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 based on hypocoercivity methods to get quantitative estimates on the convergence to equilibrium of the discrete solution. Finally, we prove that in the diffusive limit, the scheme is asymptotic preserving with respect to both the time variable and the scaling parameter at play.

Introduction

This article is devoted to the numerical approximation and analysis of the linear Vlasov-Fokker-Planck equation, corresponding to the kinetic description of the Brownian motion of a large system of charged particles under the effect of a force field.

Our main motivation comes from an electrostatic plasma composed of charged particles, where the Coulomb force are taken into account. The time evolution of the electron distribution function f solves the Vlasov-Fokker-Planck system coupled with the Poisson equation giving a self-consistent potential Φ:

       ∂f ∂t + v • ∇ x f + q e m e E • ∇ v f = 1 τ e div v (vf + T 0 ∇ v f ) , -ε 0 ∆Φ = q e R 3
f dv, where E = -∇ x Φ is the self-consistent electric field, ε 0 is the vacuum permittivity, q e and m e are elementary charge and mass of the electrons, whereas τ e is the relaxation time due to the collisions of the particles with the surrounding bath and T 0 the background temperature. In the present article, we will not consider the coupling with the Poisson equation and suppose that the electric field E is given and only depends on the space variable. We refer to [START_REF] Filbet | Fokker-Planck multi-species equations in the adiabatic asymptotics[END_REF] and our forthcoming work [START_REF] Blaustein | An asymptotic-preserving scheme for the Vlasov-Poisson-Fokker-Planck model[END_REF] dedicated to the numerical approximation and analysis of the Vlasov-Poisson-Fokker-Planck system.

Considering ε > 0 as the square root of the ratio between the mass of electrons and ions and τ (ε) > 0 the ratio between the elapsed time between two collisions of electrons and the observable time, it allows to identify different regimes and the Vlasov equation may be written in a adimensional form (1.1)

ε ∂f ∂t + v • ∇ x f + E(x) • ∇ v f = ε τ (ε) div v (vf + T 0 ∇ v f ) ,
Our main purpose here is to build and analyze a numerical scheme able to capture two regimes of interest for equation (1.1) in a linear framework: the long time behavior t → ∞ and the diffusive regime ε → 0. In various situations, the scaling parameters at play may be non homogeneous across the system leading to intricate situations, where both processes may coexist. Thus, we aim at designing a scheme robust enough to capture simultaneously these different behaviors.

More precisely, we consider the one dimensional Vlasov-Fokker-Planck equation with periodic boundary conditions in space, which reads (1.2)

∂ t f + 1 ε (v ∂ x f + E ∞ ∂ v f ) = 1 τ (ε) ∂ v (v f + T 0 ∂ v f ) ,
with t ≥ 0, position x ∈ T and velocity v ∈ R, whereas the electric field derives from a potential ϕ ∞ such that E ∞ = -∂ x ϕ ∞ , with the following regularity assumption

(1.3) ϕ ∞ ∈ W 2,∞ (T) .
We also define the density ρ by integrating the distribution function in velocity,

(1.4) ρ(t, x) = R f (t, x, v) dv.
It is worth to mention that there are already several works on preserving large-time behaviors of solutions to the Fokker-Planck equation or related kinetic models. On the one hand, a fully discrete finite difference scheme for the homogeneous Fokker-Planck equation has been proposed in the pioneering work of Chang and Cooper [START_REF] Chang | A practical difference scheme for Fokker-Planck equations[END_REF]. This scheme preserves the stationary solution and the entropy decay of the numerical solution. On the other hand, finite volume schemes preserving the exponential trend to equilibrium have been studied for non-linear convection-diffusion equations (see for example [START_REF] Schmeiser | Convergence of moment methods for linear kinetic equations[END_REF][START_REF] Bessemoulin | A finite volume scheme for nonlinear degenerate parabolic equations[END_REF][START_REF] Burger | A mixed finite element method for nonlinear diffusion equations[END_REF][START_REF] Chainais | Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model[END_REF][START_REF] Gosse | Identification of asymptotic decay to self-similarity for one-dimensional filtration equations[END_REF]). More recently, in [START_REF] Pareschi | Residual equilibrium schemes for time dependent partial differential equations[END_REF], the authors investigate the question of describing correctly the equilibrium state of non-linear diffusion and kinetic models for high order schemes. Let us also mention some works on boundary value problems [START_REF] Filbet | A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure[END_REF][START_REF] Chainais | Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations[END_REF] where non-homogeneous Dirichlet boundary conditions are dealt with.

In the case of space non homogeneous kinetic equations, the convergence to equilibrium becomes tricky because of the lack of coercivity since dissipation occurs only in the velocity variable whereas transport acts in the space variable. Therefore, only few results are available and a better understanding of hypocoercive structures at the discrete level is challenging. Let us mention a first rigorous work in this direction on the Kolmogorov equation [START_REF] Porretta | Numerical hypocoercivity for the Kolmogorov equation[END_REF][START_REF] Foster | A structure preserving scheme for the Kolmogorov-Fokker-Planck equation[END_REF][START_REF] Emmanuil | Hypocoercivity-compatible finite element methods for the long-time computation of Kolmogorov's equation[END_REF]. In [START_REF] Foster | A structure preserving scheme for the Kolmogorov-Fokker-Planck equation[END_REF], a time-splitting scheme is applied and it is shown that solutions have polynomial decay in time. In [START_REF] Porretta | Numerical hypocoercivity for the Kolmogorov equation[END_REF][START_REF] Emmanuil | Hypocoercivity-compatible finite element methods for the long-time computation of Kolmogorov's equation[END_REF], a different approach has been used, based on the work of Hérau [START_REF] Hérau | Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models[END_REF] and Villani [START_REF] Villani | Hypocoercivity[END_REF], for finite difference and a finite element schemes. Later, Dujardin, Hérau and Lafitte [START_REF] Dujardin | Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker-Planck equations[END_REF] studied a finite difference scheme for the kinetic Fokker-Planck equation. Finally, in a more recent work [START_REF] Bessemoulin-Chatard | Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations[END_REF], the authors established a discrete hypocoercivity framework based on the continuous approach provided in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. It is based on a modified discrete entropy, equivalent to a weighted L 2 norm involving macroscopic quantities and the authors show quantitative estimates on the numerical solution for large time and in the limit ε → 0.

The present contribution can be considered as a continuation of this latter work in order to discretize the kinetic Fokker-Planck equation with an applied force field. On the one hand, we consider the case where the interactions associated to collisions and electrostatic effects have the same magnitude, that is, τ (ε) ∼ ε, hence the limit t/ε → +∞ corresponds to the long time behavior of equation (1.2). In this regime, the distribution function f relaxes towards the stationary solution to the Vlasov-Fokker-Planck equation ρ ∞ M, where the Maxwellian M is given by

M(v) = 1 √ 2π T 0 exp - |v| 2 2 T 0 ,
whereas the density ρ ∞ is determined by

(1.5) ρ ∞ = c 0 exp - ϕ ∞ T 0 ,
where the constant c 0 is fixed by the conservation of mass, that is,

T ρ ∞ dx = T×R f 0 (x, v) dx dv .
Thus, we set f ∞ the stationary state of (1.2), defined as

f ∞ (x, v) = ρ ∞ (x) M(v)
and we expect that f → f ∞ as t/ε → +∞.

On the other hand, the diffusive regime corresponds to a frontier where collisions dominate but still not enough to cancel completely the electrostatic effects. This situation occurs as ε → 0 in the case where τ (ε) ∼ τ 0 ε 2 , for some τ 0 > 0. Due to collisions, the distribution of velocities also relaxes towards a Maxwellian equilibrium. However, in this case, the spatial distribution converges to a time dependent distribution ρ whose dynamics are driven by a drift-diffusion equation depending on the force field E ∞ . Indeed, performing the change of variable x → x + τ 0 ε v in (1.2) and integrating with respect to v, we deduce that the quantity

π (t, x) = R f (t, x -τ 0 ε v, v) dv ,
solves the following equation

∂ t π + τ 0 ∂ x R E ∞ f (t, x -τ 0 ε v, v) dv -T 0 ∂ x π = 0 .
According to its definition, π verifies: ρ ∼ π in the limit ε → 0. Therefore, we may formally replace π with ρ and ε with 0 in the latter equation. This yields

f (t, x, v) -→ ε→0 ρ τ0 (t, x) M(v) ,
where ρ τ0 solves

(1.6) ∂ t ρ τ0 + τ 0 ∂ x (E ∞ ρ τ0 -T 0 ∂ x ρ τ0 ) = 0 .
To be noted that this regime is an intermediate situation which contains more information than the long time asymptotic since we have ρ → ρ ∞ by taking either t → +∞ or τ 0 → +∞ in the latter equation. At the discrete level, Asymptotic-Preserving schemes have been developed to capture in a discrete setting the diffusion limit, so that in the limit ε → 0, the numerical discretization converges to the macroscopic model (see for instance [START_REF] Shi | Uniformly accurate diffusive relaxation schemes for multiscale transport equations[END_REF][START_REF] Liu | Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit[END_REF][START_REF] Filbet | A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF] on finite difference and finite volume schemes and [START_REF] Dimarco | Asymptotic-preserving Monte Carlo methods for transport equations in the diffusive limit[END_REF][START_REF] Crestetto | A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling[END_REF] on particle methods).

In the present article, our aim is to design a numerical scheme which is able to capture these two regimes but also all the intermediate situations where

ε 2 ≲ τ (ε) ≲ ε. More precisely, we suppose that (1.7) sup ε>0 τ (ε) ε ≤ τ 0 ∈ (0 , +∞)
and distinguish two cases on τ (ε) : (i) either the diffusive regime assumption

(1.8) τ (ε) ε 2 -→ ε→0 τ 0 < +∞ ,
where collisional effects strongly dominate; (ii) or the intermediate regime assumption

(1.9) τ (ε) ε 2 -→ ε→0 +∞ ,
which may for instance correspond to τ (ε) = ε β , with 1 ≤ β < 2. It describes all the intermediate situations between long time and diffusive regime. The starting point of our analysis is the following estimate, obtained multiplying equation (1.2) by f / f ∞ , and balancing the transport term with the source term corresponding to the electric field thanks to the weight

f -1 ∞ (1.10) 1 2 d dt T×R |f -f ∞ | 2 f -1 ∞ dx dv + T 0 τ (ε) T×R ∂ v f f ∞ 2 f ∞ dx dv = 0 .
This estimate is important since it yields a L 2 stability result on the solution to the Vlasov-Fokker-Planck equation (1.2). Our purpose is to design a numerical scheme for which such estimate occurs. To this aim, we split our approach in two steps: first we apply a Hermite spectral decomposition in velocity of f and then we apply a structure preserving finite volume scheme for the space discretization. In the next section (Section 2), we provide explicit convergence rates for the continuous model written in the Hermite basis (see Theorems 2.1 and 2.2). This first step allows us to present the general strategy and to highlight the main properties of the transport operator in order to design suitable numerical scheme. Therefore, in Section 3 we adapt these latter results without any loss to the fully discrete setting using a structure preserving finite volume scheme and an implicit Euler scheme for the time discretization (see Theorems 3.1 and 3.2). The variety of situations that we aim to cover may lead to various and intricate behaviors. Therefore, we successfully put great efforts into providing results which are uniform with respect to all parameters at play: time t, scaling parameters (ε, τ 0 ) and eventually the numerical discretization. The result is worth the pain, since we propose in the Section 4 various simulations, in which we are able to capture, at low computational cost, a rich variety of situations.

Hermite's decomposition for the velocity variable

The purpose of this section is to present a formulation of the Vlasov-Fokker-Planck equation (1.2) based on Hermite polynomials and to provide quantitative results on f when ε → 0 and t → +∞. These results are identical to the ones obtained in the continuous case except that there are formulated on the corresponding Hermite's coefficients solution to a linear hyperbolic system. This formulation is well adapted to prepare the fully discrete setting in Section 3. We first use Hermite polynomials in the velocity variable and write the Vlasov-Fokker-Planck equation (1.2) as an infinite hyperbolic system for the Hermite coefficients depending only on time and space. The idea is to apply a Galerkin method only keeping a small finite set of orthogonal polynomials rather than discretizing the distribution function in velocity [START_REF] Armstrong | Numerical studies of the nonlinear Vlasov equation[END_REF][START_REF] Joyce | Numerical integration methods of the Vlasov equation[END_REF]. The merit to use orthogonal basis like the so-called scaled Hermite basis has been shown in [START_REF] Holloway | Spectral velocity discretizations for the Vlasov-Maxwell equations[END_REF][START_REF] Schumer | Vlasov simulations using velocity-scaled Hermite representations[END_REF] or more recently [START_REF] Filbet | Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System[END_REF][START_REF]On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF] for the Vlasov-Poisson system. In this context the family of Hermite's functions (Ψ k ) k∈N defined as

Ψ k (v) = H k v √ T 0 M(v) ,
constitutes an orthonormal system for the inverse Gaussian weight, that is,

R Ψ k (v) Ψ l (v) M -1 (v) dv = δ k,l .
In the latter definition, (H k ) k∈N stands for the family of Hermite polynomials defined recursively as follows

H -1 = 0, H 0 = 1 and ξ H k (ξ) = √ k H k-1 (ξ) + √ k + 1 H k+1 (ξ) , ∀ k ≥ 0 .
Let us also point out that Hermite's polynomials verify the following relation

H ′ k (ξ) = √ k H k-1 (ξ) , ∀ k ≥ 0 .
Taking advantage of the latter relations, one can see why Hermite's functions arise naturally when studying the Vlasov-Poisson-Fokker-Planck model, especially in the diffusive regime, as they constitute an orthonormal basis which diagonalizes the Fokker-Planck operator:

∂ v [ v Ψ k + T 0 ∂ v Ψ k ] = -k Ψ k .
Therefore, we consider the decomposition of f into its components C = (C k ) k∈N in the Hermite basis

(2.1) f (t, x, v) = k∈N C k (t, x) Ψ k (v) .
It is worth mentioning that we also may consider a truncated series neglecting high order coefficient in order to construct a spectrally accurate approximation of f in the velocity variable.

As we have shown before, Hermite's decomposition with respect to the velocity variable is a suitable choice in our setting. When it comes to the space variable, we see from estimate (1.10) that the natural functional framework here is the L 2 space with weight ρ -1 ∞ . Unfortunately, it is not very well adapted to the space discretization since it may generate additional spurious terms difficult to control when dealing with discrete integration by part. We bypass this difficulty by integrating the weight in the quantity of interest: instead of working directly with f , we consider the quantity f / √ ρ ∞ in order to get a well-balanced scheme in the same spirit to what has been already done in [START_REF] Chainais | Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations[END_REF][START_REF] Filbet | A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure[END_REF] for well-balanced finite volume schemes. More precisely, we set

D k := C k √ ρ ∞ in (2.1), and inject this ansatz in (1.2). Using that ρ ∞ E ∞ = T 0 ∂ x ρ ∞ , we get that D = (D k ) k∈N satisfies the following system (2.2)      ∂ t D k + 1 ε √ k A D k-1 - √ k + 1 A ⋆ D k+1 = - k τ (ε) D k , D k (t = 0) = D in k ,
where operators A and A ⋆ are given by

       A u = + T 0 ∂ x u - E ∞ 2 √ T 0 u , A ⋆ u = -T 0 ∂ x u - E ∞ 2 √ T 0 u .
In this framework, the equilibrium D ∞ to (2.2) is given by

(2.3) D ∞,k = √ ρ ∞ , if k = 0 , 0, else ,
and estimate (1.10) simply rewrites

(2.4) 1 2 d dt ∥D(t) -D ∞ ∥ 2 L 2 + 1 τ (ε) k∈N ⋆ k ∥D k (t)∥ 2 L 2 (T) = 0 ,
where ∥ • ∥ L 2 stands for the overall L 2 -norm with no weight

∥D∥ 2 L 2 = k∈N ∥D k ∥ 2 L 2 (T) .
On top of that, the limit of the diffusive regime is given by D τ0 = (D τ0,k ) k∈N defined as follows

(2.5) D τ0,k =    D τ0,0 , if k = 0 , 0, else ,
where the first Hermite coefficient D τ0,0 solves the following drift-diffusion equation

(2.6)    ∂ t D τ0,0 + τ 0 A ⋆ AD τ0,0 = 0 , D τ0,0 (t = 0) = D in τ0,0 ,
which is obtained substituting ρ τ0 with D τ0,0 √ ρ ∞ in equation (1.6). We define D in τ0 = δ k0 D in τ0,0 k∈N where δ k0 is the Kronecker symbol.

To conclude this section, we introduce some additional norms which arise naturally along our analysis. In Section 2.3, we consider the following H -1 norm defined on the L 2 subspace orthogonal to √ ρ ∞ : for all g ∈ L 2 (T) which meets the condition

(2.7) T g √ ρ ∞ dx = 0 , we set ∥g∥ H -1 = ∥A u∥ L 2 (T) ,
where u solves the following elliptic equation

(2.8)      A ⋆ A u = g , T u √ ρ ∞ dx = 0 .
The latter equation admits a unique solution in H 2 (T) for any data g ∈ L 2 (T) that meets the compatibility condition (2.7). This well-posedness result crucially relies on the Poincaré inequality (2.18). In Section 2.3, we use the following H 1 norm, defined for all D = (D k ) k∈N as follows

∥B D∥ 2 L 2 = k∈N ∥B k D k ∥ 2 L 2 (T) ,
where the family of differential operator B = (B k ) k ≥ 0 is defined as follows (2.9)

B k = A , if k = 0 , A ⋆ , else .
To end with, we introduce the notation D ⊥ = (D ⊥,k ) k∈N , which corresponds to the Hermite coefficients of f -ρ M, that is

(2.10) D ⊥,k =    0, if k = 0 , D k , else , so that ∥D ⊥ ∥ L 2 = ∥f -ρ M∥ L 2 (f -1 ∞ ) .
2.1. Main results. In this section, we present two results which aim at describing the dynamics of (1.2) in various regimes ranging from long time behavior to diffusive limit. We aim for estimates which capture simultaneously and quantitatively the limits t → +∞ and ε → 0, in order to lay the groundwork for our upcoming numerical analysis, in which we will build a scheme capable of reproducing these estimates exactly.

Our first main result tackles the long time behavior of the solution D = (D k ) k∈N to (1.2). It is uniform with respect ε and covers all the regimes of interests since we only impose assumption (1.7) on the scaling parameter τ (ε). This result is the first step towards its discrete analog, Theorem 3.1.

Theorem 2.1. Suppose that condition (1.7) on τ (ε) is satisfied and let D = (D k ) k∈N be the solution to (2.2) with an initial datum D in . There exists some positive constant C depending only on ϕ ∞ and T 0 such that (i) under the condition D in L 2 < +∞, it holds for all times t ≥ 0

∥D(t) -D ∞ ∥ L 2 ≤ √ 3 D in -D ∞ L 2 exp - τ (ε) ε 2 κ t ; (ii) under the condition BD in L 2 + D in L 2 < +∞, it holds for all times t ≥ 0 ∥BD(t)∥ L 2 ≤ √ 3 C (τ 0 + 1) D in -D ∞ L 2 + BD in L 2 exp - τ (ε) ε 2 κ t ;
where κ > 0 is given by

κ = 1 C (τ 2 0 + 1)
.

The proof of this result is provided in Section 2.3. The main difficulty here consists in proving the convergence of the first coefficient D 0 in the Hermite decomposition of f towards the equilibrium √ ρ ∞ . We adapt hypocoercivity methods developed in [START_REF] Villani | Hypocoercivity[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] to the framework of Hermite decomposition. Instead of estimating directly the quantities of interest, we introduce modified entropy functionals (see (2.20) and (2.27)), in order to recover dissipation and thus a convergence rate on D 0 . Then, the second item tackles the convergence in a H 1 setting. Though a bit more technical, this second convergence result contains no main additional difficulty in comparison to the L 2 convergence result. Actually this latter result is essentially motivated by the analysis of the regime ε → 0 presented below.

This leads us to the second main result in this section, which describes the behavior of the system as ε vanishes. We distinguish the diffusive regime, which corresponds to the case where τ (ε) satisfies (1.8) and the intermediate situations between long time and diffusive regime where τ (ε) satisfies (1.9). We will adapt this result into the fully discrete setting in Theorem 3.2.

Theorem 2.2. Suppose that τ (ε) meets assumption (1.7). For all positive ε, consider D = (D k ) k∈N the solution to (2.2) with an initial datum D in such that

D in 2 H 1 := BD in 2 L 2 + D in 2 L 2 < +∞ .
The following statements hold true uniformly with respect to ε (i) suppose that τ (ε) satisfies (1.8), that is τ (ε) ∼ τ 0 ε 2 and for simplicity, suppose

(2.11) τ (ε) τ 0 ε 2 -1 ≤ 1 2 , ∀ ε > 0
and consider D τ0 = (D τ0,k ) k∈N given by (2.5). On the one hand, it holds for all time

t ∈ R + ∥D ⊥ (t)∥ L 2 ≤ D in ⊥ L 2 e -t/(4τ0ε 2 ) + τ 0 ε C(τ 0 + 1) D in -D ∞ H 1 e -τ0 κ t
, where D ⊥ is given in (2.10); on the other hand, it holds

∥D 0 (t) -D τ0,0 (t)∥ H -1 ≤ C D in 0 -D in τ0,0 H -1 + ε τ 0 (τ 3 0 + 1) D in -D ∞ H 1 e -τ0 κ t + C τ 0 ε 2 τ (ε) -1 D in τ0 -D ∞ L 2 e -τ0κ t ;
(ii) suppose that τ (ε) satisfies (1.9), that is τ (ε)/ε 2 → +∞ as ε vanishes. Then it holds for all time

t ∈ R + ∥D ⊥ (t)∥ L 2 ≤ D in ⊥ L 2 e -t/(2τ (ε)) + τ (ε) ε C(τ 0 + 1) D in -D ∞ H 1 e -τ (ε) ε 2 κ t ,
as well as

∥D 0 (t) -D ∞,0 ∥ H -1 ≤ C D in 0 -D ∞,0 H -1 + τ (ε) ε (τ 3 0 + 1) D in -D ∞ H 1 e -τ (ε) ε 2 κ t .
In the latter estimate, constant C only depends on ϕ ∞ and T 0 and exponent κ is given by

κ = 1 C (τ 2 0 + 1)
.

The proof of this result is provided in Section 2.4, it showcases two major difficulties. The first one is similar to the one encountered in Theorem 2.1; instead of estimating directly the H -1 norm between the first Hermite coefficient D 0 and its limit, we find the right intermediate quantity in order to recover dissipation (see (2.29)). However, unlike in the case of Theorem 2.1, we crucially need to incorporate derivatives of the solution D to (1.2) in this quantity in order to obtain some convergence rates. This leads us to the second difficulty, which is that we propagate some regularity. Furthermore, since Theorem 2.2 describes simultaneously the large time behavior and the asymptotic ε → 0, it is not sufficient to propagate derivative globally nor uniformly with respect to time, we need instead to prove a convergence result in regular norms. This motivates item (ii) in Theorem 2.1, which will play a key role in our proof. This regularity issue explains why we prove H -1 convergence with respect to the first Hermite coefficient whereas we achieve strong L 2 convergence with respect to other coefficients. To be noted that strong L 2 convergence for the first coefficient may be achieved with our method at the price of loosing pointwise estimate with respect to time and thus considering integrated norms with respect to the time variable. Theorems 2.1 and 2.2 fully answer their purpose, which is to describe the dynamics of (1.2) in the regime of interests, uniformly with respect to all parameters at play here.

Preliminary results.

Let us first emphasize the important properties satisfied by A, which we will need to recover later on, in the discrete setting. First, A ⋆ is its dual operator in L 2 (T), indeed for all u, v ∈ H 1 (T) it holds (2.12)

⟨A ⋆ u, v⟩ = ⟨Av, u⟩ , where ⟨., .⟩ denotes the classical scalar product in L 2 (T). Furthermore, D ∞,0 lies in the kernel of A, indeed

(2.13) A D ∞,0 = 0 ;
in this setting, conservation of mass is ensured by the following property

(2.14) T A ⋆ u √ ρ ∞ dx = 0 , indeed, considering equation (2.
2) with index k = 0 integrated over T and applying the latter relation with

u = D 1 , we obtain d dt T D 0 (t) √ ρ ∞ dx = 0 ,
and therefore

(2.15)

T D 0 (t) √ ρ ∞ dx = T D ∞,0 √ ρ ∞ dx ;
we also point out that since

T 0 (A + A ⋆ ) = ∂ x ϕ ∞ , it holds (2.16) ∥ (A + A ⋆ ) u∥ L 2 ≤ 1 √ T 0 ∥ϕ ∞ ∥ W 1,∞ ∥u∥ L 2 ,
on top of that, operators A and A ⋆ do not commute and we have

[A, A ⋆ ] = A A ⋆ -A ⋆ A = ∂ xx ϕ ∞ , which yields (2.17) ∥ [A, A ⋆ ] u∥ L 2 ≤ ∥ϕ ∞ ∥ W 2,∞ ∥u∥ L 2 ;
the last key property verified by operator A is the following Poincaré-Wirtinger inequality: under the compatibility condition (2.7) on u ∈ H 1 (T) it holds

(2.18) ∥u∥ L 2 ≤ C P T 0 T ∂ x u √ ρ ∞ 2 ρ ∞ dx 1/2 = C P ∥A u∥ L 2 ,
for some positive constant C P depending only on the potential ϕ ∞ and T 0 . A proof of this result will be given in the discrete setting (see Lemma 3.3), we do not detail it in the continuous case since it is not our main interest here.

2.3. Proof of Theorem 2.1. It is worth to mention that estimate (2.4) itself is not sufficient to conclude on the rate of convergence of D to the equilibrium D ∞ , since there is no dissipation with respect to the zero-th Hermite coefficient D 0 . Therefore, it does not provide quantitative estimates when it comes to its convergence towards D ∞,0 . Recovering this dissipation is the key feature of hypocoercivity [START_REF] Villani | Hypocoercivity[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. In our setting it is done by combining the equations on D 0 and D 1 , to remove stiff terms

(2.19) ∂ t D 0 + τ (ε) ε A ⋆ D 1 + τ (ε) ε 2 A ⋆ A D 0 - √ 2 (A ⋆ ) 2 D 2 = 0 .
To prove quantitative estimates on the solution to (2.2), we therefore introduce the "modified entropy functional" [START_REF] Villani | Hypocoercivity[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]: for any α 0 > 0, which will be specified later, we define H 0 as

(2.20) H 0 [D|D ∞ ] = 1 2 ∥D(t) -D ∞ ∥ 2 L 2 + α 0 τ (ε) ε A ⋆ D 1 , u ε ,
where u ε is the particular solution to equation (2.8) with source term g = D 0 -D ∞,0 . To be noted that g = D 0 -D ∞,0 fulfills the compatibility condition (2.7), thanks to the conservation of mass property (2.14). The first step consists in proving some intermediate results on the solutions u ε to (2.8)

Lemma 2.3. Consider any g ∈ L 2 (T) which meets condition (2.7) and u the corresponding solution to (2.8). Then, u satisfies the following estimate

(2.21) ∥A u∥ L 2 ≤ C P ∥g∥ L 2 ,
and

(2.22) ∥A 2 u∥ L 2 ≤ 1 + C P √ T 0 ∥ϕ ∞ ∥ W 1,∞ ∥g∥ L 2 ,
where C P is the Poincaré constant in (2.18). Moreover, considering now the solution D to (2.2) and u ε the solution to (2.8) with source term g = D 0 -D ∞,0 , it holds for all time t ≥ 0

(2.23) ε ∥A ∂ t u ε (t)∥ L 2 ≤ ∥D 1 (t)∥ L 2 .
Proof. The first estimate is obtained by testing the elliptic equation (2.8) against u and applying (2.12)

∥A u∥ 2 L 2 ≤ ∥g∥ L 2 ∥u∥ L 2 , hence the Wirtinger-Poincaré inequality (2.18) yields, ∥A u∥ L 2 ≤ C P ∥g∥ L 2 .
For the second estimate, we rewrite A 2 u as follows

A 2 u = -A ⋆ A u + (A + A ⋆ ) A u ,
then we replace A ⋆ A u according to equation (2.8), take the L 2 norm on both sides of the relation and apply in turn (2.16) to estimate operator A + A ⋆ and item (2.21) to estimate the norm of A u, it yields

∥A 2 u∥ L 2 ≤ 1 + C P √ T 0 ∥ϕ ∞ ∥ W 1,∞ ∥g∥ L 2 .
For the third estimate we consider now that D is solution to (2.2) and first take the time derivative of the elliptic equation (2.8) and use the equation (2.2) on D 0 to get

ε ∂ t (A ⋆ A u ε ) = ε ∂ t (D 0 -D ∞,0 ) = A ⋆ D 1 .
Then multiply by ∂ t u ε and use (2.12) to get

∥∂ t A u ε ∥ 2 L 2 = 1 ε ⟨D 1 , ∂ t A u ε ⟩ ≤ 1 ε ∥D 1 ∥ L 2 ∥∂ t A u ε ∥ L 2 .

□

Thanks to the latter result we now prove that for small enough α 0 > 0, the square root of the modified entropy is equivalent to the L 2 norm of D -D ∞ .

Lemma 2.4. Suppose that condition (1.7) on τ (ε) is satisfied. Then for all α 0 ∈ (0, α 0 ), with α 0 = 1/(4 τ 0 C P ) and D ∈ L 2 (T) such that D 0 -D ∞ satisfies the compatibility condition (2.7), one has

(2.24) ∥D -D ∞ ∥ 2 L 2 ≤ 4 H 0 [D|D ∞ ] ≤ 3 ∥D -D ∞ ∥ 2 L 2 .
Proof. We estimate the additional term in the expression of H 0 by applying the duality formula (2.12) and then Cauchy-Schwarz inequality

| ⟨A ⋆ D 1 , u ε ⟩ | = | ⟨D 1 , A u ε ⟩ L 2 | ≤ ∥D 1 ∥ L 2 ∥A u ε ∥ L 2 .
Then, we apply item (2.21) of Lemma 2.3 with u ε and g = D 0 -D ∞,0 and upper bound the norm of A u ε accordingly

∥D 1 ∥ L 2 ∥A u ε ∥ L 2 ≤ C P ∥D -D ∞ ∥ 2 L 2 , hence, applying assumption (1.7), we deduce α 0 τ (ε) ε | ⟨A ⋆ D 1 , u ε ⟩ | ≤ α 0 τ 0 C P ∥D -D ∞ ∥ 2 L 2 .
Choosing α 0 = 1/(4 τ 0 C P ), the result follows for α 0 ∈ (0, α 0 ). □

Relying on the previous lemmas, we are now able to carry out the proof of the first item (i) of Theorem 2.1. We compute the time derivative of the modified relative entropy and split into three terms

d dt H 0 [D(t)|D ∞ ] = I 1 (t) + α 0 I 2 (t) + α 0 I 3 (t) ,
where the first one corresponds to the dissipation of the L 2 norm (2.4),

I 1 = - 1 τ (ε) k∈N k ∥D k ∥ 2 L 2 ,
whereas the other ones correspond to the additional term of the modified relative entropy,

       I 2 := - τ (ε) ε 2 A ⋆ A (D 0 -D ∞,0 ) - √ 2 (A ⋆ ) 2 D 2 , u ε - 1 ε ⟨A ⋆ D 1 , u ε ⟩ , I 3 := + τ (ε) ε ⟨A ⋆ D 1 , ∂ t u ε ⟩ .
On the one hand, the term I 2 gives the expected dissipation on (D 0 -D ∞,0 ) since u ε solves (2.8) with source term (D 0 -D ∞,0 ). On the other hand we get some additional terms which can be estimated thanks to (2.21) and (2.22) in Lemma 2.3, it yields,

I 2 ≤ - τ (ε) ε 2 ∥D 0 -D ∞,0 ∥ 2 L 2 + τ (ε) ε 2 √ 2 1 + C P √ T 0 ∥ϕ ∞ ∥ W 1,∞ ∥D 0 -D ∞,0 ∥ L 2 ∥D 2 ∥ L 2 + C P ε ∥D 0 -D ∞,0 ∥ L 2 ∥D 1 ∥ L 2 , ≤ - τ (ε) ε 2 (1 -C η) ∥D 0 -D ∞,0 ∥ 2 L 2 + C 2 η τ (ε) ε 2 ∥D 2 ∥ 2 L 2 + 1 τ (ε) ∥D 1 ∥ 2 L 2 ,
for any positive η and for some positive constant C depending only on T 0 and ϕ ∞ . The term I 3 is estimated directly by applying (2.23) of Lemma 2.3,

I 3 ≤ τ (ε) ε 2 ∥D 1 ∥ 2 L 2 .
From these latter estimates and taking η = 1/(2C), we get the following inequality

d dt H 0 [D|D ∞ ] ≤ - τ (ε) ε 2 α 0 2 ∥D 0 -D ∞,0 ∥ 2 L 2 + ε 2 τ (ε) 2 -C 2 1 + ε 2 τ (ε) 2 α 0 k∈N k ∥D k ∥ 2 L 2 .
We choose α 0 sufficiently small such that

α 0 2 ≤ ε 2 τ (ε) 2 -C 2 1 + ε 2 τ (ε) 2 α 0 ,
which, according to assumption (1.7) on τ (ε), is fulfilled as long as

α 0 ≤ 1 C (τ 2 0 + 1)
, for some constant C depending only on ϕ ∞ and T 0 , and taking κ 0 such that 3 κ 0 /4 = α 0 /2, we derive the following estimate

d dt H 0 [D|D ∞ ] + τ (ε) ε 2 3 κ 0 4 ∥D -D ∞ ∥ 2 L 2 ≤ 0 .
Then applying Lemma 2.4 and taking α 0 ≤ α 0 , we deduce

d dt H 0 [D|D ∞ ] + τ (ε) ε 2 κ 0 H 0 [D|D ∞ ]
≤ 0 , which yields after applying Gronwall's lemma, for any t ≥ 0,

H 0 [D(t)|D ∞ ] ≤ H 0 [D in |D ∞ ] exp - τ (ε) ε 2 κ 0 t .
We conclude this proof by applying Lemma 2.4 in order to substitute H 0 with the L 2 norm of D -D ∞ in the latter estimate.

We now turn to the proof of the second item (ii) of Theorem 2.1. To estimate the norm of BD, we apply the operator B k to (2.2) and next multiply by B k D k , integrate with respect to x ∈ T and sum over k ∈ N, after re-indexing the sum with respect to k, it yields 1 2

d dt ∥BD(t)∥ 2 L 2 = J 1 (t)
, where J 1 is defined as follows

J 1 = k∈N ⋆ - k τ (ε) ∥B k D k ∥ 2 L 2 + √ k ε (⟨B k-1 A ⋆ D k , B k-1 D k-1 ⟩ -⟨B k A D k-1 , B k D k ⟩) .
Hence applying an integration by part and from the specific choice (2.9) of B, we have (2.25)

J 1 = - 1 τ (ε) k∈N ⋆ k ∥B k D k ∥ 2 L 2 - 1 ε k≥2 √ k ⟨ [A ⋆ , A] D k-1 , A ⋆ D k ⟩ .
Applying Young inequality and property (2.17) on the commutator [A ⋆ , A], we get that

J 1 ≤ 1 τ (ε) η 2 ∥ϕ ∞ ∥ 2 W 2,∞ -1 k∈N ⋆ k ∥B k D k ∥ 2 L 2 + 1 2 η τ (ε) ε 2 k≥1 ∥D k ∥ 2 L 2 . Therefore, choosing η ≤ 1/∥ϕ ∞ ∥ 2 W 2,∞ , it yields (2.26) 1 2 d dt ∥BD∥ 2 L 2 + 1 2 τ (ε) k∈N ⋆ k ∥B k D k ∥ 2 L 2 ≤ C τ (ε) ε 2 k≥1 ∥D k ∥ 2 L 2 .
Again since there is no dissipation on the zero-th Hermite coefficient of BD, we proceed as for the L 2 estimate and introduce a correction H 1 given by (2.27)

H 1 [D|D ∞ ] = 1 2 ∥BD∥ 2 L 2 + α 1 τ (ε) ε A D 0 , D 1 ,
where α 1 has to be determined. First, we point out that for small enough α 1 > 0, the modified entropy H 1 is controlled by the squares of the L 2 norms of D -D ∞ and BD.

Lemma 2.5. Suppose that condition (1.7) on τ (ε) is satisfied. Then for all α 1 ∈ (0, α 1 ), with α 1 = 1/(2 τ 0 ) and D ∈ L 2 (T), one has

(2.28) ∥BD∥ 2 L 2 -∥D -D ∞ ∥ 2 L 2 ≤ 4 H 1 [D|D ∞ ] ≤ 3 ∥BD∥ 2 L 2 + ∥D -D ∞ ∥ 2 L 2 .
Proof. The result is obtained applying the Young inequality to the additional term in the definition (2.27) of H 1 and using that AD ∞,0 = 0. □

To complete the proof of the second item (ii) in Theorem 2.1, we compute the time derivative of the modified relative entropy and split into two terms

d dt H 1 [D|D ∞ ] = J 1 + α 1 J 2 ,
where the first one corresponds to the dissipation of the L 2 norm of B (D -D ∞ ) for which we already have an estimate (2.26), that is,

J 1 ≤ - 1 2 τ (ε) k∈N ⋆ k ∥B k D k ∥ 2 L 2 + C τ (ε) ε 2 k≥1 ∥D k ∥ 2 L 2 ,
whereas the other one corresponds to the additional term of the modified relative entropy,

J 2 := τ (ε) ε 2 ⟨AA ⋆ D 1 , D 1 ⟩ -∥A D 0 ∥ 2 L 2 + √ 2 ⟨A D 0 , A ⋆ D 2 ⟩ - 1 ε ⟨D 1 , A D 0 ⟩ .
From properties (2.12) and (2.13) of operators (A, A ⋆ ), we have

1 ε ⟨D 1 , A D 0 ⟩ = 1 τ (ε) 1/2 A ⋆ D 1 , τ (ε) 1/2 ε (D 0 -D ∞,0 ) .
Applying Young inequality on the third term in the definition of J 2 and on the latter term, it yields

J 2 ≤ - τ (ε) ε 2 1 2 ∥A D 0 ∥ 2 L 2 -1 + ε 2 τ (ε) 2 k∈N ⋆ k ∥B k D k ∥ 2 L 2 -∥D 0 -D ∞,0 ∥ 2 L 2 .
Therefore, from these estimates, we get the following inequality

d dt H 1 [D|D ∞ ] ≤ (C + α 1 ) τ (ε) ε 2 ∥D -D ∞ ∥ 2 L 2 - τ (ε) 2 ε 2 α 1 ∥A D 0 ∥ 2 L 2 + ε 2 τ (ε) 2 -2 α 1 1 + ε 2 τ (ε) 2 k∈N ⋆ k ∥B k D k ∥ 2 L 2 ,
choosing α 1 sufficiently small such that 2 , which is verified under the condition

α 1 ≤ ε 2 τ (ε) 2 -2 α 1 1 + ε 2 τ (ε)
α 1 ≤ 1 2 + 3 τ 2 0 , we get that d dt H 1 [D|D ∞ ] + τ (ε) ε 2 α 1 2 ∥BD∥ 2 L 2 ≤ C τ (ε) ε 2 ∥D -D ∞ ∥ 2 L 2 .
Furthermore, taking α 1 ≤ 1/(2 τ 0 ) and applying Lemma 2.5, we obtain

d dt H 1 [D|D ∞ ] + τ (ε) ε 2 2 α 1 3 H 1 [D|D ∞ ] ≤ C τ (ε) ε 2 ∥D -D ∞ ∥ 2 L 2 .
Then we set

κ 1 = min 2 α 1 3 , κ 0
and multiply the latter inequality by exp τ (ε)

ε 2 2 α1
3 t , integrate in time and apply the first item (i) of Theorem 2.1 to estimate the right hand side, this yields

H 1 [D(t)|D ∞ ] ≤ C τ 2 0 + 1 D in -D ∞ 2 L 2 + H 1 [D in |D ∞ ] exp - τ (ε) ε 2 κ 1 t .
We conclude this proof by substituting H 1 with the norm of BD in the latter estimate according to Lemma 2.5.

2.4.

Proof of Theorem 2.2. Once again, instead of estimating directly the H -1 norm of D 0 -D τ0 , we introduce the following quantity, meant to recover dissipation on the zero-th Hermite coefficient

(2.29) E(t) = 1 2 ∥A v ε (t)∥ 2 L 2 ,
where v ε (t) solves the elliptic equation (2.8) with source term given by

g(t) = D 0 (t) + τ (ε) ε A ⋆ D 1 (t) -D τ0,0 (t) ,
where D 0 (t) and D 1 (t) are the first two components of the solution D(t) of (2.2) and D τ0,0 (t) is either the unique solution to the convection-diffusion equation (2.6) when τ (ε) satisfies (1.8), that is τ (ε)/ε 2 → τ 0 < +∞ or the stationary solution D ∞,0 given by (2.3) when τ (ε) satisfies (1.9), that is τ (ε)/ε 2 → +∞. The latter right hand side is motivated by equation (2.19) since it is given by the difference between D 0 + τ (ε) ε A ⋆ D 1 and D τ0,0 . We point out that the latter source term meets the compatibility condition (2.7) thanks to property (2.14), which ensures that

A ⋆ D 1 (t) is orthogonal to √ ρ ∞ in L 2 (T).
Before proving the first item of Theorem 2.2, let us present some preliminary results. On the one hand, the following Lemma ensures that E(t) is controlled by the squares of the L 2 norm of BD(t) and the H -1 norm of D 0 (t) -D τ0,0 (t) Lemma 2.6. We consider E(t) defined by (2.29). It holds uniformly with respect to ε

(2.30) E(t) ≤ ∥D 0 (t) -D τ0,0 (t)∥ 2 H -1 + C 2 P τ (ε) 2 ε 2 ∥BD(t)∥ 2 L 2 , and 
(2.31) 1 4 ∥D 0 (t) -D τ0,0 (t)∥ 2 H -1 -C 2 P τ (ε) 2 2 ε 2 ∥BD(t)∥ 2 L 2 ≤ E(t) .
Proof. Defining w ε and u τ0 as the respective solutions to (2.8) with source term g = A ⋆ D 1 and D τ0,0 -D ∞,0 , it holds

v ε = u ε -u τ0 + τ (ε) ε w ε .
We apply operator A to the latter relation, take the L 2 norm, and apply the triangular inequality, it yields

√ 2 E ≤ ∥A (u ε -u τ0 )∥ L 2 + τ (ε) ε ∥A w ε ∥ L 2 ,
and

∥A (u ε -u τ0 )∥ L 2 - τ (ε) ε ∥A w ε ∥ L 2 ≤ √ 2 E . We estimate ∥A w ε ∥ L 2 applying (2.21) in Lemma 2.3 with source term g = A ⋆ D 1 , this yields √ 2 E ≤ ∥D 0 -D τ0,0 ∥ H -1 + τ (ε) ε C P ∥BD∥ L 2 ,
and

∥D 0 -D τ0,0 ∥ H -1 - τ (ε) ε C P ∥BD∥ L 2 ≤ √ 2 E .
We obtain the result taking the square of the latter inequalities and applying Young's inequality. □

On the other hand, when τ 0 is finite, we observe that the long time behavior of D τ0,0 may be easily investigated. Indeed, since A D ∞,0 = 0, we have that D τ0,0 -D ∞,0 also solves (2.6). Therefore, multiplying (2.6) by D τ0,0 -D ∞,0 , integrating over T and applying the Poincaré inequality (2.18), we obtain the following estimate after applying Gronwall lemma

(2.32) ∥D τ0 (t) -D ∞ ∥ L 2 ≤ ∥D in τ0 -D ∞ ∥ L 2 exp - τ 0 C 2 P t , ∀ t ∈ R + .
We are now able to prove the first item (i) of Theorem 2.2, which treats the case where τ (ε) ∼ τ 0 ε 2 , when ε → 0 where τ 0 ∈ R + ⋆ . To derive the first estimate in item (i) of Theorem 2.2, our starting point is the L 2 estimate (2.4) which ensures 1 2

d dt ∥D ⊥ (t)∥ 2 L 2 + 1 τ (ε) ∥D ⊥ (t)∥ 2 L 2 ≤ - 1 2 d dt ∥D 0 (t) -D ∞,0 ∥ 2 L 2 ≤ - 1 ε ⟨A ⋆ D 1 (t), D 0 (t) -D ∞,0 ⟩ = - 1 ε ⟨D 1 (t), A (D 0 (t) -D ∞,0 )⟩ , hence it gives from the Young inequality d dt ∥D ⊥ (t)∥ 2 L 2 + 1 τ (ε) ∥D ⊥ (t)∥ 2 L 2 ≤ τ (ε) ε 2 ∥BD(t)∥ 2 L 2 .
We bound ∥BD(t)∥ 2 L 2 applying item (ii) of Theorem 2.1. After multiplying the latter estimate by e t/τ (ε) and integrating with respect to time, it yields

∥D ⊥ (t)∥ 2 L 2 ≤ D in ⊥ 2 L 2 exp - t τ (ε) + C(τ 2 0 + 1) D in -D ∞ 2 L 2 + BD in 2 L 2 3 τ (ε) 2 ε 2 -κ τ (ε) 2 exp - τ (ε) ε 2 κ t ,
where C is a positive constant depending only on ϕ ∞ and T 0 and κ = C(τ 2 0 + 1) -1 . Then we apply condition (1.7) on τ (ε), which ensures that taking C greater than 2 in the definition of κ, it holds 1/2 ≤ 1 -κ τ (ε) 2 /ε 2 uniformly with respect to ε. Therefore, we deduce the following estimate, which yields the first result in (i) of Theorem (2.1), after taking its square root and applying assumption (2.11) in order to substitute τ (ε) with

τ 0 ε 2 ∥D ⊥ (t)∥ 2 L 2 ≤ D in ⊥ 2 L 2 e -t τ (ε) + 6 C(τ 2 0 + 1) D in -D ∞ 2 L 2 + BD in 2 L 2 τ (ε) 2 ε 2 e -τ (ε) ε 2 κ t .
We now prove the second result in item (i) of Theorem 2.2. To do so, we evaluate E observing that

dE dt = ∂ t D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 , v ε .
Therefore, relying on equations (2.19) and (2.6) we deduce

dE dt = - τ (ε) ε 2 ∥D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 ∥ 2 L 2 + E 1 + E 2 + E 3 , where                  E 1 = τ 0 - τ (ε) ε 2 ⟨A ⋆ A D τ0,0 , v ε ⟩ , E 2 = τ (ε) 2 ε 3 ⟨A ⋆ A D 1 , v ε ⟩ , E 3 = √ 2 τ (ε) ε 2 (A ⋆ ) 2 D 2 , v ε .
We rewrite E 1 , E 2 and E 3 according to the following considerations: first, we notice that D ∞,0 solves (2.13) and therefore add D ∞,0 to the left hand side of the bracket in E 1 , second we apply the duality formula (2.12) in E 1 , E 2 and E 3 and then replace v ε in E 1 and E 2 according to the relation

A ⋆ A v ε = D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 .
Hence, we obtain

                 E 1 = τ 0 - τ (ε) ε 2 D τ0,0 -D ∞,0 , D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 , E 2 = τ (ε) 2 ε 3 D 1 , D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 , E 3 = √ 2 τ (ε) ε 2 D 2 , A 2 v ε .
To estimate E 1 , we apply Young's inequality, which yields

E 1 ≤ η 2 τ (ε) ε 2 ∥D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 ∥ 2 L 2 + 1 2η ε 2 τ (ε) τ 0 - τ (ε) ε 2 2 ∥D τ0 -D ∞ ∥ 2 L 2 ,
for all positive η. To estimate E 2 , we apply Young's inequality and then assumption (1.7) which ensures that τ (ε) 3 /ε 4 ≤ τ 2 0 τ (ε) /ε 2 , this gives

E 2 ≤ η 2 τ (ε) ε 2 ∥D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 ∥ 2 L 2 + 1 η τ (ε) ε 2 τ 2 0 ∥D ⊥ ∥ 2 L 2 ,
for all positive η. To estimate E 3 , we apply Young's inequality and then bound the norm of A 2 v ε by applying item (2.22) in Lemma 2.3 with source term

g = D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 ,
it yields

E 3 ≤ η τ (ε) ε 2 ∥D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 ∥ 2 L 2 + C η τ (ε) ε 2 ∥D ⊥ ∥ 2 L 2
, for some constant C depending only on ϕ ∞ and T 0 . We gather the latter estimates, take η = 1/4 and apply item (2.21) in Lemma 2.3, which ensures that

E ≤ C 2 P 2 ∥D 0 + τ (ε) ε A ⋆ D 1 -D τ0,0 ∥ 2 L 2 . Therefore, we obtain dE dt + τ (ε) C 2 P ε 2 E ≤ C τ (ε) ε 2 1 + τ 2 0 ∥D ⊥ ∥ 2 L 2 + C ε 2 τ (ε) τ 0 - τ (ε) ε 2 2 ∥D τ0 -D ∞ ∥ 2 L 2 ,
for some constant C depending only on ϕ ∞ and T 0 . Then we multiply the latter estimate by exp τ (ε) C 2 P ε 2 t and integrate with respect to time. After applying (2.32) to estimate ∥D τ0 -D ∞ ∥ L 2 and the first result in item (i) of Theorem 2.2 to estimate the norm of D ⊥ , it yields

E(t) ≤ E(0) + C τ (ε) 2 ε 2 (τ 6 0 + 1) D in -D ∞ 2 H 1 exp - τ (ε) ε 2 κ t + C τ 0 ε 2 τ (ε) -1 2 ∥D in τ0 -D ∞ ∥ 2 L 2 2 τ 0 ε 2 τ (ε) -1 -1 exp - τ (ε) ε 2 κ t .
To conclude, we substitute E(t) (resp. E(0)) in the latter estimate according to (2.31) (resp. (2.30)) in Lemma 2.6

and then apply assumption (2.11) on τ (ε), which ensures

2 τ 0 ε 2 τ (ε) -1 -1 ≤ 3, this yields ∥D 0 (t) -D τ0,0 (t)∥ 2 H -1 ≤ C ∥D in 0 -D in τ0,0 ∥ 2 H -1 + τ (ε) 2 ε 2 (τ 6 0 + 1) D in -D ∞ 2 H 1 e -τ (ε) ε 2 κ t + C τ 0 ε 2 τ (ε) -1 2 ∥D in τ0 -D ∞ ∥ 2 L 2 e -τ (ε) ε 2 κ t .
We obtain the second estimate provided in (i) of Theorem 2.2 taking the square root in the latter estimate and applying assumption (2.11) in order to substitute τ (ε) with τ 0 ε 2 .

To prove the second item (ii) of Theorem 2.2, we follow the same lines as the ones for item (i) replacing D τ0 by D ∞ and observing that D ∞ also solves the equation (2.6) since it is a stationary solution. Therefore, computations are even simpler since the term E 1 vanishes in this case. As a consequence the estimate provided in item (ii) follows.

Finite volume discretization for the space variable

In this section we present a finite volume scheme for (2.2). Then we prove discrete hypocoercive estimates on the discrete solution to investigate the long time behavior and the speed of convergence to the steady state. Finally, we prove an asymptotic preserving property for the diffusive limit taking τ (ε) ∼ τ 0 ε 2 with error estimates with respect to ε. Thanks to the groundwork laid in the previous Section, we are able to propose a scheme which describes all the variety of regimes that we aim to capture in this article.

3.1. Numerical scheme. For simplicity purposes, we consider the problem in one space dimension. It will be straightforward to generalize this construction for Cartesian meshes in multidimensional case. In a one-dimensional setting, we consider an interval (a, b) of R and for N x ∈ N ⋆ , we introduce the set J = {1, . . . , N x } and a family of control volumes (K j ) j∈J such that K j = x j-1/2 , x j+1/2 with x j the middle of the interval K j and

a = x 1/2 < x 1 < x 3/2 < ... < x j-1/2 < x j < x j+1/2 < ... < x Nx < x Nx+1/2 = b .
Let us set ∆x j = x j+1/2 -x j-1/2 , for j ∈ J , ∆x i+1/2 = x j+1 -x j , for 1 ≤ j ≤ N x -1 . We also introduce the parameter h such that h = max j∈J ∆x j .

Let ∆t be the time step. We set t n = n∆t with n ∈ N. A time discretization of R + is then given by the increasing sequence of (t n ) n∈N . In the sequel, we will denote by D n k the approximation of D k (t n ), where the index k represents the k-th mode of the Hermite decomposition, whereas D n k,j is an approximation of the mean value of D k over the cell K j at time t n .

First of all, the initial condition is discretized on each cell K j by:

D 0 k,j = 1 ∆x j Kj D in k (x) dx, j ∈ J .
The finite volume scheme is obtained by integrating the equation (2.2) over each control volume K j and over each time step. Concerning the time discretization, we can choose any implicit method (backward Euler, Implicit Runge-Kutta,...). Since in this paper we are interested in the spatial discretization, we will only consider a backward Euler method afterwards. Let us now focus on the spatial discretization. By integrating equation (2.2) on K j for j ∈ J , we obtain the numerical scheme: for

D n k = (D n k,j ) j∈J (3.1) D n+1 k -D n k ∆t + 1 ε √ k A h D n+1 k-1 - √ k + 1 A ⋆ h D n+1 k+1 = - k τ (ε) D n+1 k ,
where A h (resp. A ⋆ h ) is an approximation of the operator A (resp. A ⋆ ) given by (3.2)

A h = (A j ) j∈J and A ⋆ h = (A ⋆ j ) j∈J . and where for D = (D j ) j∈J it holds

(3.3)          A j D = + T 0 D j+1 -D j-1 2∆x j - E ∞,j 2 T 0 D j , j ∈ J , A ⋆ j D = -T 0 D j+1 -D j-1 2∆x j + E ∞,j 2 T 0 D j , j ∈ J ,
whereas the discrete electric field E ∞,j is given by

(3.4) E ∞,j = - ϕ ∞,j+1 -ϕ ∞,j-1 2∆x j = 2 T 0 √ ρ ∞,j √ ρ ∞,j+1 - √ ρ ∞,j-1 2 ∆x j ,
where ρ ∞,j is an approximation of the stationary density ρ ∞ on the cell K j . This latter formula is consistent with the definition of √ ρ ∞ = c 0 e -ϕ∞/(2T0) and the fact that

1 2 T 0 ∂ x ϕ ∞ = - 1 √ ρ ∞ ∂ x √ ρ ∞ .
This choice of discretization is motivated by preserving at the discrete level the key properties (2.12)-(2.18). In the end, we propose the following approximation of the continuous solution f to (1.2)

f n (x, v) = k∈N √ ρ ∞ (x) D n k (x) Ψ k (v) ,
where for each k ≥ 0 and n ≥ 0, we define a piecewise constant function D n k from the numerical values (D n k,j ) j∈J as

D n k (x) = D n k,j , x ∈ K j .
In this context the equilibrium D ∞ is given by

(3.5) D ∞,k = √ ρ ∞ , if k = 0 , 0, else ;
as for the limit in the diffusive regime D n τ0 = (D n τ0,k ) k∈N , it is given by

(3.6) D n τ0,k =    D n τ0,0 , if k = 0 , 0, else ,
where D n τ0,0 solves the following discrete version of equation (2.6)

(3.7) D n+1 τ0,0 -D n τ0,0 ∆t + τ 0 A ⋆ h A h D n+1 τ0,0 = 0 .
We now introduce the norms we will work with in this section. We denote by ⟨., .⟩ the L 2 scalar product for any u = (u j ) j∈J and v = (v j ) j∈J , ⟨u, v⟩ = j∈J ∆x j u j v j and

∥u∥ L 2 =   j∈J ∆x j u 2 j   1/2 .
As in the (2.7), we consider the following H -1 norm defined on the L 2 subspace orthogonal to √ ρ ∞ : for all g h = (g j ) j∈J which meets the condition

(3.8) j∈J ∆x j g j √ ρ ∞,j = 0 , we set ∥g h ∥ H -1 = ∥A u h ∥ L 2 (T) ,
where u h = (u j ) j∈J is the solution to the discrete equivalent of equation (2.8)

(3.9)        (A ⋆ h A h ) u h = g , j∈J ∆x j u j √ ρ ∞,j = 0 .
We also use the H 1 norm, analog to the one given in (2.9), defined for all D = (D k ) k∈N as follows

∥B h D∥ 2 L 2 = k∈N ∥B k D k ∥ 2 L 2 ,
where the family of discrete operator

B h = (B h,k ) k ≥ 0 is given as follows (3.10) B h,k = A h , if k = 0 ,
A ⋆ h , else . To conclude with this section, we take the same definition of D ⊥ as in the continuous setting.

Main results.

We can now release the two results that constitute the core of this article. Thanks to our choice of discretization, they are an exact translation of their continuous analogs, Theorems 2.1 and 2.2, into the discrete setting, without any loss of accuracy nor uniformity with respect to the parameters at play in our analysis. On top of that, the results are also uniform with respect to the discretization parameters. This first result is the continuous analog of Theorem 2.1, it ensures that our scheme has the same long time behavior as the continuous model Theorem 3.1. Suppose that condition (1.7) on τ (ε) is satisfied and Let D n = (D n k ) k∈N be the solution to (3.1). The following statements hold true (i) there exists some positive constant C 0 depending only on ϕ ∞ and T 0 such that for all ε > 0 and all n ≥ 0, we have

∥D n -D ∞ ∥ L 2 ≤ √ 3 D 0 -D ∞ L 2 1 + τ (ε) ε 2 κ 0 ∆t -n/2 ;
(ii) suppose in addition that the mesh is regular enough so that the quantity

(3.11) R h = sup (i,j)∈J 2 ∆x j ∆x -1 i -1
stays uniformly bounded with respect to the discretization parameter h. Then there exists a positive constant C 1 (depending only on ϕ ∞ , T 0 and R h ) such that that for all ε > 0 and all n ≥ 0, we have

∥B h D n ∥ L 2 ≤ √ 3 C 1 (τ 0 + 1) B h D 0 L 2 + D 0 -D ∞ L 2 1 + τ (ε) ε 2 κ 1 ∆t -n 2 ,
In the previous estimates κ i > 0 is given by

κ i = 1 C i (τ 2 0 + 1)
.

Our second result deals with the asymptotic ε → 0, it is the discrete analog of Theorem 2.2 Theorem 3.2. Suppose that τ (ε) meets assumption (1.7) and that the mesh meets assumption (3.11). Consider the solution D n = (D n k ) k∈N to (3.1). The following statements hold true uniformly with respect to ε (i) suppose that τ (ε) satisfies (1.8) and (2.11) and consider D n τ0 = (D n τ0,k ) k∈N given by (3.6). Then it holds for all n ≥ 0,

∥D n ⊥ ∥ L 2 ≤ D 0 ⊥ L 2 1 + ∆t 2 τ 0 ε 2 -n 2 + τ 0 ε C(τ 0 + 1) D 0 -D ∞ H 1 (1 + τ 0 κ ∆t) -n 2 ,
and

D n 0 -D n τ0,0 H -1 ≤ C D 0 0 -D 0 τ0,0 H -1 + ε τ 0 (τ 3 0 + 1) D 0 -D ∞ H 1 (1 + τ 0 κ∆t) -n 2 , C τ 0 ε 2 τ (ε) -1 D 0 τ0 -D ∞ L 2 (1 + τ 0 κ∆t) -n 2 ;
(ii) suppose that τ (ε) satisfies (1.9). Then it holds for any n ≥ 0

∥D ⊥ ∥ 2 L 2 ≤ ∥D ⊥ ∥ 2 L 2 1 + ∆t τ (ε) -n 2 + τ (ε) ε C(τ 0 + 1) D 0 -D ∞ H 1 1 + τ (ε) ε 2 κ∆t -n 2 ,
and

D n 0 -D n ∞,0 H -1 ≤ C D 0 0 -D 0 ∞,0 H -1 + τ (ε) ε (τ 3 0 + 1) D 0 -D ∞ H 1 1 + τ (ε) ε 2 κ∆t -n 2 .
In the latter estimate, constant C only depends on ϕ ∞ , T 0 and R h and exponent κ is given by

κ = 1 C (τ 2 0 + 1)
.

Furthermore the shorthand notation ∥•∥ H 1 stands for

∥D∥ 2 H 1 := ∥BD∥ 2 L 2 + ∥D∥ 2 L 2 .
The proof of these results follows almost exactly the same lines as the proof of Theorems 2.1 and 2.2 thanks to the Lemma 3.3, which constitutes the keystone of our analysis and which ensures that our discretization A h of operator A shares all the important properties (2.12)-(2.18) of its continuous analog. The only difference comes down to some numerical remainder terms that we easily control applying methods already developed in the continuous section.

3.3. Preliminary properties. This section is dedicated to the following fundamental Lemma, which ensures that the key properties (2.12)-(2.18) of the continuous operator A are preserved by its discrete analog A h . Thanks to this Lemma, all the computations carried in Section 2 directly translate into the discrete framework.

Lemma 3.3. Consider the discrete operators A h and A ⋆

h given in (3.2). Then we have for any u = (u j ) j∈J and v = (v j ) j∈J

(1) preservation of the duality formula

⟨A h u, v⟩ = ⟨u, A ⋆ h v⟩ ; (2) preservation of the kernel of operator A h A h D ∞,0 = 0 ,
where the equilibrium D ∞ is given by (3.5);

(3) preservation of the mass conservation properties

(3.12) j∈J ∆x j A ⋆ j u √ ρ ∞,j = 0 ,
and for all n ≥ 0, the solution D n 0 = (D n 0,j ) j∈J to (3.1) with index k = 0 verifies

(3.13) j∈J ∆x j D n 0,j √ ρ ∞,j = j∈J ∆x j ρ ∞,j ;
(4) preservation of the sum property

∥ (A h + A ⋆ h ) u∥ L 2 ≤ 1 √ T 0 ∥ϕ ∞ ∥ W 1,∞ ∥u∥ L 2 ;
(5) preservation with the commutator property

∥ [A h , A ⋆ h ] u∥ L 2 ≤ C ∥ϕ ∞ ∥ W 2,∞ ∥u∥ L 2 , where constant C depends only on R h (see (3.11)), it is explicitly given by C = 2 + R h ;
(6) conservation of the Poincaré-Wirtinger inequality: under condition (3.8) on u there exists a constant C d > 0 depending only on ϕ ∞ and T 0 such that

(3.14) ∥u∥ L 2 ≤ C d ∥A h u∥ L 2 .
Remark 3.4. When the mesh is regular, item (5) in Lemma 3.3 may be improved into a consistent estimate compared to its continuous analog (2.17), indeed we easily obtain

∥ [A h , A ⋆ h ] u∥ L 2 ≤ ∥ϕ ∞ ∥ W 2,∞ + h 2 ∥ϕ ∞ ∥ W 3,∞ ∥u∥ L 2 ,
for any u = (u j ) j∈J , following the same method as in the proof.

Proof. To prove item (1), we consider any (u j ) j∈J and (v j ) j∈J , we have after a discrete integration by part and using periodic boundary conditions

⟨A h u, v⟩ = j∈J ∆x j A j u v j = j∈J T 0 u j+1 -u j-1 2 v j -∆x j E ∞,j 2 T 0 u j v j = j∈J -T 0 v j+1 -v j-1 2 u j + ∆x j E ∞,j 2 T 0 v j u j = ⟨u , A ⋆ h v⟩ .
To prove item (2), we look for D = (D k ) k∈N such that A h D 0 = 0, that is,

0 = A i D 0 = √ T 0 2 ∆x j D 0, j+1 -D 0, j-1 + ϕ ∞,j+1 -ϕ ∞,j-1 2 T 0 D 0, j .
Hence, from the particular choice of the discrete electric field (3.4), we have that

D 0, j+1 -D 0, j-1 D 0, j - √ ρ ∞, j+1 - √ ρ ∞, j-1 √ ρ ∞, j = 0 ,
which yields to definition (3.5).

We turn to the mass conservation property [START_REF]On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF]. According to the definition (3.3) of A ⋆ h , it holds

A ⋆ j u √ ρ ∞,j ∆x j = -T 0 √ ρ ∞,j u j+1 -u j-1 2 + √ ρ ∞,j+1 - √ ρ ∞,j-1 2 u j .
Therefore, relation (3.12) is obtained summing the latter over j ∈ J and performing a discrete integration by part. Relation (3.13) is obtained evaluating equation (3.1) with index k = 0 and j ∈ J , multiplying by √ ρ ∞,j ∆x j , then summing over j ∈ J and applying relation (3.12) with u = D n+1 1 . We prove item (4) taking the L 2 norm in the following relation

T 0 A j + A ⋆ j u = - 2 T 0 √ ρ ∞,j √ ρ ∞,j+1 - √ ρ ∞,j-1 2 ∆x j u j ,
which holds for any u = (u j ) j∈J . We turn to item [START_REF] Bessemoulin-Chatard | Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations[END_REF] and compute the commutator for the discrete operator

[A h , A ⋆ h ] as [A h , A ⋆ h ] j u = (A h A ⋆ h -A ⋆ h A h ) j u = - E ∞,j+1 -E ∞,j-1 4 ∆x j (u j+1 + u j-1 ) - E ∞,j+1 -2 E ∞,j + E ∞,j-1 4 ∆x j (u j+1 -u j-1 ) ,
and therefore, we deduce item (5) taking the L 2 norm in the latter result.

Finally, we prove the Poincaré inequality (3.14). Consider u = (u j ) j∈J which meets condition (3.8) and let us denote by ρ ∞ the mean of ρ ∞ ρ ∞ = j∈J ∆x j ρ ∞,j .

First using the zero weighted average assumption (3.8) on u, we remark that the cross term vanishes and

∥u∥ 2 L 2 = j∈J ∆x j u j √ ρ ∞,j 2 ρ ∞,j , = 1 2 ρ ∞ j∈J k∈J ∆x j ∆x k u k √ ρ ∞,k - u j √ ρ ∞,j 2 ρ ∞,j ρ ∞,k , = 1 ρ ∞ k∈J j<k ∆x j ∆x k u k √ ρ ∞,k - u j √ ρ ∞,j 2 ρ ∞,j ρ ∞,k . For j < k, we have u k √ ρ ∞,k - u j √ ρ ∞,j = k-1 l=j u l+1 √ ρ ∞,l+1 - u l √ ρ ∞,l , which yields (3.15) ∥u∥ 2 L 2 ≤ ρ ∞ l∈J u l+1 √ ρ ∞,l+1 - u l √ ρ ∞,l 2 .
On the other hand, we set for any j ∈ J

ρ ∞,j = √ ρ ∞,j-1 + √ ρ ∞,j+1 2 
, and

η j = √ ρ ∞,j+1 - √ ρ ∞,j-1 2 √ ρ ∞,j ,
and observe that the discrete operator A h u may be written as

∆x j √ ρ ∞,j A j u = √ T 0 2 u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j (1 + η j ) + u j √ ρ ∞,j - u j-1 √ ρ ∞,j-1
(1 -η j ) .

Then we have using periodic boundary conditions

T 0 j∈J u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j = √ T 0 2 j∈J u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j + u j √ ρ ∞,j - u j-1 √ ρ ∞,j-1 = j∈J ∆x j √ ρ ∞,j A j u -T 0 u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j η j -η j+1 2 
Hence using that ϕ ∞ is Lipschitzian, we have

|η j+1 -η j | ≤ C ϕ h,
which yields that

T 0 j∈J u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j ≤ j∈J ∆x j √ ρ ∞,j | A j u | + C ϕ h T 0 j∈J u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j
.

On the one hand, we consider the case when h is small enough such that 1 -C ϕ h ≥ 1/2, we get that

j∈J u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j ≤ 2 √ T 0 j∈J ∆x j √ ρ ∞,j | A j u |
On the other hand, when 1 -C ϕ h ≤ 1/2 (the space step h is large), we use the fact that in finite dimension, both semi-norms are equivalent. Thus, there exists a constant C ′ ϕ > 0, independent of h, such that

j∈J u j+1 √ ρ ∞,j+1 - u j √ ρ ∞,j ≤ C ′ ϕ √ T 0 j∈J ∆x j √ ρ ∞,j | A j u | .
Gathering the latter result with (3.15), it yields

∥u∥ 2 L 2 ≤ C ′ ϕ 2 ρ ∞ T 0   j∈J ∆x j √ ρ ∞,j | A j u |   2 .
Using the Cauchy-Schwarz inequality, we obtain the result

∥u∥ 2 L 2 ≤ C 2 d ∥A h u∥ 2 L 2 , where C 2 d is given by C 2 d = C ′ ϕ 2 ρ ∞ T 0 j∈J ∆x j | √ ρ ∞,j | 2 .

□

From the latter results, we may now get estimates on the solution u h to (3.9) as in Lemma 2.3 in the continuous setting.

Lemma 3.5. Let us consider the solution u h to (3.9) with source term g = (g j ) j∈J satisfying the compatibility assumption (3.8). Then, u h satisfies the following estimate

(3.16) ∥A h u h ∥ L 2 ≤ C d ∥g∥ L 2 ,

and

(3.17)

∥A 2 h u h ∥ l 2 ≤ 1 + C d √ T 0 ∥∂ x ϕ ∞ ∥ L ∞ ∥g∥ L 2 .
Moreover, consider now (D n k ) k∈N solution to (3.1) and u n h = (u n j ) j∈J the corresponding solution to (3.9) with the source term D n 0 -√ ρ ∞ . Then we define d t u n+1 h as

(3.18) d t u n+1 h = u n+1 h -u n h ∆t ,
which satisfies

(3.19) ε A h d t u n+1 h L 2 ≤ ∥D n+1 1 ∥ L 2 .
Proof. We follow the proof of Lemma 2.3, we multiply (3.9) by ∆x i u i , sum over i ∈ J and apply item (1) of Lemma 3.3, it yields

∥A h u h ∥ 2 L 2 ≤ ∥D - √ ρ ∞ ∥ L 2 ∥u h ∥ L 2 ,
hence the discrete Wirtinger-Poincaré inequality (3.14), obtained in Lemma 3.3, gives

∥A h u h ∥ L 2 ≤ C d ∥D - √ ρ ∞ ∥ L 2 .
For the second estimate, we observe that

(A h + A ⋆ h ) j u h = √ ρ ∞,j+1 - √ ρ ∞,j-1 2 ∆x j √ ρ ∞,j u j hence we obtain (A 2 h ) j u h = -(A ⋆ h A h ) j u h + √ ρ ∞,j+1 - √ ρ ∞,j-1 2 ∆x j √ ρ ∞,j A j u h = -D 0,j - √ ρ ∞,j + √ ρ ∞,j+1 - √ ρ ∞,j-1 2 ∆x j √ ρ ∞,j A j u h .
Since ϕ ∞ is Lipschitzian and applying (3.16), we obtain the result

∥A 2 h u h ∥ L 2 ≤ C ∥D(t) - √ ρ ∞ ∥ L 2 .
For the third estimate we consider now the solution D n = (D n k ) k∈N to (3.1) and u n h the solution to (3.9) with source term D n 0 -√ ρ ∞ . We get for any j ∈ J ,

(A ⋆ h A h ) j d t u n+1 h = D n+1 0,j -D n 0,j ∆t = 1 ε A ⋆ j D n+1 1 .
Then we multiply by ∆x j d t u n+1 h , sum over j ∈ J and use (2.12) to get

A h d t u n+1 h 2 L 2 = 1 ε D n+1 1 , A h d t u n+1 h ≤ 1 ε ∥D n+1 1 ∥ L 2 A h d t u n+1 h L 2 . □ 3.4.
Proof of Theorem 3.1. We split the proof of Theorem 3.1 into two steps corresponding to the L 2 and H 1 convergence result. Thanks to Lemma 3.5, the method followed in Section 2 to prove the continuous analog to this result (Theorem 2.1) directly applies here, excepted for some additional numerical remainders for which we give a detailed method in order to get control over.

We define H n 0 as (3.20)

H n 0 = 1 2 ∥D n -D ∞ ∥ 2 L 2 + α 0 τ (ε) ε A ⋆ h D n 1 , u n h ,
where u n is solution to (3.9) with D n 0 -√ ρ ∞ as a source term. First let us point out that H n 0 shares the same properties as its continuous analog, indeed it holds Lemma 3.6. Suppose that condition (1.7) on τ (ε) is satisfied. Then for all α 0 ∈ (0, α 0 ), with α 0 = 1/(4 τ 0 C d ) and D n = (D n k,j ) j∈J , k∈N , one has

(3.21) 1 4 ∥D n -D ∞ ∥ 2 L 2 ≤ H n 0 ≤ 3 4 ∥D n -D ∞ ∥ 2 L 2 .
Proof. The proof follows the same lines as the one of Lemma 2.4. □

We are now able to proceed to the proof of the first item (i) of Theorem 3.1. On the one hand, proceeding as the proof of item (i) in Theorem 2.1, it yields from Lemma 3.3

(3.22) H n+1 0 -H n 0 ∆t = I n+1 1 + α 0 I n+1 2 + α 0 I n+1 3 -R n+1 0 ,
where

I n+1 1 = - 1 τ (ε) k∈N ⋆ k D n+1 k 2 L 2
whereas the other terms correspond to the additional term of the modified relative entropy,

       I n+1 2 := - τ (ε) ε 2 A ⋆ h A h D n+1 0 - √ ρ ∞ - √ 2 (A ⋆ h ) 2 D n+1 2 , u n+1 h - 1 ε A ⋆ h D n+1 1 , u n+1 h , I n+1 
3 := + τ (ε) ε A ⋆ h D n+1 1 , d t u n+1 h , where d t u n+1 h is given in (3.18
) and R 0 is a purely numerical remainder given by

(3.23) R n+1 0 = 1 2 ∆t ∥D n+1 -D n ∥ 2 L 2 + α 0 τ (ε) ε A ⋆ h D n+1 1 -D n 1 , d t u n+1 h .
Both terms I n+1 2 and I n+1 3 can be estimated as in the proof of item (i) in Theorem 2.1, which yields

I n+1 2 ≤ - τ (ε) ε 2 (1 -C η) ∥D n+1 0 -D ∞,0 ∥ 2 L 2 + C 2 η τ (ε) ε 2 ∥D n+1 2 ∥ 2 L 2 + 1 τ (ε) ∥D n+1 1 ∥ 2 L 2 ,
for any positive η and for some positive constant C depending only on T 0 and ϕ ∞ and

I n+1 3 ≤ τ (ε) ε 2 ∥D n+1 1 ∥ 2 L 2 .
From these latter estimates and taking η = 1/(2C) and as long as

α 0 < 1 C (τ 2 0 + 1)
, for C great enough and taking κ 0 such that 3 κ 0 /4 = α 0 /2, we get that

H n+1 0 -H n 0 ∆t + τ (ε) ε 2 κ 0 H n+1 0 ≤ -R n+1 0 .
Now we treat the remainder term R n+1 0 , observing that

A ⋆ h D n+1 1 -D n 1 , d t u n+1 h ≤ 1 2 ∆t ∥D n+1 1 -D n 1 ∥ 2 L 2 + ∥A h u n+1 h -u n h ∥ 2 L 2 .
Therefore, applying (3.16) in Lemma 3.5 with source term D n+1 0 -D n 0 , we obtain

A ⋆ h D n+1 1 -D n 1 , d t u n+1 h ≤ 1 + C 2 d 2 ∆t ∥D n+1 -D n ∥ 2 L 2 .
Since τ (ε) meets assumption (1.7), the latter estimate ensures that, as long as

α 0 ≤ τ 0 (1 + C 2 d ) -1 , it holds 0 ≤ R n+1 0 , which yields H n+1 0 -H n 0 ∆t + τ (ε) ε 2 κ 0 H n+1 0 ≤ 0 .
The result follows by applying a discrete Gronwall's lemma and then applying Lemma 3.6 in order to substitute H n 0 with the L 2 norm of D n -D ∞ in the latter estimate. Now we turn to the proof of the second item (ii) of Theorem 3.1. Following Section 2.3, we introduce H n 1 given by (3.24)

H n 1 = 1 2 ∥B h D n ∥ 2 L 2 + α 1 τ (ε) ε A h D n 0 , D n 1 ,
where α 1 has to be determined. Once again, H n 1 shares the same properties as its continuous analog Lemma 3.7. Suppose that condition (1.7) on τ (ε) is satisfied. Then for all α 1 ∈ (0, α 1 ), with α 1 = 1/(2 τ 0 ) and

D n = (D n k ) k∈N , one has ∥B h D n ∥ 2 L 2 -∥D n -D ∞ ∥ 2 L 2 ≤ 4 H n 1 ≤ 3 ∥B h D n ∥ 2 L 2 + ∥D n -D ∞ ∥ 2 L 2 .
Proof. The result is obtained applying the same method as in the proof of Lemma 2.5.

□

We now compute the variation of the modified relative entropy between one time step from t n to t n+1 and split it into three terms

H n+1 1 -H n 1 ∆t = J n+1 1 + α 1 J n+1 2 -R n+1 1 ,
where J n+1 1 is given by

J n+1 1 := - 1 ε k≥2 √ k [A ⋆ h , A h ] D n+1 k-1 , A ⋆ h D n+1 k - 1 τ (ε) k∈N ⋆ k B h,k D n+1 k 2 L 2 and J n+1 2 := τ (ε) ε 2 A h A ⋆ h D n+1 1 , D n+1 1 -A h D n+1 0 2 L 2 + √ 2 A h D n+1 0 , A ⋆ h D n+1 2 - 1 ε D n+1 1 , A h D n+1 0 whereas R n 1 is given by (3.25) R n+1 1 = 1 ∆t 1 2 ∥B h D n+1 -D n ∥ 2 L 2 + α 1 τ (ε) ε A h D n+1 0 -D n 0 , D n+1 1 -D n 1 .
On the one hand we estimate the terms J n+1 1 and J n+1 2 following the same method as the one presented to estimate their continuous analogs J 1 (t) and J 2 (t) (see the proof item (ii) in Theorem 2.1). On the other hand, the remainder term R n+1 1 can be treated as R n+1 0 in the proof of (i) of Theorem 3.1. Indeed,

A h D n+1 0 -D n 0 , D n+1 1 -D n 1 ≤ 1 2 ∥D n+1 0 -D n 0 ∥ 2 L 2 + ∥A ⋆ D n+1 1 -D n 1 ∥ 2 L 2 .
According to the mass conservation property (3.13), D n+1 0 -D n 0 meets condition (3.8). Therefore we may apply the discrete Poincaré inequality (3.14) to bound ∥D n+1 0 -D n 0 ∥ 2 L 2 in the latter estimate, this yields

A h D n+1 0 -D n 0 , D n+1 1 -D n 1 ≤ 1 + C 2 d 2 ∥B h D n+1 -D n ∥ 2 L 2 .
As in the case of R n+1 0 in the former section, the latter estimate ensures that, as long as

α 0 ≤ τ 0 (1 + C 2 d ) -1 , it holds 0 ≤ R n+1 1 .
Hence, we obtain the result by adapting at the discrete level the proof of item (ii) in Theorem 2.1 to bound J n+1 

∥D n τ0 -D ∞ ∥ L 2 ≤ ∥D 0 τ0 -D ∞ ∥ L 2 1 + 2 τ 0 C 2 d ∆t -n 2 , ∀ t ∈ R + .
We estimate D n 0 -D n τ0,0 H -1 by introducing the intermediate quantity E, meant to recover coercivity with respect to the first coefficient D n 0 (3.27)

E n = 1 2 ∥A h v n h ∥ 2 L 2 ,
where v n h solves (3.9) with source term

g = D n 0 + τ (ε) ε A ⋆ h D n 1 -D n τ0,0 .
The following lemma ensures that the quantity E n shares the same properties as its continuous analog. Indeed it holds Lemma 3.8. We consider E n defined by (3.27). It holds uniformly with respect to ε

(3.28) E n ≤ ∥D n -D n τ0 ∥ 2 H -1 + C 2 d τ (ε) 2 ε 2 ∥B h D n ∥ 2 L 2 ,
and

(3.29) 1 4 ∥D n -D n τ0 ∥ 2 H -1 -C 2 d τ (ε) 2 2 ε 2 ∥B h D n ∥ 2 L 2 ≤ E n .
Proof. Defining w n h and u τ0 as the respective solutions to (3.9) with source term g = A ⋆ h D n 1 and D τ0,0 -D ∞,0 , it holds

v n h = u n h -u n τ0 + τ (ε) ε w n h .
Applying operator A h to the latter relation, taking the L 2 norm, and applying the triangular inequality, it yields

√ 2 E n ≤ A h u n h -u n τ0 L 2 + τ (ε) ε ∥A h w n h ∥ L 2 ,
and

A h u n h -u n τ0 L 2 - τ (ε) ε ∥A h w n h ∥ L 2 ≤ √ 2 E n .
We estimate ∥A h w n h ∥ L 2 applying (3.16) in Lemma 3.5, this yields

√ 2 E n ≤ ∥D n -D n τ0 ∥ H -1 + τ (ε) ε C d ∥B h D n ∥ L 2 ,
and

∥D n -D n τ0 ∥ H -1 - τ (ε) ε C d ∥B h D n ∥ L 2 ≤ √ 2 E n .
We obtain the result taking the square of the latter inequalities and applying Young's inequality. □

We now treat the asymptotic limit ε → 0 corresponding to the case of (i) in Theorem 3.2 and therefore suppose that τ (ε) fulfills the assumptions (1.7), (1.8) and (2.11). As in the continuous setting, we start by deriving the first result in (i) of Theorem 3.2. We already know from the L 2 estimate (3.22) that

D n+1 ⊥ 2 L 2 -∥D n ⊥ ∥ 2 L 2 2 ∆t + 1 τ (ε) D n+1 ⊥ 2 L 2 ≤ - D n+1 0 -D n 0 ∆t , D n+1 0 -D n 0 - 1 2 ∆t k∈N * ∥D n+1 k -D n k ∥ 2 L 2 ≤ - D n+1 0 -D n 0 ∆t , D n+1 0 -D ∞,0 .
Therefore, we replace D n+1 0 -D n 0 according to equation (3.1), and after applying the duality formula of Lemma 3.3-(1), we obtain

D n+1 ⊥ 2 L 2 -∥D n ⊥ ∥ 2 L 2 ∆t + 1 τ (ε) D n+1 ⊥ 2 L 2 ≤ - 1 ε D n+1 1 , A h D n+1 0 ,
Hence, after multiplying by ∆t and applying the Young inequality to bound the right hand side of the latter inequality, it yields

1 + ∆t τ (ε) D n+1 ⊥ 2 L 2 ≤ ∥D n ⊥ ∥ 2 L 2 + ∆t τ (ε) ε 2 ∥B h D n+1 ∥ 2 L 2 .
To achieve the proof, it remains to bound ∥B h D n+1 ∥ 2 L 2 by applying Theorem 3.1-(ii) and again following the line of the proof of Theorem 2.2, we deduce

∥D n ⊥ ∥ 2 L 2 ≤ D 0 ⊥ 2 L 2 1 + ∆t τ (ε) -n + 6 C(τ 2 0 + 1) ∥D 0 -D ∞ ∥ 2 L 2 + ∥B h D 0 ∥ 2 L 2 τ (ε) 2 ε 2 1 + τ (ε) ε 2 κ∆t -n
.

Therefore we obtain the result taking the square root in the latter estimate and substituting τ (ε) with τ 0 ε 2 according to assumption (2.11).

To prove the second result of (i) in Theorem 3.2 we evaluate E n as in the proof of Theorem 2.2 observing that

∥A h v n h ∥ 2 L 2 = D n 0 + τ (ε) ε A ⋆ h D n 1 -D n τ0,0 , v n h
hence, relying on equations (3.1) and (3.7) we deduce

E n+1 -E n ∆t = - τ (ε) ε 2 ∥D n 0 + τ (ε) ε A ⋆ h D n 1 -D n τ0 ∥ 2 L 2 + E n+1 1 + E n+1 2 + E n+1 3 -R n+1 3 
, where E n+1 

                 E n+1 1 = τ 0 - τ (ε) ε 2 A ⋆ h A h D n+1 τ0,0 , v n+1 h , E n+1 2 = τ (ε) 2 ε 3 A ⋆ h A h D n+1 1 , v n+1 h , E n+1 3 = √ 2 τ (ε) ε 2 (A ⋆ h ) 2 D n+1 2 , v n+1 h ,
and R n+1 3 is a numerical dissipation term

R n+1 3 = 1 2∆t A h v n+1 h -v n h 2 L 2 .
Since R n+1

3 is positive, we apply the same method as the one presented in the proof of Theorem 2.2 and therefore we obtain the following estimate for

E n 1 + τ (ε)∆t C 2 d ε 2 E n+1 ≤ E n + C ∆t τ (ε) ε 2 1 + τ 2 0 D n+1 ⊥ 2 L 2 + C ∆t ε 2 τ (ε) τ 0 - τ (ε) ε 2 2 ∥D n+1 τ0 -D ∞ ∥ 2 L 2 ,
for some constant C depending only on ϕ ∞ and T 0 . In the latter inequality, we bound ∥D n+1 τ0 -D ∞ ∥ 2 L 2 according to (3.26) and the norm of D ⊥ according to the first estimate of (i) in Theorem 3.2. Then we multiply the inequality by 1 + τ (ε)∆t

C 2 d ε 2 n
and sum for k ranging from 0 to n -1, it yields

E n ≤ E 0 + C τ (ε) 2 ε 2 (τ 6 0 + 1)∥D 0 -D ∞ ∥ 2 H 1 1 + τ (ε) ε 2 κ ∆t -n + C τ 0 ε 2 τ (ε) -1 2 ∥D 0 τ0 -D ∞ ∥ 2 L 2 2 τ 0 ε 2 τ (ε) -1 -1 1 + τ (ε) ε 2 κ ∆t -n
.

To conclude, we substitute E n (resp. E 0 ) in the latter estimate according to (3.29) (resp. (3.28)) in Lemma 2.6 and then apply assumption (2.11) on τ (ε), which ensures 

2 τ 0 ε 2 τ (ε) -1 -1 ≤ 3, this yields ∥D n 0 -D n τ0,0 ∥ 2 H -1 ≤ C ∥D 0 0 -D 0 τ0,0 ∥ 2 H -1 + τ (ε) 2 ε 2 (τ 6 0 + 1)∥D 0 -D ∞ ∥ 2 H 1 1 + τ (ε) ε 2 κ ∆t -n + C τ 0 ε 2 τ (ε) -1 2 ∥D 0 τ0 -D ∞ ∥ 2 L 2 1 + τ (ε) ε 2 κ ∆t
ε = 5.x10 -1 ε = 2.x10 -1 ε = 1.x10 -1 ε = 1.x10 -3 || f -f ∞ ||
ε = 5.x10 -1 ε = 2.x10 -1 ε = 1.x10 -1 ε = 1.x10 -3 || f -ρ M || (a) (b)
L 2 (f -1 ∞ ) , (b) ∥f -ρ M∥ L 2 (f -1 ∞ ) .
We obtain the result taking the square root in the latter estimate and substituting τ (ε) with τ 0 ε 2 according to assumption (2.11).

Finally the proof of the second item follows the same lines replacing D n τ0 by D ∞ in the discrete functional E n .

Numerical simulations

We performed several numerical simulations which confirm the accuracy of the scheme (3.1). We do not detail this process here and rather focus on the physical interpretation and the quantitative results obtained in our experiments. We refer to [START_REF]On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF] for a precise discussion on that matter.

In this section, we want to illustrate the quantitative estimates of the solution obtained using the Hermite Spectral method in velocity and finite volume scheme in space for the one-dimensional Vlasov-Fokker-Planck equation. We choose τ (ε) = τ 0 ε 2 with τ 0 = 5 and consider the Vlasov-Fokker-Planck equation (1.1) with

E ∞ = -∂ x ϕ ∞ and ϕ ∞ (x) = 0.1 cos 2π x L + 0.9 cos 4π x L ,
The stationary state is given by the Maxwell-Boltzmann distribution

f ∞ (x, v) = c 0 √ 2π exp -ϕ ∞ + |v| 2 2 ,
where c 0 is given by mass conservation

T×R f ∞ dvdx = T×R f 0 dvdx,
where f 0 is the initial datum.

In our simulation, we take a time step ∆t = 10 -3 , a number of modes N H = 200 and N x = 64. It is worth to mention that all the numerical simulations presented in this section are not affected by the numerical parameters, which allows us to focus our discussion on the quantitative results on the diffusive limit ε → 0 and large time behavior. 4.1. Test 1 : centered Maxwellian. For the first test, we choose the following initial condition

f 0 (x, v) = 1 √ 2π 1 + δ cos 2π x L exp - |v| 2 2 ,
with δ = 0.5 and L = 10. On the one hand, we present in Figure 1 the time evolution of ∥f -

f ∞ ∥ L 2 (f -1 ∞ ) and the relative entropy on f , ∥f -ρ M∥ L 2 (f -1 ∞ ) = ∥D ⊥ (t)∥ L 2 .
The most striking feature in this test consists in the oscillatory behavior of the relative entropy which unfolds in the relaxation of f towards its equilibrium. These oscillations may be observed in Figure 1 

ε = 5.x10 -1 ε = 2.x10 -1 ε = 1.x10 -1 ε = 1.x10 -3 ε = 0 || ρ -ρ ∞ ||
ε = 5.x10 -1 ε = 2.x10 -1 ε = 1.x10 -1 ε = 1.x10 -3 || D 1 || (a) (b) 
|| f -f ∞ || || f -ρ M || || ρ -ρ ∞ || 0.001 0.01 0.1 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 t || f -f ∞ || || f -ρ M || || ρ -ρ ∞ || || ρ τ 0 -ρ ∞ || (a) ε = 1 (b) ε = 10 -1 Figure 3. Test 1 : centered Maxwellian. time evolution in log scale of -f∞∥ L 2 (f -1 ∞ ) (blue), ∥f -ρ M∥ L 2 (f -1 ∞ ) (red), ∥ρ -ρ∞∥ L 2 (ρ -1 ∞ ) (pink) and ∥ρτ 0 -ρ∞∥ L 2 (ρ -1 ∞ ) (black) for (a) ε = 1 and (b) ε = 10 -1 .
We also present Figure 2 the relaxation to equilibrium of macroscopic quantities

∥D 0 -D ∞,0 ∥ L 2 = ∥ρ -ρ ∞ ∥ L 2 (f -1 ∞ )
and the norm of the first moment D 1 . Time oscillations, observed on the distribution function, seem to affect macroscopic quantities associated to the solution as moments D 0 and D 1 .

On the other hand, we provide In Figure 3, a detailed description in the case ε = 1, where we see that the oscillations of the spatial density and the ones of the higher modes in velocity are asynchronous, this may be interpreted as a transfer of information between these two quantities. This phenomenon has already been investigated for non-linear kinetic models (see [START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF]) but we show through these experiments that even the simple model at play here captures this phenomena.

These oscillations stay visible for surprisingly small values of ε, up to 10 -1 . It showcases the robustness of our scheme, which is still able to capture them at low computational cost. To be noted that our numerical experiments indicate that a non zero external force field seems to be mandatory to observe this oscillatory behavior. We also emphasize that these oscillations seem to be quite sensitive to the choice of the initial data and the external field (see the second numerical test with a different initial data, where such oscillations disappear for large time). This leads us to the second feature of this test, which is the asymptotic preserving property of the scheme for various values of ε. The method is accurate on large time intervals in the situation where ε = 1 (see Figure 3-(a)), which corresponds to the long time behavior of the model but it is also accurate when ε ≪ 1. Indeed, as it is shown in Figure 2-(a), the purple error curve of the density ρ corresponds exactly to the circled error curve of the macroscopic model ρ τ0 when ε = 10 -3 and even smaller (not shown since the curves coincide).

Finally we focus on the intermediate value ε = 10 -1 , for which we observe in Figures 1-(a), 2-(a) and 3-(b), a somehow surprising phenomenon: the kinetic model relaxes faster towards equilibrium than the macroscopic one. This appears to be a consequence of our choice of initial data which is already at local equilibrium at time t = 0. This aspect of the experiment justifies our efforts to cover a wide range of values for the scaling parameter ε: it enables to capture intermediate regimes which may display peculiar phenomena. As we will see in the next section, the reverse situation is possible as well, when the initial condition is far from equilibrium.

We conclude this section by drawing the readers attention towards Figure 4, which features the graph of the solution f at different times, in the case ε = 1 and on which we witness its intricate relaxation towards equilibrium. 4.2. Test 2 : shifted Maxwellian. We now choose the same parameter as before excepted that the initial condition is a shifted Maxwellian

f 0 (x, v) = 1 √ 2π 1 + δ cos 2π x L exp - |v -u 0 | 2 2 ,
with u 0 = 1, which is far from equilibrium. First, we focus on the case ε = 1 displayed in Figure 5, where we observe that unlike in the previous test, the oscillatory relaxation stops after a short time and is replaced by a slower but straight relaxation towards equilibrium. Another interesting comment on Figure 5 is that all the curves associated to value of ε below 5.10 -2 (red, beige, pink and purple) are parallel. These two features might be explained by a fine spectral analysis of the model at play. We now zoom in to focus on smaller time intervals and propose a detailed description of these dynamics in Figure 6, where we distinguish three phases constituting a great illustration for the result presented in item (i) of Theorem 3.2:

(1) the first phase is the initial time layer, it occurs on negligible time intervals compared to the time scale chosen in Figure 6 but it is still visible if we focus on the red curves, representing the norm of D ⊥ , in plots (a) to (d). As predicted by the first result in (i) of Theorem 3.2, higher Hermite modes gathered in the quantity D ⊥ undergo a steep exponential descent with theoretical rate of order (ε 2 τ 0 ) -1 , until they reach a critical level of order ε; (2) the second phase corresponds to the diffusive regime where f is close to ρ τ0 M. Indeed we see that for times ranging from ∼ 0 up to t = 1 in the case ε = 10 -2 and increasing up to t = 3 in the case ε = 10 -5 , the red curve, which represents the norm of D ⊥ , is parallel to the pink line corresponding to the norm of ρ -ρ τ0 which itself coincides with the black curve representing the norm of ρ τ0 -ρ ∞ . It indicates that, for a finite amount of time which increases as ε goes to zero, the kinetic model behaves like the macroscopic one; (3) the last phase is the long time behavior, it starts as the error between ρ τ0 and ρ is of the same order as the error between ρ and ρ ∞ . In Figure 6 (a)-(d), it corresponds to the intersection between circled blue and black lines. As predicted by the second result in (i) of Theorem 3.2, this circled curve, representing the error ∥ρ -ρ τ0 ∥, starts with an ordinate of order ε at time t = 0, then it decays with a rate proportional to τ 0 but smaller than the relaxation rate of the macroscopic model. This constitutes a striking illustration of "hypocoercivity" phenomenon induced by the transport term proper to kinetic equations. During this final phase, the solution f to (1.2) slowly relaxes towards equilibrium. A surprising and unexpected fact is that the transition from diffusive regime to long time behavior occurs in a synchronized fashion for the spatial density and higher modes in velocity. Indeed, as it can be observed in plots (a) to (c) of Figure 6, the inflections points of the red and the pink curves are almost aligned.

Conclusion and perspectives

In the present article, we design a numerical method capable to capture a rich variety of regimes for a Vlasov-Fokker-Planck equation with external force field. We prove quantitative estimates for all the regimes of interest, and do this uniformly with respect to all parameter at play. We illustrate the robustness of our scheme by proposing several numerical tests in which we capture a wide variety of situations (exponential decay with oscillations, transition phase between diffusive regime an long time behavior, initial time layer, etc ...). Furthermore, we built the method such that it should be easily adaptable in any dimension, at least for cartesian mesh. Two questions arise naturally from this work. The first one is to build on the groundwork laid in this article in order to design a scheme which takes into account non-linear coupling with Poisson for the electric force field. This challenging perspective would be a great improvement since even for the continuous model, there exists to our knowledge very few results which treat the longtime behavior and the diffusive regime with the accuracy proposed in this article. Up to our knowledge, all the works on this subject have restrictions on the dimension of the phase-space and therefore, it would naturally be interesting to propose a method which applies in the physical case d = 3. Another interesting question arose from our numerical tests, in which we witnessed oscillating behaviors in the solution's relaxation towards equilibrium as well as transition phase between diffusive regime and longtime behavior.

It would be of great interest to carry out a fine spectral analysis of the model both at the continuous and the discrete level in order to provide a quantitative description of these phenomena: we may hope for precise and enlightening results due to the simplicity of our model. 
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 235 Proof of Theorem 3.2. As in the continuous setting, we prove that the solution D n = (D n k ) k∈N to (3.1) converges to D n τ0 = (D n τ0,k ) k∈N given by (3.6)-(3.7), whose long time behavior is easily obtained relying on the discrete Poincaré inequality (3.14) (3.26)
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 1 Figure 1. Test 1 : centered Maxwellian. time evolution in log scale of (a) ∥f -f∞∥
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 21 Figure 2. Test 1 : centered Maxwellian. time evolution in log scale of (a) ∥ρ -ρ∞∥ L 2 (ρ -1 ∞ ) and (b) ∥D1∥ L 2 .
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 4 Figure 4. Test 1 : centered Maxwellian. snapshots of the distribution function for ε = 1 at time t = 0, 0.5, 1.5, 3, 5 and 20.
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 521 Figure 5. Test 2 : shifted Maxwellian. time evolution in log scale of (a) ∥f -f∞∥L 2 (f -1 ∞ ) , (b) ∥f -ρ M∥ L 2 (f -1 ∞ ) , (c) ∥ρ -ρ∞∥ L 2 (ρ -1∞ ) and (d) ∥D1∥ L 2 .
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 562121 Figure 6. Test 2 : shifted Maxwellian. time evolution in log scale of ∥f -ρ M∥L 2 (f -1 ∞ ) (red), ∥ρ -ρ∞∥ L 2 (ρ -1 ∞ ) (pink), ∥ρ -ρτ 0 ∥ L 2 (ρ -1∞ ) (blue points) and ∥ρτ 0 -ρ∞∥L 2 (ρ -1∞ ) (black) for ε = 10 -2 , 10 -3 , 10 -4 and 10 -5 .

Acknowledgment

Both authors are partially funded by the ANR Project Muffin (ANR-19-CE46-0004). This work has been initiated during the semester "Frontiers in kinetic theory: connecting microscopic to macroscopic scales " at the Isaac Newton Institute for Mathematical Sciences, Cambridge.

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, F-31062, Toulouse, France Email address: alain.blaustein@math.univ-toulouse.fr Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, F-31062, Toulouse, France Email address: francis.filbet@math.univ-toulouse.fr