wC
X) =

1

card{C}
∑
C∈C

DC(wC
X) (11)

RW (wC
Ego) =


MC(wC∈C

X )(BC(wC
X)−AC(wC

X))

MC(wC∈C
X )−AC(wC

X)

, IF (BC(wC
X)−AC(wC

X)) > 0

0 , otherwise
(12)

ŵEgo
C ⇒



b̂Ego
C (x) = bEgo

C (x)(1−RW (wC
Ego))

b̂Ego
C (x̄) = bEgo

C (x)(1−RW (wC
Ego)) +RW (wC

Ego)

ûEgo
C = uEgo

C (1−RW (wC
Ego))

âEgo
C = aEgo

C
(13)

MC stands for max conflict, AC for average conflict, RW for
revision weight, ŵ for revised opinion respectively.

The node will be classified as misbehaving if the revised
trust is under the predefined threshold θL3.

V. FRAMEWORK EVALUATION

We validate and evaluate our proposed framework by
simulation on Artery [16]. We add the Collective Perception
service module to Artery. We integrate the F2MD [17]
framework to Artery and extend it with misbehavior attacks
for Collective Perception and finally we add our trust-based
framework on top of it.

A. T-junction scenario with Omission Attack

We evaluated the proposed trust framework in a T-junction
scenario with obstruction as illustrated in Fig.7. The scenario
includes 5 vehicles which are 4 vehicles exchanging CPMs,
i.e. one vehicle under test (39, ego), two benign vehicles (63
and 69), one attacker denoted 26. Vehicle 1 is an unconnected
vehicle which is incapable of transmitting V2V messages.
The ego drives towards to the intersection with the intention
to turn right. Meanwhile, unconnected vehicle 1 drives from
right to left and the attacker is behind it. Then, 63 and
69 start moving from left to right and from right to left
respectively. According to the traffic rule, vehicles coming
from the right road have the higher priority to cross the
intersection. When ego approaches the intersection, and due
to the building which limits its local perception view, ego
needs to choose a strategy to turn right based on the received
CPMs from its neighbors. We assume that vehicle 1 is
driving with a high speed, therefore in the usual case ego
has to decelerate or to stop if it is aware about vehicle 1. In
order to test the performance of the proposed framework, we
implement an omission attack. The attacker 26 broadcasts
a sequence of CPMs omitting the perception information

Fig. 7: T-junction scenario with omission attack

about the unconnected vehicle 1. The ego receives the CPMs
from vehicle 26 which only contain the information about
itself. Then the ego receives the CPMs which contain the
information about vehicle 1 from vehicle 63 and 69. The
vehicle 63 is configured to have a little higher speed than
the other vehicles. When vehicle 1, 26, 69 approach to
intersection, vehicle 63 was already in the intersection zone
and was perceived by the ego for a short time. The ego
received redundant information about vehicle 1 for few
seconds.

In absence of an efficient solution of misbehavior detec-
tion, the ego can not confirm the existence of vehicle 1 and
judge which vehicle (between vehicle 26, 69) is probably
malicious. In other words, the ego can not confirm that
the conflict information about vehicle 1 is caused by the
omission attack from vehicle 26 or the ghost injection attack
from vehicle 69. As a result, the ego is confused about the
decision of crossing the intersection. If the ego believes that
vehicle 69 makes a ghost injection attack then turns right,
it’s a very dangerous behavior that will cause a high risk
collision. In opposite, if the ego chooses to yield to the
vehicle 1 due to the existence of vehicle 1 and vehicle 69
makes a truly ghost injection attack about vehicle 1, this may
cause a priority deprivation.

B. Simulation Settings

In the simulation, we set a constant velocity model.
The sensors detect the object that are in their perception
range. Obstacles that mask the perception are also taken
into account. The simulation parameters are summarized as
follows:
• Sensor range = 65m, 80m, 100m, 150m, 200m. All

simulated vehicles are equipped with the same front
sensor.

• CPM generation frequency = 100ms, 200ms, 500ms, 1s,
2s, 5s

• Default assigned trust score = 0.5, as the initial trust score
for each new connected vehicle.

• Perceived Trust Bonus δ = 0.2, which is an offset when
a vehicle is perceived by the ego.

• Conflict penalty coefficient αconf = 0.9, Eq.5.
• Trust threshold = 0.1, if the trust on a vehicle is below

this threshold, the vehicle is classified as misbehaving.
Messages from this vehicle are then ignored completely.



Fig. 8: Trust evaluation in each vehicle

(a) (b)

Fig. 9: the safety metric D with different CPM generation frequency and different sensor range

C. Performance Evaluation Analysis

1) Evaluation of the Trust Attribution Efficiency: To
evaluate the performance of the proposed framework, we
measure the trust values attributed by each vehicle to its
neighbors during the simulation. We use a CPM transmission
frequency of 1s and a sensor range of 65m. Omission attack
starts at 20 seconds in the scenario.

As shown in Fig.8, at 20 seconds, vehicle 69 detects
the unconnected vehicle 1 within its field of view (FoV).
Meanwhile, vehicle 69 receives the CPMs transmitted by the
attacker which don’t contain the information about vehicle
1. Vehicle 69 confirmed the correctness of the kinematic
attributes of the attacker (vehicle 26). However, it believes
that the CPMs sent by vehicle 26 should include the per-
ception information about vehicle 1. Hence, the trust score
attributed vehicle 69 to the attacker drops to zero, as shown
by Label 1 . It also shows that ego and vehicle 63 detect a
conflict event from the received CPMs of vehicle 69 and the
attacker. This is because they are not able to perceive vehicle
1 directly through their local sensors. Therefore, they apply
the conflict penalty function Eq.5. At 31 seconds, vehicle 63
is perceived by the ego. After 2 seconds, vehicle 1 enters in
the FoV of vehicle 63. Vehicle 63 can confirm the kinematic
attributes of vehicle 1, thus the trust score in attacker drops
immediately. However, ego still can’t perceive vehicle 1,
as shown by label 2 . Ego adds vehicle 63 in the same
conflict event. When Ego receives enough confirmations
about vehicle 1 through the CPMs of vehicle 63, ego starts
to execute the trust revision algorithm discussed in Section

IV.B.4, as shown by label 3 . Even without the perception
of vehicle 1, the trust score in attacker drops below the
threshold in ego after 3 seconds. When the ego eliminates
the misbehaving vehicle, the ego returns the trust which
is reduced by the conflict penalty function to other benign
vehicles, as shown by Label 4 . Label 5 is associated to
the event where vehicle 63 and vehicle 69 perceive each
other. Then, the ego reduces the trust in vehicle 63 due to
its disappearance from the ego’s FoV.

2) Impact of misbehavior detection performance on safety
risk assessment: we define the safety metric D to capture the
ability of the proposed detection framework to inform higher
level safety applications about safety risks. Concretely, we
measure the delay between the misbehavior detection time
and the time the ego reaches the intersection. This would
give us an idea if our solution allows safety application to
anticipate dangerous situation such as sudden braking or
collision in the intersection. In another word, the earlier
the erroneous information is detected (and consequently
the attacker is detected), the longer would be the time to
reach the intersection and thus to anticipate a potential
collision for example. We formulate this delay in Eq.14,
where TIntersection is the time at which the ego would reach
the intersection and Tmis is the time the ego detects the
vehicle omission.

D = TIntersection − Tmis (14)

a) The CPM generation frequency: In Fig.9(a), We
evaluate 6 different CPMs frequencies ranging from 100ms



to 5s. The result shows that the proposed framework is not
functional when the CPM frequency is equal or higher than
5s. It means that the ego is not able to detect that vehicle
26 is an attacker and that it omitted vehicle 1 in the CPMs
before crossing the intersection. In this case, the ego does
not simply receive enough observations about vehicle 1 from
other vehicles to build each vehicle opinion (See Section
IV.B). For this frequency, the misbehavior detection solution
was not useful to anticipate the danger. The delay for the
ego to arrive to the intersection since the misbehavior is
detected is about 12.5 seconds when the frequency is 100ms
and about 8 seconds when the frequency is 1s. For these
frequencies, our framework was more reactive to detect the
misbehaving vehicle (i.e. from the conflict assessment step
to the final misbehavior detection step). As a conclusion, a
higher CPM frequency in intersection scenarios with smart
attackers allows a better misbehavior detection and leads to
better reaction time to avoid dangerous situations.

b) The sensor range configuration: Another considered
element which impacts the performance of the proposed
framework is the sensor configuration. Here, we simulate
the effect of sensor range configuration using the same safety
metric. In Fig.9(b), the result highlights that the sensor range
can improve significantly the vehicle reaction time. With a
wider sensor range, vehicles have more perception. Then,
they have more chance to detect the conflict (i.e. ghost
object or omitted object). With increased sensor range, the
ego is able to receive the contradictory CPMs when it is
relatively still far from the intersection. Consequently, the ego
is aware about the omission attack in advance. On the other
hand, the fusion algorithm would get more precision and
converge more rapidly due to more observations. However,
it doesn’t really mean that a wider sensor range is always
better. [18] shows that the sensor configuration can impact
negatively the object perception ratio and the packet delivery
ratio and as a result the performance degrades as the sensor
range increases. For this, a trade-off between sensor range
configuration, communication performance and safety level
needs to be found.

VI. CONCLUSION

In this paper, we present a misbehavior detection frame-
work based on trust assessment for collective perception
services. The framework uses different levels to update the
trust score given to participating nodes. It uses the subjective
logic when a conflict is detected among nodes. The proposed
framework is evaluated in T-junction traffic scenario for
object omission attack. The simulation results show that the
proposed framework allows ego to quickly and effectively
detect and remove the misbehaving nodes. We also show
that our solution has a positive impact on safety risk antic-
ipation in intersections scenarios when the CPM generation
frequency and the sensor range are suitably chosen. This
general framework opens a series of questions about the
scalability, the feasibility in a complex models and etc. As
a future work, we plan to evaluate our solution taking into
consideration more advanced parameters such as perception

uncertainty and more complex attacks on new road scenarios.
We plan also to study the extension of our solution to semi-
global scheme based for example on detection by RSUs.
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