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ON A DISCRETE FRAMEWORK OF HYPOCOERCIVITY FOR KINETIC EQUATIONS

ALAIN BLAUSTEIN AND FRANCIS FILBET

Abstract. We propose and study a fully discrete finite volume scheme for the linear Vlasov-Fokker-Planck equa-
tion written as an hyperbolic system using Hermite polynomials in velocity. This approach naturally preserves the

stationary solution and the weighted L2 relative entropy. Then, we adapt the arguments developed in [13] based

on hypocoercivity methods to get quantitative estimates on the convergence to equilibrium of the discrete solution.
Finally, we prove that in the diffusive limit, the scheme is asymptotic preserving with respect to both the time variable

and the scaling parameter at play.
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1. Introduction

This article is devoted to the numerical approximation and analysis of the linear Vlasov-Fokker-Planck equation,
corresponding to the kinetic description of the Brownian motion of a large system of charged particles under the
effect of a force field.

Our main motivation comes from an electrostatic plasma composed of charged particles, where the Coulomb force
are taken into account. The time evolution of the electron distribution function f solves the Vlasov-Fokker-Planck
system coupled with the Poisson equation giving a self-consistent potential Φ:

∂f

∂t
+ v · ∇xf +

qe
me

E · ∇vf =
1

τe
divv (vf + T0 ∇vf) ,

−ε0∆Φ = qe

∫
R3

fdv,

where E = −∇xΦ is the self-consistent electric field, ε0 is the vacuum permittivity, qe and me are elementary charge
and mass of the electrons, whereas τe is the relaxation time due to the collisions of the particles with the surrounding
bath and T0 the background temperature. In the present article, we will not consider the coupling with the Poisson
equation and suppose that the electric field E is given and only depends on the space variable. We refer to [19] and
our forthcoming work [6] dedicated to the numerical approximation and analysis of the Vlasov-Poisson-Fokker-Planck
system.

Considering ε > 0 as the square root of the ratio between the mass of electrons and ions and τ(ε) > 0 the ratio
between the elapsed time between two collisions of electrons and the observable time, it allows to identify different
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regimes and the Vlasov equation may be written in a adimensional form

(1.1) ε
∂f

∂t
+ v · ∇xf + E(x) · ∇vf =

ε

τ(ε)
divv (vf + T0 ∇vf) ,

Our main purpose here is to build and analyze a numerical scheme able to capture two regimes of interest for equation
(1.1) in a linear framework: the long time behavior t → ∞ and the diffusive regime ε → 0. In various situations, the
scaling parameters at play may be non homogeneous across the system leading to intricate situations, where both
processes may coexist. Thus, we aim at designing a scheme robust enough to capture simultaneously these different
behaviors.

More precisely, we consider the one dimensional Vlasov-Fokker-Planck equation with periodic boundary conditions
in space, which reads

(1.2) ∂tf +
1

ε
(v ∂xf + E∞ ∂vf) =

1

τ(ε)
∂v (v f + T0 ∂vf) ,

with t ≥ 0, position x ∈ T and velocity v ∈ R, whereas the electric field derives from a potential ϕ∞ such that
E∞ = −∂xϕ∞, with the following regularity assumption

(1.3) ϕ∞ ∈ W 2,∞ (T) .

We also define the density ρ by integrating the distribution function in velocity,

(1.4) ρ(t, x) =

∫
R
f(t, x, v) dv.

It is worth to mention that there are already several works on preserving large-time behaviors of solutions to the
Fokker-Planck equation or related kinetic models. On the one hand, a fully discrete finite difference scheme for the
homogeneous Fokker-Planck equation has been proposed in the pioneering work of Chang and Cooper [10]. This
scheme preserves the stationary solution and the entropy decay of the numerical solution. On the other hand, finite
volume schemes preserving the exponential trend to equilibrium have been studied for non-linear convection-diffusion
equations (see for example [31, 2, 7, 8, 22]). More recently, in [29], the authors investigate the question of describing
correctly the equilibrium state of non-linear diffusion and kinetic models for high order schemes. Let us also mention
some works on boundary value problems [16, 9] where non-homogeneous Dirichlet boundary conditions are dealt
with.

In the case of space non homogeneous kinetic equations, the convergence to equilibrium becomes tricky because of
the lack of coercivity since dissipation occurs only in the velocity variable whereas transport acts in the space variable.
Therefore, only few results are available and a better understanding of hypocoercive structures at the discrete level is
challenging. Let us mention a first rigorous work in this direction on the Kolmogorov equation [30, 20, 21]. In [20], a
time-splitting scheme is applied and it is shown that solutions have polynomial decay in time. In [30, 21], a different
approach has been used, based on the work of Hérau [23] and Villani [33], for finite difference and a finite element
schemes. Later, Dujardin, Hérau and Lafitte [14] studied a finite difference scheme for the kinetic Fokker-Planck
equation. Finally, in a more recent work [5], the authors established a discrete hypocoercivity framework based on
the continuous approach provided in [13]. It is based on a modified discrete entropy, equivalent to a weighted L2

norm involving macroscopic quantities and the authors show quantitative estimates on the numerical solution for
large time and in the limit ε → 0.

The present contribution can be considered as a continuation of this latter work in order to discretize the kinetic
Fokker-Planck equation with an applied force field. On the one hand, we consider the case where the interactions
associated to collisions and electrostatic effects have the same magnitude, that is, τ(ε) ∼ ε, hence the limit t/ε → +∞
corresponds to the long time behavior of equation (1.2). In this regime, the distribution function f relaxes towards
the stationary solution to the Vlasov-Fokker-Planck equation ρ∞ M, where the Maxwellian M is given by

M(v) =
1√
2π T0

exp

(
− |v|2

2T0

)
,

whereas the density ρ∞ is determined by

(1.5) ρ∞ = c0 exp

(
−ϕ∞

T0

)
,

where the constant c0 is fixed by the conservation of mass, that is,∫
T
ρ∞ dx =

∫∫
T×R

f0(x, v) dxdv .

Thus, we set f∞ the stationary state of (1.2), defined as

f∞(x, v) = ρ∞(x)M(v)

and we expect that f → f∞ as t/ε → +∞.

2



On the other hand, the diffusive regime corresponds to a frontier where collisions dominate but still not enough
to cancel completely the electrostatic effects. This situation occurs as ε → 0 in the case where τ(ε) ∼ τ0 ε

2, for
some τ0 > 0. Due to collisions, the distribution of velocities also relaxes towards a Maxwellian equilibrium. However,
in this case, the spatial distribution converges to a time dependent distribution ρ whose dynamics are driven by a
drift-diffusion equation depending on the force field E∞. Indeed, performing the change of variable x → x + τ0 ε v
in (1.2) and integrating with respect to v, we deduce that the quantity

π (t, x) =

∫
R
f (t, x− τ0 ε v, v) dv ,

solves the following equation

∂t π + τ0 ∂x

(∫
R
E∞ f (t, x− τ0 ε v, v) dv − T0 ∂x π

)
= 0 .

According to its definition, π verifies: ρ ∼ π in the limit ε → 0. Therefore, we may formally replace π with ρ and
ε with 0 in the latter equation. This yields

f(t, x, v) −→
ε→0

ρτ0(t, x)M(v) ,

where ρτ0 solves

(1.6) ∂tρτ0 + τ0 ∂x (E∞ ρτ0 − T0 ∂x ρτ0) = 0 .

To be noted that this regime is an intermediate situation which contains more information than the long time
asymptotic since we have ρ → ρ∞ by taking either t → +∞ or τ0 → +∞ in the latter equation.

At the discrete level, Asymptotic-Preserving schemes have been developed to capture in a discrete setting the
diffusion limit, so that in the limit ε → 0, the numerical discretization converges to the macroscopic model (see for
instance [25, 28, 17, 27] on finite difference and finite volume schemes and [12, 11] on particle methods).

In the present article, our aim is to design a numerical scheme which is able to capture these two regimes but also
all the intermediate situations where ε2 ≲ τ(ε) ≲ ε. More precisely, we suppose that

(1.7) sup
ε>0

τ(ε)

ε
≤ τ0 ∈ (0 , +∞)

and distinguish two cases on τ(ε) :

(i) either the diffusive regime assumption

(1.8)
τ(ε)

ε2
−→
ε→0

τ0 < +∞ ,

where collisional effects strongly dominate;
(ii) or the intermediate regime assumption

(1.9)
τ(ε)

ε2
−→
ε→0

+∞ ,

which may for instance correspond to τ(ε) = εβ , with 1 ≤ β < 2. It describes all the intermediate situations
between long time and diffusive regime.

The starting point of our analysis is the following estimate, obtained multiplying equation (1.2) by f / f∞, and
balancing the transport term with the source term corresponding to the electric field thanks to the weight f−1

∞

(1.10)
1

2

d

dt

∫
T×R

|f − f∞|2 f−1
∞ dxdv +

T0

τ(ε)

∫
T×R

∣∣∣∣∂v ( f

f∞

)∣∣∣∣2 f∞ dxdv = 0 .

This estimate is important since it yields a L2 stability result on the solution to the Vlasov-Fokker-Planck equation
(1.2).

Our purpose is to design a numerical scheme for which such estimate occurs. To this aim, we split our approach in
two steps: first we apply a Hermite spectral decomposition in velocity of f and then we apply a structure preserving
finite volume scheme for the space discretization. In the next section (Section 2), we provide explicit convergence
rates for the continuous model written in the Hermite basis (see Theorems 2.1 and 2.2). This first step allows us
to present the general strategy and to highlight the main properties of the transport operator in order to design
suitable numerical scheme. Therefore, in Section 3 we adapt these latter results without any loss to the fully discrete
setting using a structure preserving finite volume scheme and an implicit Euler scheme for the time discretization (see
Theorems 3.1 and 3.2). The variety of situations that we aim to cover may lead to various and intricate behaviors.
Therefore, we successfully put great efforts into providing results which are uniform with respect to all parameters
at play: time t, scaling parameters (ε, τ0) and eventually the numerical discretization. The result is worth the pain,
since we propose in the Section 4 various simulations, in which we are able to capture, at low computational cost, a
rich variety of situations.
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2. Hermite’s decomposition for the velocity variable

The purpose of this section is to present a formulation of the Vlasov-Fokker-Planck equation (1.2) based on Hermite
polynomials and to provide quantitative results on f when ε → 0 and t → +∞. These results are identical to the ones
obtained in the continuous case except that there are formulated on the corresponding Hermite’s coefficients solution
to a linear hyperbolic system. This formulation is well adapted to prepare the fully discrete setting in Section 3.
We first use Hermite polynomials in the velocity variable and write the Vlasov-Fokker-Planck equation (1.2) as an
infinite hyperbolic system for the Hermite coefficients depending only on time and space. The idea is to apply a
Galerkin method only keeping a small finite set of orthogonal polynomials rather than discretizing the distribution
function in velocity [1, 26]. The merit to use orthogonal basis like the so-called scaled Hermite basis has been shown
in [24, 32] or more recently [15, 3] for the Vlasov-Poisson system. In this context the family of Hermite’s functions
(Ψk)k∈N defined as

Ψk(v) = Hk

(
v√
T0

)
M(v) ,

constitutes an orthonormal system for the inverse Gaussian weight, that is,∫
R
Ψk(v)Ψl(v)M−1(v) dv = δk,l .

In the latter definition, (Hk)k∈N stands for the family of Hermite polynomials defined recursively as follows H−1 = 0,
H0 = 1 and

ξ Hk(ξ) =
√
kHk−1(ξ) +

√
k + 1Hk+1(ξ) , ∀ k ≥ 0 .

Let us also point out that Hermite’s polynomials verify the following relation

H ′
k(ξ) =

√
kHk−1(ξ) , ∀ k ≥ 0 .

Taking advantage of the latter relations, one can see why Hermite’s functions arise naturally when studying the
Vlasov-Poisson-Fokker-Planck model, especially in the diffusive regime, as they constitute an orthonormal basis
which diagonalizes the Fokker-Planck operator:

∂v [ vΨk + T0 ∂v Ψk ] = − kΨk .

Therefore, we consider the decomposition of f into its components C = (Ck)k∈N in the Hermite basis

(2.1) f (t, x, v) =
∑
k∈N

Ck (t, x)Ψk(v) .

It is worth mentioning that we also may consider a truncated series neglecting high order coefficient in order to
construct a spectrally accurate approximation of f in the velocity variable.

As we have shown before, Hermite’s decomposition with respect to the velocity variable is a suitable choice in our
setting. When it comes to the space variable, we see from estimate (1.10) that the natural functional framework here
is the L2 space with weight ρ−1

∞ . Unfortunately, it is not very well adapted to the space discretization since it may
generate additional spurious terms difficult to control when dealing with discrete integration by part. We bypass this
difficulty by integrating the weight in the quantity of interest: instead of working directly with f , we consider the
quantity f /

√
ρ∞ in order to get a well-balanced scheme in the same spirit to what has been already done in [9, 16]

for well-balanced finite volume schemes. More precisely, we set

Dk :=
Ck√
ρ∞

in (2.1), and inject this ansatz in (1.2). Using that ρ∞ E∞ = T0 ∂xρ∞, we get that D = (Dk)k∈N satisfies the
following system

(2.2)


∂tDk +

1

ε

(√
kADk−1 −

√
k + 1A⋆Dk+1

)
= − k

τ(ε)
Dk ,

Dk(t = 0) = Din
k ,

where operators A and A⋆ are given by
Au = +

√
T0 ∂xu − E∞

2
√
T0

u ,

A⋆ u = −
√

T0 ∂xu − E∞

2
√
T0

u .

In this framework, the equilibrium D∞ to (2.2) is given by

(2.3) D∞,k =

{ √
ρ∞, if k = 0 ,

0, else ,
4



and estimate (1.10) simply rewrites

(2.4)
1

2

d

dt
∥D(t)−D∞∥2L2 +

1

τ(ε)

∑
k∈N⋆

k ∥Dk(t)∥2L2(T) = 0 ,

where ∥ · ∥L2 stands for the overall L2-norm with no weight

∥D∥2L2 =
∑
k∈N

∥Dk∥2L2(T) .

On top of that, the limit of the diffusive regime is given by Dτ0 = (Dτ0,k)k∈N defined as follows

(2.5) Dτ0,k =

 Dτ0,0, if k = 0 ,

0, else ,

where the first Hermite coefficient Dτ0,0 solves the following drift-diffusion equation

(2.6)

 ∂tDτ0,0 + τ0 A⋆ADτ0,0 = 0 ,

Dτ0,0(t = 0) = Din
τ0,0 ,

which is obtained substituting ρτ0 with Dτ0,0
√
ρ∞ in equation (1.6). We define Din

τ0 =
(
δk0 D

in
τ0,0

)
k∈N where δk0 is

the Kronecker symbol.

To conclude this section, we introduce some additional norms which arise naturally along our analysis. In Section
2.3, we consider the following H−1 norm defined on the L2 subspace orthogonal to

√
ρ∞: for all g ∈ L2 (T) which

meets the condition

(2.7)

∫
T
g
√
ρ∞ dx = 0 ,

we set

∥g∥H−1 = ∥Au∥L2(T) ,

where u solves the following elliptic equation

(2.8)


A⋆Au = g ,∫
T
u
√
ρ∞ dx = 0 .

The latter equation admits a unique solution inH2 (T) for any data g ∈ L2 (T) that meets the compatibility condition
(2.7). This well-posedness result crucially relies on the Poincaré inequality (2.18).

In Section 2.3, we use the following H1 norm, defined for all D = (Dk)k∈N as follows

∥BD∥2L2 =
∑
k∈N

∥Bk Dk∥2L2(T) ,

where the family of differential operator B = (Bk)k≥ 0 is defined as follows

(2.9) Bk =

{ A , if k = 0 ,

A⋆, else .

To end with, we introduce the notation D⊥ = (D⊥,k)k∈N, which corresponds to the Hermite coefficients of f − ρM,
that is

(2.10) D⊥,k =

 0, if k = 0 ,

Dk, else ,

so that

∥D⊥∥L2 = ∥f − ρM∥L2(f−1
∞ ).
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2.1. Main results. In this section, we present two results which aim at describing the dynamics of (1.2) in various
regimes ranging from long time behavior to diffusive limit. We aim for estimates which capture simultaneously and
quantitatively the limits t → +∞ and ε → 0, in order to lay the groundwork for our upcoming numerical analysis,
in which we will build a scheme capable of reproducing these estimates exactly.
Our first main result tackles the long time behavior of the solution D = (Dk)k∈N to (1.2). It is uniform with respect
ε and covers all the regimes of interests since we only impose assumption (1.7) on the scaling parameter τ(ε). This
result is the first step towards its discrete analog, Theorem 3.1.

Theorem 2.1. Suppose that condition (1.7) on τ(ε) is satisfied and let D = (Dk)k∈N be the solution to (2.2) with
an initial datum Din. There exists some positive constant C depending only on ϕ∞ and T0 such that

(i) under the condition
∥∥Din

∥∥
L2 < +∞, it holds for all times t ≥ 0

∥D(t) − D∞∥L2 ≤
√
3
∥∥Din − D∞

∥∥
L2 exp

(
−τ(ε)

ε2
κ t

)
;

(ii) under the condition
∥∥BDin

∥∥
L2 +

∥∥Din
∥∥
L2 < +∞, it holds for all times t ≥ 0

∥BD(t)∥L2 ≤
√
3
(
C (τ0 + 1)

∥∥Din − D∞
∥∥
L2 +

∥∥BDin
∥∥
L2

)
exp

(
−τ(ε)

ε2
κ t

)
;

where κ > 0 is given by

κ =
1

C (τ20 + 1)
.

The proof of this result is provided in Section 2.3. The main difficulty here consists in proving the convergence of
the first coefficient D0 in the Hermite decomposition of f towards the equilibrium

√
ρ∞. We adapt hypocoercivity

methods developed in [33, 13] to the framework of Hermite decomposition. Instead of estimating directly the quan-
tities of interest, we introduce modified entropy functionals (see (2.20) and (2.27)), in order to recover dissipation
and thus a convergence rate on D0. Then, the second item tackles the convergence in a H1 setting. Though a bit
more technical, this second convergence result contains no main additional difficulty in comparison to the L2 con-
vergence result. Actually this latter result is essentially motivated by the analysis of the regime ε → 0 presented below.

This leads us to the second main result in this section, which describes the behavior of the system as ε vanishes.
We distinguish the diffusive regime, which corresponds to the case where τ(ε) satisfies (1.8) and the intermediate
situations between long time and diffusive regime where τ(ε) satisfies (1.9). We will adapt this result into the fully
discrete setting in Theorem 3.2.

Theorem 2.2. Suppose that τ(ε) meets assumption (1.7). For all positive ε, consider D = (Dk)k∈N the solution to
(2.2) with an initial datum Din such that∥∥Din

∥∥2
H1 :=

∥∥BDin
∥∥2
L2 +

∥∥Din
∥∥2
L2 < +∞ .

The following statements hold true uniformly with respect to ε

(i) suppose that τ(ε) satisfies (1.8), that is τ(ε) ∼ τ0 ε
2 and for simplicity, suppose

(2.11)

∣∣∣∣ τ(ε)τ0 ε2
− 1

∣∣∣∣ ≤ 1

2
, ∀ ε > 0

and consider Dτ0 = (Dτ0,k)k∈N given by (2.5). On the one hand, it holds for all time t ∈ R+

∥D⊥(t)∥L2 ≤
∥∥Din

⊥
∥∥
L2 e−t/(4τ0ε

2) + τ0 εC(τ0 + 1)
∥∥Din −D∞

∥∥
H1 e−τ0 κ t ,

where D⊥ is given in (2.10); on the other hand, it holds

∥D0(t)−Dτ0,0(t)∥H−1 ≤C
(∥∥Din

0 −Din
τ0,0

∥∥
H−1 + ε τ0 (τ

3
0 + 1)

∥∥Din −D∞
∥∥
H1

)
e−τ0 κ t

+C

∣∣∣∣τ0ε2τ(ε)
− 1

∣∣∣∣ ∥∥Din
τ0 −D∞

∥∥
L2 e−τ0κ t ;

(ii) suppose that τ(ε) satisfies (1.9), that is τ(ε)/ε2 → +∞ as ε vanishes. Then it holds for all time t ∈ R+

∥D⊥(t)∥L2 ≤
∥∥Din

⊥
∥∥
L2 e−t/(2τ(ε)) +

τ(ε)

ε
C(τ0 + 1)

∥∥Din −D∞
∥∥
H1 e−

τ(ε)

ε2
κ t ,

as well as

∥D0(t)−D∞,0∥H−1 ≤ C

(∥∥Din
0 −D∞,0

∥∥
H−1 +

τ(ε)

ε
(τ30 + 1)

∥∥Din −D∞
∥∥
H1

)
e−

τ(ε)

ε2
κ t .

In the latter estimate, constant C only depends on ϕ∞ and T0 and exponent κ is given by

κ =
1

C (τ20 + 1)
.
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The proof of this result is provided in Section 2.4, it showcases two major difficulties. The first one is similar to the
one encountered in Theorem 2.1; instead of estimating directly the H−1 norm between the first Hermite coefficient
D0 and its limit, we find the right intermediate quantity in order to recover dissipation (see (2.29)). However, unlike
in the case of Theorem 2.1, we crucially need to incorporate derivatives of the solution D to (1.2) in this quantity
in order to obtain some convergence rates. This leads us to the second difficulty, which is that we propagate some
regularity. Furthermore, since Theorem 2.2 describes simultaneously the large time behavior and the asymptotic
ε → 0, it is not sufficient to propagate derivative globally nor uniformly with respect to time, we need instead to
prove a convergence result in regular norms. This motivates item (ii) in Theorem 2.1, which will play a key role in
our proof. This regularity issue explains why we prove H−1 convergence with respect to the first Hermite coefficient
whereas we achieve strong L2 convergence with respect to other coefficients. To be noted that strong L2 convergence
for the first coefficient may be achieved with our method at the price of loosing pointwise estimate with respect to
time and thus considering integrated norms with respect to the time variable.

Theorems 2.1 and 2.2 fully answer their purpose, which is to describe the dynamics of (1.2) in the regime of
interests, uniformly with respect to all parameters at play here.

2.2. Preliminary results. Let us first emphasize the important properties satisfied by A, which we will need to
recover later on, in the discrete setting. First, A⋆ is its dual operator in L2(T), indeed for all u, v ∈ H1(T) it holds

(2.12) ⟨A⋆u, v⟩ = ⟨Av, u⟩ ,

where ⟨., .⟩ denotes the classical scalar product in L2(T). Furthermore, D∞,0 lies in the kernel of A, indeed

(2.13) AD∞,0 = 0 ;

in this setting, conservation of mass is ensured by the following property

(2.14)

∫
T
A⋆ u

√
ρ∞ dx = 0 ,

indeed, considering equation (2.2) with index k = 0 integrated over T and applying the latter relation with u = D1,
we obtain

d

dt

∫
T
D0(t)

√
ρ∞ dx = 0 ,

and therefore

(2.15)

∫
T
D0(t)

√
ρ∞ dx =

∫
T
D∞,0

√
ρ∞ dx ;

we also point out that since √
T0 (A+A⋆) = ∂xϕ∞ ,

it holds

(2.16) ∥ (A+A⋆)u∥L2 ≤ 1√
T0

∥ϕ∞∥W 1,∞∥u∥L2 ,

on top of that, operators A and A⋆ do not commute and we have

[A, A⋆] = AA⋆ −A⋆ A = ∂xxϕ∞ ,

which yields

(2.17) ∥ [A, A⋆]u∥L2 ≤ ∥ϕ∞∥W 2,∞ ∥u∥L2 ;

the last key property verified by operator A is the following Poincaré-Wirtinger inequality: under the compatibility
condition (2.7) on u ∈ H1 (T) it holds

(2.18) ∥u∥L2 ≤ CP

√
T0

(∫
T

∣∣∣∣∂x( u
√
ρ∞

)∣∣∣∣2 ρ∞ dx

)1/2

= CP ∥Au∥L2 ,

for some positive constant CP depending only on the potential ϕ∞ and T0. A proof of this result will be given in the
discrete setting (see Lemma 3.3), we do not detail it in the continuous case since it is not our main interest here.
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2.3. Proof of Theorem 2.1. It is worth to mention that estimate (2.4) itself is not sufficient to conclude on the
rate of convergence of D to the equilibrium D∞, since there is no dissipation with respect to the zero-th Hermite
coefficient D0. Therefore, it does not provide quantitative estimates when it comes to its convergence towards D∞,0.
Recovering this dissipation is the key feature of hypocoercivity [33, 13]. In our setting it is done by combining the
equations on D0 and D1, to remove stiff terms

(2.19) ∂t

(
D0 +

τ(ε)

ε
A⋆D1

)
+

τ(ε)

ε2

(
A⋆AD0 −

√
2 (A⋆)

2
D2

)
= 0 .

To prove quantitative estimates on the solution to (2.2), we therefore introduce the ”modified entropy functional”
[33, 13]: for any α0 > 0, which will be specified later, we define H0 as

(2.20) H0[D|D∞] =
1

2
∥D(t)−D∞∥2L2 + α0

〈
τ(ε)

ε
A⋆D1, u

ε

〉
,

where uε is the particular solution to equation (2.8) with source term g = D0 − D∞,0. To be noted that g =
D0 − D∞,0 fulfills the compatibility condition (2.7), thanks to the conservation of mass property (2.14).

The first step consists in proving some intermediate results on the solutions uε to (2.8)

Lemma 2.3. Consider any g ∈ L2(T) which meets condition (2.7) and u the corresponding solution to (2.8). Then,
u satisfies the following estimate

(2.21) ∥Au∥L2 ≤ CP ∥g∥L2 ,

and

(2.22) ∥A2 u∥L2 ≤
(
1 +

CP√
T0

∥ϕ∞∥W 1,∞

)
∥g∥L2 ,

where CP is the Poincaré constant in (2.18).
Moreover, considering now the solution D to (2.2) and uε the solution to (2.8) with source term g = D0 − D∞,0,
it holds for all time t ≥ 0

(2.23) ε ∥A ∂tu
ε(t)∥L2 ≤ ∥D1(t)∥L2 .

Proof. The first estimate is obtained by testing the elliptic equation (2.8) against u and applying (2.12)

∥Au∥2L2 ≤ ∥g∥L2 ∥u∥L2 ,

hence the Wirtinger-Poincaré inequality (2.18) yields,

∥Au∥L2 ≤ CP ∥g∥L2 .

For the second estimate, we rewrite A2u as follows

A2 u = −A⋆Au + (A+A⋆)Au ,

then we replace A⋆Au according to equation (2.8), take the L2 norm on both sides of the relation and apply in turn
(2.16) to estimate operator A+A⋆ and item (2.21) to estimate the norm of Au, it yields

∥A2 u∥L2 ≤
(
1 +

CP√
T0

∥ϕ∞∥W 1,∞

)
∥g∥L2 .

For the third estimate we consider now that D is solution to (2.2) and first take the time derivative of the elliptic
equation (2.8) and use the equation (2.2) on D0 to get

ε ∂t(A⋆Auε) = ε ∂t(D0 −D∞,0) = A⋆D1 .

Then multiply by ∂tu
ε and use (2.12) to get

∥∂tAuε∥2L2 =
1

ε
⟨D1, ∂tAuε⟩ ≤ 1

ε
∥D1∥L2 ∥∂tAuε∥L2 .

□

Thanks to the latter result we now prove that for small enough α0 > 0, the square root of the modified entropy
is equivalent to the L2 norm of D −D∞.

Lemma 2.4. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α0 ∈ (0, α0), with α0 = 1/(4 τ0 CP ) and
D ∈ L2(T) such that D0 −D∞ satisfies the compatibility condition (2.7), one has

(2.24) ∥D −D∞∥2L2 ≤ 4H0[D|D∞] ≤ 3 ∥D −D∞∥2L2 .
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Proof. We estimate the additional term in the expression of H0 by applying the duality formula (2.12) and then
Cauchy-Schwarz inequality

| ⟨A⋆D1, u
ε⟩ | = | ⟨D1,Auε⟩L2 | ≤ ∥D1∥L2 ∥Auε∥L2 .

Then, we apply item (2.21) of Lemma 2.3 with uε and g = D0 −D∞,0 and upper bound the norm of Auε accordingly

∥D1∥L2 ∥Auε∥L2 ≤ CP ∥D −D∞∥2L2 ,

hence, applying assumption (1.7), we deduce

α0
τ(ε)

ε
| ⟨A⋆D1, u

ε⟩ | ≤ α0 τ0 CP ∥D −D∞∥2L2 .

Choosing α0 = 1/(4 τ0 CP ), the result follows for α0 ∈ (0, α0). □

Relying on the previous lemmas, we are now able to carry out the proof of the first item (i) of Theorem 2.1. We
compute the time derivative of the modified relative entropy and split into three terms

d

dt
H0[D(t)|D∞] = I1(t) + α0 I2(t) + α0 I3(t) ,

where the first one corresponds to the dissipation of the L2 norm (2.4),

I1 = − 1

τ(ε)

∑
k∈N

k ∥Dk∥2L2 ,

whereas the other ones correspond to the additional term of the modified relative entropy,
I2 := −τ(ε)

ε2

〈
A⋆A (D0 −D∞,0) −

√
2 (A⋆)2 D2, u

ε
〉
− 1

ε
⟨A⋆D1, u

ε⟩ ,

I3 := +
τ(ε)

ε
⟨A⋆D1, ∂tu

ε⟩ .

On the one hand, the term I2 gives the expected dissipation on (D0 −D∞,0) since uε solves (2.8) with source term
(D0 −D∞,0). On the other hand we get some additional terms which can be estimated thanks to (2.21) and (2.22)
in Lemma 2.3, it yields,

I2 ≤ −τ(ε)

ε2
∥D0 −D∞,0∥2L2 +

τ(ε)

ε2

√
2

(
1 +

CP√
T0

∥ϕ∞∥W 1,∞

)
∥D0 −D∞,0∥L2∥D2∥L2

+
CP

ε
∥D0 −D∞,0∥L2 ∥D1∥L2 ,

≤ −τ(ε)

ε2
(1 − C η) ∥D0 −D∞,0∥2L2 +

C

2 η

(
τ(ε)

ε2
∥D2∥2L2 +

1

τ(ε)
∥D1∥2L2

)
,

for any positive η and for some positive constant C depending only on T0 and ϕ∞. The term I3 is estimated directly
by applying (2.23) of Lemma 2.3,

I3 ≤ τ(ε)

ε2
∥D1∥2L2 .

From these latter estimates and taking η = 1/(2C), we get the following inequality

d

dt
H0[D|D∞]

≤ −τ(ε)

ε2

(
α0

2
∥D0 −D∞,0∥2L2 +

(
ε2

τ(ε)2
− C2

(
1 +

ε2

τ(ε)2

)
α0

) ∑
k∈N

k ∥Dk∥2L2

)
.

We choose α0 sufficiently small such that

α0

2
≤
(

ε2

τ(ε)2
− C2

(
1 +

ε2

τ(ε)2

)
α0

)
,

which, according to assumption (1.7) on τ(ε), is fulfilled as long as

α0 ≤ 1

C (τ20 + 1)
,

for some constant C depending only on ϕ∞ and T0, and taking κ0 such that 3κ0/4 = α0/2, we derive the following
estimate

d

dt
H0[D|D∞] +

τ(ε)

ε2
3κ0

4
∥D −D∞∥2L2 ≤ 0 .
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Then applying Lemma 2.4 and taking α0 ≤ α0, we deduce

d

dt
H0[D|D∞] +

τ(ε)

ε2
κ0 H0[D|D∞] ≤ 0 ,

which yields after applying Gronwall’s lemma, for any t ≥ 0,

H0[D(t)|D∞] ≤ H0[D
in|D∞] exp

(
−τ(ε)

ε2
κ0 t

)
.

We conclude this proof by applying Lemma 2.4 in order to substitute H0 with the L2 norm of D − D∞ in the latter
estimate.

We now turn to the proof of the second item (ii) of Theorem 2.1. To estimate the norm of BD, we apply the
operator Bk to (2.2) and next multiply by BkDk, integrate with respect to x ∈ T and sum over k ∈ N, after re-indexing
the sum with respect to k, it yields

1

2

d

dt
∥BD(t)∥2L2 = J1(t) ,

where J1 is defined as follows

J1 =
∑
k∈N⋆

− k

τ(ε)
∥BkDk∥2L2 +

√
k

ε
(⟨Bk−1A⋆Dk, Bk−1Dk−1⟩ − ⟨BkADk−1, BkDk⟩) .

Hence applying an integration by part and from the specific choice (2.9) of B, we have

(2.25) J1 = − 1

τ(ε)

∑
k∈N⋆

k ∥BkDk∥2L2 − 1

ε

∑
k≥2

√
k ⟨ [A⋆,A]Dk−1, A⋆Dk⟩ .

Applying Young inequality and property (2.17) on the commutator [A⋆,A], we get that

J1 ≤ 1

τ(ε)

(η
2
∥ϕ∞∥2W 2,∞ − 1

) ∑
k∈N⋆

k ∥BkDk∥2L2 +
1

2 η

τ(ε)

ε2

∑
k≥1

∥Dk∥2L2 .

Therefore, choosing η ≤ 1/∥ϕ∞∥2W 2,∞ , it yields

(2.26)
1

2

d

dt
∥BD∥2L2 +

1

2 τ(ε)

∑
k∈N⋆

k ∥BkDk∥2L2 ≤ C
τ(ε)

ε2

∑
k≥1

∥Dk∥2L2 .

Again since there is no dissipation on the zero-th Hermite coefficient of BD, we proceed as for the L2 estimate and
introduce a correction H1 given by

(2.27) H1[D|D∞] =
1

2
∥BD∥2L2 + α1

〈
τ(ε)

ε
AD0, D1

〉
,

where α1 has to be determined. First, we point out that for small enough α1 > 0, the modified entropy H1 is
controlled by the squares of the L2 norms of D −D∞ and BD.

Lemma 2.5. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α1 ∈ (0, α1), with α1 = 1/(2 τ0) and
D ∈ L2(T), one has

(2.28) ∥BD∥2L2 − ∥D −D∞∥2L2 ≤ 4H1[D|D∞] ≤ 3 ∥BD∥2L2 + ∥D −D∞∥2L2 .

Proof. The result is obtained applying the Young inequality to the additional term in the definition (2.27) of H1 and
using that AD∞,0 = 0. □

To complete the proof of the second item (ii) in Theorem 2.1, we compute the time derivative of the modified
relative entropy and split into two terms

d

dt
H1[D|D∞] = J1 + α1 J2 ,

where the first one corresponds to the dissipation of the L2 norm of B (D − D∞) for which we already have an
estimate (2.26), that is,

J1 ≤ − 1

2 τ(ε)

∑
k∈N⋆

k ∥BkDk∥2L2 + C
τ(ε)

ε2

∑
k≥1

∥Dk∥2L2 ,

whereas the other one corresponds to the additional term of the modified relative entropy,

J2 :=
τ(ε)

ε2

(
⟨AA⋆D1, D1⟩ − ∥AD0∥2L2 +

√
2 ⟨AD0, A⋆D2⟩

)
− 1

ε
⟨D1, AD0⟩ .
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From properties (2.12) and (2.13) of operators (A, A⋆), we have

1

ε
⟨D1, AD0⟩ =

〈
1

τ(ε)1/2
A⋆D1,

τ(ε)1/2

ε
(D0 −D∞,0)

〉
.

Applying Young inequality on the third term in the definition of J2 and on the latter term, it yields

J2 ≤ −τ(ε)

ε2

[
1

2
∥AD0∥2L2 −

(
1 +

ε2

τ(ε)2

) ∑
k∈N⋆

k ∥BkDk∥2L2 − ∥D0 −D∞,0∥2L2

]
.

Therefore, from these estimates, we get the following inequality

d

dt
H1[D|D∞] ≤ (C + α1)

τ(ε)

ε2
∥D −D∞∥2L2

− τ(ε)

2 ε2

[
α1 ∥AD0∥2L2 +

(
ε2

τ(ε)2
− 2α1

(
1 +

ε2

τ(ε)2

)) ∑
k∈N⋆

k ∥BkDk∥2L2

]
,

choosing α1 sufficiently small such that

α1 ≤
(

ε2

τ(ε)2
− 2α1

(
1 +

ε2

τ(ε)2

))
,

which is verified under the condition

α1 ≤ 1

2 + 3 τ20
,

we get that

d

dt
H1[D|D∞] +

τ(ε)

ε2
α1

2
∥BD∥2L2 ≤ C

τ(ε)

ε2
∥D −D∞∥2L2 .

Furthermore, taking α1 ≤ 1/(2 τ0) and applying Lemma 2.5, we obtain

d

dt
H1[D|D∞] +

τ(ε)

ε2
2α1

3
H1[D|D∞] ≤ C

τ(ε)

ε2
∥D −D∞∥2L2 .

Then we set

κ1 = min

(
2α1

3
, κ0

)
and multiply the latter inequality by exp

(
τ(ε)
ε2

2α1

3 t
)
, integrate in time and apply the first item (i) of Theorem 2.1

to estimate the right hand side, this yields

H1[D(t)|D∞] ≤
(
C
(
τ20 + 1

) ∥∥Din − D∞
∥∥2
L2 + H1[D

in|D∞]
)
exp

(
−τ(ε)

ε2
κ1 t

)
.

We conclude this proof by substituting H1 with the norm of BD in the latter estimate according to Lemma 2.5.

2.4. Proof of Theorem 2.2. Once again, instead of estimating directly the H−1 norm of D0 −Dτ0 , we introduce
the following quantity, meant to recover dissipation on the zero-th Hermite coefficient

(2.29) E(t) =
1

2
∥A vε(t)∥2L2 ,

where vε(t) solves the elliptic equation (2.8) with source term given by

g(t) = D0(t) +
τ(ε)

ε
A⋆D1(t) − Dτ0,0(t) ,

where D0(t) and D1(t) are the first two components of the solution D(t) of (2.2) and Dτ0,0(t) is either the unique
solution to the convection-diffusion equation (2.6) when τ(ε) satisfies (1.8), that is τ(ε)/ε2 → τ0 < +∞ or the
stationary solution D∞,0 given by (2.3) when τ(ε) satisfies (1.9), that is τ(ε)/ε2 → +∞. The latter right hand side

is motivated by equation (2.19) since it is given by the difference between D0 + τ(ε)
ε A⋆D1 and Dτ0,0. We point out

that the latter source term meets the compatibility condition (2.7) thanks to property (2.14), which ensures that
A⋆D1(t) is orthogonal to

√
ρ∞ in L2 (T).

Before proving the first item of Theorem 2.2, let us present some preliminary results. On the one hand, the
following Lemma ensures that E(t) is controlled by the squares of the L2 norm of BD(t) and the H−1 norm of
D0(t)−Dτ0,0(t)
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Lemma 2.6. We consider E(t) defined by (2.29). It holds uniformly with respect to ε

(2.30) E(t) ≤ ∥D0(t)−Dτ0,0(t)∥2H−1 + C2
P

τ(ε)2

ε2
∥BD(t)∥2L2 ,

and

(2.31)
1

4
∥D0(t)−Dτ0,0(t)∥2H−1 − C2

P

τ(ε)2

2 ε2
∥BD(t)∥2L2 ≤ E(t) .

Proof. Defining wε and uτ0 as the respective solutions to (2.8) with source term g = A⋆D1 and Dτ0,0 − D∞,0, it
holds

vε = uε − uτ0 +
τ(ε)

ε
wε .

We apply operator A to the latter relation, take the L2 norm, and apply the triangular inequality, it yields

√
2 E ≤ ∥A (uε − uτ0)∥L2 +

τ(ε)

ε
∥Awε∥L2 ,

and

∥A (uε − uτ0)∥L2 − τ(ε)

ε
∥Awε∥L2 ≤

√
2 E .

We estimate ∥Awε∥L2 applying (2.21) in Lemma 2.3 with source term g = A⋆D1, this yields

√
2 E ≤ ∥D0 −Dτ0,0∥H−1 +

τ(ε)

ε
CP ∥BD∥L2 ,

and

∥D0 −Dτ0,0∥H−1 − τ(ε)

ε
CP ∥BD∥L2 ≤

√
2 E .

We obtain the result taking the square of the latter inequalities and applying Young’s inequality.
□

On the other hand, when τ0 is finite, we observe that the long time behavior of Dτ0,0 may be easily investigated.
Indeed, since AD∞,0 = 0, we have that Dτ0,0−D∞,0 also solves (2.6). Therefore, multiplying (2.6) by Dτ0,0−D∞,0,
integrating over T and applying the Poincaré inequality (2.18), we obtain the following estimate after applying
Gronwall lemma

(2.32) ∥Dτ0(t)−D∞∥L2 ≤ ∥Din
τ0 −D∞∥L2 exp

(
− τ0
C2

P

t

)
, ∀ t ∈ R+ .

We are now able to prove the first item (i) of Theorem 2.2, which treats the case where τ(ε) ∼ τ0 ε
2, when ε → 0

where τ0 ∈ R+
⋆ . To derive the first estimate in item (i) of Theorem 2.2, our starting point is the L2 estimate (2.4)

which ensures

1

2

d

dt
∥D⊥(t)∥2L2 +

1

τ(ε)
∥D⊥(t)∥2L2 ≤ −1

2

d

dt
∥D0(t)−D∞,0∥2L2

≤ −1

ε
⟨A⋆D1(t), D0(t)−D∞,0⟩

= −1

ε
⟨D1(t), A (D0(t)−D∞,0)⟩ ,

hence it gives from the Young inequality

d

dt
∥D⊥(t)∥2L2 +

1

τ(ε)
∥D⊥(t)∥2L2 ≤ τ(ε)

ε2
∥BD(t)∥2L2 .

We bound ∥BD(t)∥2L2 applying item (ii) of Theorem 2.1. After multiplying the latter estimate by et/τ(ε) and
integrating with respect to time, it yields

∥D⊥(t)∥2L2 ≤
∥∥Din

⊥
∥∥2
L2 exp

(
− t

τ(ε)

)
+

(
C(τ20 + 1)

∥∥Din −D∞
∥∥2
L2 +

∥∥BDin
∥∥2
L2

) 3 τ(ε)2

ε2 − κ τ(ε)2
exp

(
−τ(ε)

ε2
κ t

)
,

where C is a positive constant depending only on ϕ∞ and T0 and κ =
(
C(τ20 + 1)

)−1
. Then we apply condition (1.7)

on τ(ε), which ensures that taking C greater than 2 in the definition of κ, it holds 1/2 ≤ 1 − κ τ(ε)2/ε2 uniformly
with respect to ε. Therefore, we deduce the following estimate, which yields the first result in (i) of Theorem (2.1),
after taking its square root and applying assumption (2.11) in order to substitute τ(ε) with τ0 ε

2

∥D⊥(t)∥2L2 ≤
∥∥Din

⊥
∥∥2
L2 e−

t
τ(ε) + 6

(
C(τ20 + 1)

∥∥Din −D∞
∥∥2
L2 +

∥∥BDin
∥∥2
L2

) τ(ε)2

ε2
e−

τ(ε)

ε2
κ t .
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We now prove the second result in item (i) of Theorem 2.2. To do so, we evaluate E observing that

dE
dt

=

〈
∂t

(
D0 +

τ(ε)

ε
A⋆D1 − Dτ0,0

)
, vε
〉
.

Therefore, relying on equations (2.19) and (2.6) we deduce

dE
dt

= − τ(ε)

ε2
∥D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0∥2L2 + E1 + E2 + E3 ,

where 

E1 =

(
τ0 −

τ(ε)

ε2

)
⟨A⋆ADτ0,0 , v

ε⟩ ,

E2 =
τ(ε)2

ε3
⟨A⋆AD1 , v

ε⟩ ,

E3 =
√
2
τ(ε)

ε2

〈
(A⋆)

2
D2 , v

ε
〉
.

We rewrite E1, E2 and E3 according to the following considerations: first, we notice that D∞,0 solves (2.13) and
therefore add D∞,0 to the left hand side of the bracket in E1, second we apply the duality formula (2.12) in E1, E2
and E3 and then replace vε in E1 and E2 according to the relation

A⋆A vε = D0 +
τ(ε)

ε
A⋆D1 −Dτ0,0 .

Hence, we obtain 

E1 =

(
τ0 −

τ(ε)

ε2

)〈
Dτ0,0 −D∞,0 , D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0

〉
,

E2 =
τ(ε)2

ε3

〈
D1 , D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0

〉
,

E3 =
√
2
τ(ε)

ε2
〈
D2 , A2 vε

〉
.

To estimate E1, we apply Young’s inequality, which yields

E1 ≤ η

2

τ(ε)

ε2
∥D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0∥2L2 +

1

2η

ε2

τ(ε)

∣∣∣∣τ0 − τ(ε)

ε2

∣∣∣∣2 ∥Dτ0 −D∞∥2L2 ,

for all positive η. To estimate E2, we apply Young’s inequality and then assumption (1.7) which ensures that
τ(ε)3/ε4 ≤

(
τ20 τ(ε)

)
/ε2, this gives

E2 ≤ η

2

τ(ε)

ε2
∥D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0∥2L2 +

1

η

τ(ε)

ε2
τ20 ∥D⊥∥2L2 ,

for all positive η. To estimate E3, we apply Young’s inequality and then bound the norm of A2 vε by applying item
(2.22) in Lemma 2.3 with source term

g = D0 +
τ(ε)

ε
A⋆D1 −Dτ0,0 ,

it yields

E3 ≤ η
τ(ε)

ε2
∥D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0∥2L2 +

C

η

τ(ε)

ε2
∥D⊥∥2L2 ,

for some constant C depending only on ϕ∞ and T0. We gather the latter estimates, take η = 1/4 and apply item
(2.21) in Lemma 2.3, which ensures that

E ≤ C2
P

2
∥D0 +

τ(ε)

ε
A⋆D1 −Dτ0,0∥2L2 .

Therefore, we obtain

dE
dt

+
τ(ε)

C2
P ε2

E ≤ C
τ(ε)

ε2
(
1 + τ20

)
∥D⊥∥2L2 + C

ε2

τ(ε)

∣∣∣∣τ0 − τ(ε)

ε2

∣∣∣∣2 ∥Dτ0 −D∞∥2L2 ,

for some constant C depending only on ϕ∞ and T0. Then we multiply the latter estimate by exp

(
τ(ε)

C2
P ε2

t

)
and

integrate with respect to time. After applying (2.32) to estimate ∥Dτ0 − D∞∥L2 and the first result in item (i) of
Theorem 2.2 to estimate the norm of D⊥, it yields

E(t) ≤
(
E(0) + C

τ(ε)2

ε2
(τ60 + 1)

∥∥Din −D∞
∥∥2
H1

)
exp

(
−τ(ε)

ε2
κ t

)
+ C

∣∣∣∣τ0 ε2τ(ε)
− 1

∣∣∣∣2 ∥Din
τ0 −D∞∥2L2

(
2 τ0 ε

2

τ(ε)
− 1

)−1

exp

(
−τ(ε)

ε2
κ t

)
.
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To conclude, we substitute E(t) (resp. E(0)) in the latter estimate according to (2.31) (resp. (2.30)) in Lemma 2.6

and then apply assumption (2.11) on τ(ε), which ensures

(
2 τ0 ε

2

τ(ε)
− 1

)−1

≤ 3, this yields

∥D0(t)−Dτ0,0(t)∥2H−1 ≤

C

(
∥Din

0 −Din
τ0,0∥

2
H−1 +

τ(ε)2

ε2
(τ60 + 1)

∥∥Din −D∞
∥∥2
H1

)
e−

τ(ε)

ε2
κ t +

C

∣∣∣∣τ0 ε2τ(ε)
− 1

∣∣∣∣2 ∥Din
τ0 −D∞∥2L2 e

− τ(ε)

ε2
κ t .

We obtain the second estimate provided in (i) of Theorem 2.2 taking the square root in the latter estimate and
applying assumption (2.11) in order to substitute τ(ε) with τ0 ε

2.
To prove the second item (ii) of Theorem 2.2, we follow the same lines as the ones for item (i) replacing Dτ0 by

D∞ and observing that D∞ also solves the equation (2.6) since it is a stationary solution. Therefore, computations
are even simpler since the term E1 vanishes in this case. As a consequence the estimate provided in item (ii) follows.

3. Finite volume discretization for the space variable

In this section we present a finite volume scheme for (2.2). Then we prove discrete hypocoercive estimates on the
discrete solution to investigate the long time behavior and the speed of convergence to the steady state. Finally, we
prove an asymptotic preserving property for the diffusive limit taking τ(ε) ∼ τ0 ε

2 with error estimates with respect
to ε. Thanks to the groundwork laid in the previous Section, we are able to propose a scheme which describes all
the variety of regimes that we aim to capture in this article.

3.1. Numerical scheme. For simplicity purposes, we consider the problem in one space dimension. It will be
straightforward to generalize this construction for Cartesian meshes in multidimensional case. In a one-dimensional
setting, we consider an interval (a, b) of R and for Nx ∈ N⋆, we introduce the set J = {1, . . . , Nx} and a family of
control volumes (Kj)j∈J such that Kj =

]
xj−1/2, xj+1/2

[
with xj the middle of the interval Kj and

a = x1/2 < x1 < x3/2 < ... < xj−1/2 < xj < xj+1/2 < ... < xNx < xNx+1/2 = b .

Let us set {
∆xj = xj+1/2 − xj−1/2, for j ∈ J ,

∆xi+1/2 = xj+1 − xj , for 1 ≤ j ≤ Nx − 1 .

We also introduce the parameter h such that

h = max
j∈J

∆xj .

Let ∆t be the time step. We set tn = n∆t with n ∈ N. A time discretization of R+ is then given by the increasing
sequence of (tn)n∈N. In the sequel, we will denote by Dn

k the approximation of Dk(t
n), where the index k represents

the k-th mode of the Hermite decomposition, whereas Dn
k,j is an approximation of the mean value of Dk over the

cell Kj at time tn.
First of all, the initial condition is discretized on each cell Kj by:

D0
k,j =

1

∆xj

∫
Kj

Din
k (x) dx, j ∈ J .

The finite volume scheme is obtained by integrating the equation (2.2) over each control volume Kj and over each
time step. Concerning the time discretization, we can choose any implicit method (backward Euler, Implicit Runge-
Kutta,...). Since in this paper we are interested in the spatial discretization, we will only consider a backward Euler
method afterwards. Let us now focus on the spatial discretization.

By integrating equation (2.2) on Kj for j ∈ J , we obtain the numerical scheme: for Dn
k = (Dn

k,j)j∈J

(3.1)
Dn+1

k −Dn
k

∆t
+

1

ε

(√
kAh D

n+1
k−1 −

√
k + 1A⋆

h D
n+1
k+1

)
= − k

τ(ε)
Dn+1

k ,

where Ah (resp. A⋆
h) is an approximation of the operator A (resp. A⋆) given by

(3.2) Ah = (Aj)j∈J and A⋆
h = (A⋆

j )j∈J .

and where for D = (Dj)j∈J it holds

(3.3)


AjD = +

√
T0

(
Dj+1 −Dj−1

2∆xj
− E∞,j

2T0
Dj

)
, j ∈ J ,

A⋆
jD = −

√
T0

(
Dj+1 −Dj−1

2∆xj
+

E∞,j

2T0
Dj

)
, j ∈ J ,
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whereas the discrete electric field E∞,j is given by

(3.4) E∞,j = −ϕ∞,j+1 − ϕ∞,j−1

2∆xj
=

2T0√
ρ∞,j

√
ρ∞,j+1

−√
ρ∞,j−1

2∆xj
,

where ρ∞,j is an approximation of the stationary density ρ∞ on the cell Kj . This latter formula is consistent with

the definition of
√
ρ∞ = c0 e

−ϕ∞/(2T0) and the fact that

1

2T0
∂xϕ∞ = − 1

√
ρ∞

∂x
√
ρ∞ .

This choice of discretization is motivated by preserving at the discrete level the key properties (2.12)-(2.18). In
the end, we propose the following approximation of the continuous solution f to (1.2)

fn(x, v) =
∑
k∈N

√
ρ∞(x)Dn

k (x)Ψk(v) ,

where for each k ≥ 0 and n ≥ 0, we define a piecewise constant function Dn
k from the numerical values (Dn

k,j)j∈J as

Dn
k (x) = Dn

k,j , x ∈ Kj .

In this context the equilibrium D∞ is given by

(3.5) D∞,k =

{ √
ρ∞, if k = 0 ,

0, else ;

as for the limit in the diffusive regime Dn
τ0 = (Dn

τ0,k
)k∈N, it is given by

(3.6) Dn
τ0,k =

 Dn
τ0,0, if k = 0 ,

0, else ,

where Dn
τ0,0 solves the following discrete version of equation (2.6)

(3.7)
Dn+1

τ0,0
−Dn

τ0,0

∆t
+ τ0 A⋆

hAhD
n+1
τ0,0

= 0 .

We now introduce the norms we will work with in this section. We denote by ⟨., .⟩ the L2 scalar product for any
u = (uj)j∈J and v = (vj)j∈J ,

⟨u, v⟩ =
∑
j∈J

∆xj uj vj

and

∥u∥L2 =

∑
j∈J

∆xj u
2
j

1/2

.

As in the (2.7), we consider the following H−1 norm defined on the L2 subspace orthogonal to
√
ρ∞: for all gh =

(gj)j∈J which meets the condition

(3.8)
∑
j∈J

∆xj gj
√
ρ∞,j = 0 ,

we set
∥gh∥H−1 = ∥Auh∥L2(T) ,

where uh = (uj)j∈J is the solution to the discrete equivalent of equation (2.8)

(3.9)


(A⋆

h Ah)uh = g ,∑
j∈J

∆xj uj
√
ρ∞,j = 0 .

We also use the H1 norm, analog to the one given in (2.9), defined for all D = (Dk)k∈N as follows

∥Bh D∥2L2 =
∑
k∈N

∥Bk Dk∥2L2 ,

where the family of discrete operator Bh = (Bh,k)k≥ 0 is given as follows

(3.10) Bh,k =

{ Ah , if k = 0 ,

A⋆
h , else .

To conclude with this section, we take the same definition of D⊥ as in the continuous setting.
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3.2. Main results. We can now release the two results that constitute the core of this article. Thanks to our choice
of discretization, they are an exact translation of their continuous analogs, Theorems 2.1 and 2.2, into the discrete
setting, without any loss of accuracy nor uniformity with respect to the parameters at play in our analysis. On top
of that, the results are also uniform with respect to the discretization parameters.

This first result is the continuous analog of Theorem 2.1, it ensures that our scheme has the same long time
behavior as the continuous model

Theorem 3.1. Suppose that condition (1.7) on τ(ε) is satisfied and Let Dn = (Dn
k )k∈N be the solution to (3.1). The

following statements hold true

(i) there exists some positive constant C0 depending only on ϕ∞ and T0 such that for all ε > 0 and all n ≥ 0,
we have

∥Dn − D∞∥L2 ≤
√
3
∥∥D0 − D∞

∥∥
L2

(
1 +

τ(ε)

ε2
κ0 ∆t

)−n/2

;

(ii) suppose in addition that the mesh is regular enough so that the quantity

(3.11) Rh = sup
(i,j)∈J 2

∣∣∆xj∆x−1
i − 1

∣∣
stays uniformly bounded with respect to the discretization parameter h. Then there exists a positive constant
C1 (depending only on ϕ∞, T0 and Rh) such that that for all ε > 0 and all n ≥ 0, we have

∥BhD
n∥L2 ≤

√
3
(
C1 (τ0 + 1)

∥∥BhD
0
∥∥
L2 +

∥∥D0 − D∞
∥∥
L2

)(
1 +

τ(ε)

ε2
κ1 ∆t

)−n
2

,

In the previous estimates κi > 0 is given by

κi =
1

Ci (τ
2
0 + 1)

.

Our second result deals with the asymptotic ε → 0, it is the discrete analog of Theorem 2.2

Theorem 3.2. Suppose that τ(ε) meets assumption (1.7) and that the mesh meets assumption (3.11). Consider the
solution Dn = (Dn

k )k∈N to (3.1). The following statements hold true uniformly with respect to ε

(i) suppose that τ(ε) satisfies (1.8) and (2.11) and consider Dn
τ0 = (Dn

τ0,k
)k∈N given by (3.6). Then it holds for

all n ≥ 0,

∥Dn
⊥∥L2 ≤

∥∥D0
⊥
∥∥
L2

(
1 +

∆t

2 τ0 ε2

)−n
2

+ τ0 εC(τ0 + 1)
∥∥D0 −D∞

∥∥
H1 (1 + τ0 κ∆t)

−n
2 ,

and ∥∥Dn
0 −Dn

τ0,0

∥∥
H−1 ≤ C

(∥∥D0
0 −D0

τ0,0

∥∥
H−1 + ε τ0 (τ

3
0 + 1)

∥∥D0 −D∞
∥∥
H1

)
(1 + τ0κ∆t)

−n
2 ,

C

∣∣∣∣τ0ε2τ(ε)
− 1

∣∣∣∣ ∥∥D0
τ0 −D∞

∥∥
L2 (1 + τ0κ∆t)

−n
2 ;

(ii) suppose that τ(ε) satisfies (1.9). Then it holds for any n ≥ 0

∥D⊥∥2L2 ≤ ∥D⊥∥2L2

(
1 +

∆t

τ(ε)

)−n
2

+
τ(ε)

ε
C(τ0 + 1)

∥∥D0 −D∞
∥∥
H1

(
1 +

τ(ε)

ε2
κ∆t

)−n
2

,

and∥∥Dn
0 −Dn

∞,0

∥∥
H−1 ≤ C

(∥∥D0
0 −D0

∞,0

∥∥
H−1 +

τ(ε)

ε
(τ30 + 1)

∥∥D0 −D∞
∥∥
H1

)(
1 +

τ(ε)

ε2
κ∆t

)−n
2

.

In the latter estimate, constant C only depends on ϕ∞, T0 and Rh and exponent κ is given by

κ =
1

C (τ20 + 1)
.

Furthermore the shorthand notation ∥·∥H1 stands for

∥D∥2H1 := ∥BD∥2L2 + ∥D∥2L2 .

The proof of these results follows almost exactly the same lines as the proof of Theorems 2.1 and 2.2 thanks to
the Lemma 3.3, which constitutes the keystone of our analysis and which ensures that our discretization Ah of oper-
ator A shares all the important properties (2.12)-(2.18) of its continuous analog. The only difference comes down to
some numerical remainder terms that we easily control applying methods already developed in the continuous section.

16



3.3. Preliminary properties. This section is dedicated to the following fundamental Lemma, which ensures that
the key properties (2.12)-(2.18) of the continuous operator A are preserved by its discrete analog Ah. Thanks to this
Lemma, all the computations carried in Section 2 directly translate into the discrete framework.

Lemma 3.3. Consider the discrete operators Ah and A⋆
h given in (3.2). Then we have for any u = (uj)j∈J and

v = (vj)j∈J

(1) preservation of the duality formula

⟨Ahu, v⟩ = ⟨u, A⋆
hv⟩ ;

(2) preservation of the kernel of operator Ah

AhD∞,0 = 0 ,

where the equilibrium D∞ is given by (3.5);
(3) preservation of the mass conservation properties

(3.12)
∑
j∈J

∆xj A⋆
ju

√
ρ∞,j = 0 ,

and for all n ≥ 0, the solution Dn
0 = (Dn

0,j)j∈J to (3.1) with index k = 0 verifies

(3.13)
∑
j∈J

∆xj Dn
0,j

√
ρ∞,j =

∑
j∈J

∆xj ρ∞,j ;

(4) preservation of the sum property

∥ (Ah +A⋆
h)u∥L2 ≤ 1√

T0

∥ϕ∞∥W 1,∞∥u∥L2 ;

(5) preservation with the commutator property

∥ [Ah, A⋆
h]u∥L2 ≤ C ∥ϕ∞∥W 2,∞∥u∥L2 ,

where constant C depends only on Rh (see (3.11)), it is explicitly given by

C = 2 + Rh ;

(6) conservation of the Poincaré-Wirtinger inequality: under condition (3.8) on u there exists a constant Cd > 0
depending only on ϕ∞ and T0 such that

(3.14) ∥u∥L2 ≤ Cd ∥Ah u∥L2 .

Remark 3.4. When the mesh is regular, item (5) in Lemma 3.3 may be improved into a consistent estimate compared
to its continuous analog (2.17), indeed we easily obtain

∥ [Ah, A⋆
h]u∥L2 ≤

(
∥ϕ∞∥W 2,∞ +

h

2
∥ϕ∞∥W 3,∞

)
∥u∥L2 ,

for any u = (uj)j∈J , following the same method as in the proof.

Proof. To prove item (1), we consider any (uj)j∈J and (vj)j∈J , we have after a discrete integration by part and
using periodic boundary conditions

⟨Ahu, v⟩ =
∑
j∈J

∆xj Aju vj

=
∑
j∈J

√
T0

(
uj+1 − uj−1

2
vj − ∆xj

E∞,j

2T0
uj vj

)

=
∑
j∈J

−
√

T0

(
vj+1 − vj−1

2
uj + ∆xj

E∞,j

2T0
vj uj

)
= ⟨u ,A⋆

h v⟩ .

To prove item (2), we look for D = (Dk)k∈N such that Ah D0 = 0, that is,

0 = Ai D0 =

√
T0

2∆xj

(
D0, j+1 −D0, j−1 +

ϕ∞,j+1 − ϕ∞,j−1

2T0
D0, j

)
.

Hence, from the particular choice of the discrete electric field (3.4), we have that

D0, j+1 −D0, j−1

D0, j
−

√
ρ∞, j+1

−√
ρ∞, j−1√

ρ∞, j

= 0 ,

which yields to definition (3.5).
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We turn to the mass conservation property (3). According to the definition (3.3) of A⋆
h, it holds

A⋆
ju

√
ρ∞,j ∆xj = −

√
T0

(
√
ρ∞,j

uj+1 − uj−1

2
+

√
ρ∞,j+1

−√
ρ∞,j−1

2
uj

)
.

Therefore, relation (3.12) is obtained summing the latter over j ∈ J and performing a discrete integration by part.
Relation (3.13) is obtained evaluating equation (3.1) with index k = 0 and j ∈ J , multiplying by

√
ρ∞,j

∆xj , then

summing over j ∈ J and applying relation (3.12) with u = Dn+1
1 .

We prove item (4) taking the L2 norm in the following relation√
T0

(
Aj +A⋆

j

)
u = − 2T0√

ρ∞,j

√
ρ∞,j+1

−√
ρ∞,j−1

2∆xj
uj ,

which holds for any u = (uj)j∈J .

We turn to item (5) and compute the commutator for the discrete operator [Ah, A⋆
h] as

[Ah, A⋆
h]j u = (Ah A⋆

h −A⋆
h Ah)ju

= −E∞,j+1 − E∞,j−1

4∆xj
(uj+1 + uj−1) − E∞,j+1 − 2E∞,j + E∞,j−1

4∆xj
(uj+1 − uj−1) ,

and therefore, we deduce item (5) taking the L2 norm in the latter result.

Finally, we prove the Poincaré inequality (3.14). Consider u = (uj)j∈J which meets condition (3.8) and let us

denote by ρ∞ the mean of ρ∞

ρ∞ =
∑
j∈J

∆xj ρ∞,j .

First using the zero weighted average assumption (3.8) on u, we remark that the cross term vanishes and

∥u∥2L2 =
∑
j∈J

∆xj

(
uj√
ρ∞,j

)2

ρ∞,j ,

=
1

2 ρ∞

∑
j∈J

∑
k∈J

∆xj ∆xk

(
uk√
ρ∞,k

− uj√
ρ∞,j

)2

ρ∞,j ρ∞,k ,

=
1

ρ∞

∑
k∈J

∑
j<k

∆xj ∆xk

(
uk√
ρ∞,k

− uj√
ρ∞,j

)2

ρ∞,j ρ∞,k .

For j < k, we have

uk√
ρ∞,k

− uj√
ρ∞,j

=

k−1∑
l=j

ul+1√
ρ∞,l+1

− ul√
ρ∞,l

,

which yields

(3.15) ∥u∥2L2 ≤ ρ∞

(∑
l∈J

ul+1√
ρ∞,l+1

− ul√
ρ∞,l

)2

.

On the other hand, we set for any j ∈ J√
ρ∞,j =

√
ρ∞,j−1

+
√
ρ∞,j+1

2
, and ηj =

√
ρ∞,j+1

−√
ρ∞,j−1

2
√
ρ∞,j

,

and observe that the discrete operator Ahu may be written as

∆xj√
ρ∞,j

Aju =

√
T0

2

[(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
(1 + ηj) +

(
uj√
ρ∞,j

− uj−1√
ρ∞,j−1

)
(1− ηj)

]
.

Then we have using periodic boundary conditions√
T0

∑
j∈J

(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
=

√
T0

2

∑
j∈J

(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
+

(
uj√
ρ∞,j

− uj−1√
ρ∞,j−1

)

=
∑
j∈J

∆xj√
ρ∞,j

Aju −
√

T0

(
uj+1√
ρ∞,j+1

− uj√
ρ∞,j

)
ηj − ηj+1

2

Hence using that ϕ∞ is Lipschitzian, we have

|ηj+1 − ηj | ≤ Cϕ h,
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which yields that√
T0

∑
j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ ≤ ∑
j∈J

∆xj√
ρ∞,j

| Aj u | + Cϕ h
√

T0

∑
j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ .
On the one hand, we consider the case when h is small enough such that 1− Cϕh ≥ 1/2, we get that∑

j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ ≤ 2√
T0

∑
j∈J

∆xj√
ρ∞,j

| Aj u |

On the other hand, when 1 − Cϕ h ≤ 1/2 (the space step h is large), we use the fact that in finite dimension, both
semi-norms are equivalent. Thus, there exists a constant C ′

ϕ > 0, independent of h, such that∑
j∈J

∣∣∣∣∣ uj+1√
ρ∞,j+1

− uj√
ρ∞,j

∣∣∣∣∣ ≤ C ′
ϕ√
T0

∑
j∈J

∆xj√
ρ∞,j

| Aj u | .

Gathering the latter result with (3.15), it yields

∥u∥2L2 ≤

(
C ′

ϕ

)2
ρ∞

T0

∑
j∈J

∆xj√
ρ∞,j

| Aj u |

2

.

Using the Cauchy-Schwarz inequality, we obtain the result

∥u∥2L2 ≤ C2
d ∥Ah u∥2L2 ,

where C2
d is given by

C2
d =

(
C ′

ϕ

)2
ρ∞

T0

∑
j∈J

∆xj

|
√
ρ∞,j |2

.

□

From the latter results, we may now get estimates on the solution uh to (3.9) as in Lemma 2.3 in the continuous
setting.

Lemma 3.5. Let us consider the solution uh to (3.9) with source term g = (gj)j∈J satisfying the compatibility
assumption (3.8). Then, uh satisfies the following estimate

(3.16) ∥Ah uh∥L2 ≤ Cd ∥g∥L2 ,

and

(3.17) ∥A2
h uh∥l2 ≤

(
1 +

Cd√
T0

∥∂xϕ∞∥L∞

)
∥g∥L2 .

Moreover, consider now (Dn
k )k∈N solution to (3.1) and un

h = (un
j )j∈J the corresponding solution to (3.9) with the

source term Dn
0 −√

ρ∞. Then we define dtu
n+1
h as

(3.18) dtu
n+1
h =

un+1
h − un

h

∆t
,

which satisfies

(3.19) ε
∥∥Ah dtu

n+1
h

∥∥
L2 ≤ ∥Dn+1

1 ∥L2 .

Proof. We follow the proof of Lemma 2.3, we multiply (3.9) by ∆xi ui, sum over i ∈ J and apply item (1) of Lemma
3.3, it yields

∥Ah uh∥2L2 ≤ ∥D −√
ρ∞∥L2 ∥uh∥L2 ,

hence the discrete Wirtinger-Poincaré inequality (3.14), obtained in Lemma 3.3, gives

∥Ah uh∥L2 ≤ Cd ∥D −√
ρ∞∥L2 .

For the second estimate, we observe that

(Ah + A⋆
h)j uh =

√
ρ∞,j+1

−√
ρ∞,j−1

2∆xj
√
ρ∞,j

uj

hence we obtain

(A2
h)j uh = − (A⋆

h Ah)j uh +

√
ρ∞,j+1

−√
ρ∞,j−1

2∆xj
√
ρ∞,j

Aj uh

= −
(
D0,j −

√
ρ∞,j

)
+

√
ρ∞,j+1

−√
ρ∞,j−1

2∆xj
√
ρ∞,j

Aj uh .
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Since ϕ∞ is Lipschitzian and applying (3.16), we obtain the result

∥A2
h uh∥L2 ≤ C ∥D(t)−√

ρ∞∥L2 .

For the third estimate we consider now the solution Dn = (Dn
k )k∈N to (3.1) and un

h the solution to (3.9) with source
term Dn

0 −√
ρ∞. We get for any j ∈ J ,

(A⋆
hAh)j dtu

n+1
h =

Dn+1
0,j −Dn

0,j

∆t
=

1

ε
A⋆

j D
n+1
1 .

Then we multiply by ∆xj dtu
n+1
h , sum over j ∈ J and use (2.12) to get∥∥Ah dtu
n+1
h

∥∥2
L2 =

1

ε

〈
Dn+1

1 , Ah dtu
n+1
h

〉
≤ 1

ε
∥Dn+1

1 ∥L2

∥∥Ah dtu
n+1
h

∥∥
L2 .

□

3.4. Proof of Theorem 3.1. We split the proof of Theorem 3.1 into two steps corresponding to the L2 and H1

convergence result. Thanks to Lemma 3.5, the method followed in Section 2 to prove the continuous analog to this
result (Theorem 2.1) directly applies here, excepted for some additional numerical remainders for which we give a
detailed method in order to get control over.

We define Hn
0 as

(3.20) Hn
0 =

1

2
∥Dn −D∞∥2L2 + α0

〈
τ(ε)

ε
A⋆

hD
n
1 , u

n
h

〉
,

where un is solution to (3.9) with Dn
0 − √

ρ∞ as a source term. First let us point out that Hn
0 shares the same

properties as its continuous analog, indeed it holds

Lemma 3.6. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α0 ∈ (0, α0), with α0 = 1/(4 τ0 Cd) and
Dn = (Dn

k,j)j∈J , k∈N, one has

(3.21)
1

4
∥Dn −D∞∥2L2 ≤ Hn

0 ≤ 3

4
∥Dn −D∞∥2L2 .

Proof. The proof follows the same lines as the one of Lemma 2.4. □

We are now able to proceed to the proof of the first item (i) of Theorem 3.1. On the one hand, proceeding as the
proof of item (i) in Theorem 2.1, it yields from Lemma 3.3

(3.22)
Hn+1

0 −Hn
0

∆t
= In+1

1 + α0 In+1
2 + α0 In+1

3 − Rn+1
0 ,

where

In+1
1 = − 1

τ(ε)

∑
k∈N⋆

k
∥∥Dn+1

k

∥∥2
L2

whereas the other terms correspond to the additional term of the modified relative entropy,
In+1
2 := −τ(ε)

ε2

〈
A⋆

hAh

(
Dn+1

0 −√
ρ∞
)
−

√
2 (A⋆

h)
2 Dn+1

2 , un+1
h

〉
− 1

ε

〈
A⋆

h D
n+1
1 , un+1

h

〉
,

In+1
3 := +

τ(ε)

ε

〈
A⋆

h D
n+1
1 , dtu

n+1
h

〉
,

where dtu
n+1
h is given in (3.18) and R0 is a purely numerical remainder given by

(3.23) Rn+1
0 =

1

2∆t
∥Dn+1 −Dn∥2L2 + α0

τ(ε)

ε

〈
A⋆

h

(
Dn+1

1 −Dn
1

)
, dtu

n+1
h

〉
.

Both terms In+1
2 and In+1

3 can be estimated as in the proof of item (i) in Theorem 2.1, which yields

In+1
2 ≤ −τ(ε)

ε2
(1 − C η) ∥Dn+1

0 −D∞,0∥2L2 +
C

2 η

(
τ(ε)

ε2
∥Dn+1

2 ∥2L2 +
1

τ(ε)
∥Dn+1

1 ∥2L2

)
,

for any positive η and for some positive constant C depending only on T0 and ϕ∞ and

In+1
3 ≤ τ(ε)

ε2
∥Dn+1

1 ∥2L2 .

From these latter estimates and taking η = 1/(2C) and as long as

α0 <
1

C (τ20 + 1)
,

for C great enough and taking κ0 such that 3κ0/4 = α0/2, we get that

Hn+1
0 −Hn

0

∆t
+

τ(ε)

ε2
κ0 Hn+1

0 ≤ −Rn+1
0 .

20



Now we treat the remainder term Rn+1
0 , observing that∣∣〈A⋆

h

(
Dn+1

1 −Dn
1

)
, dtu

n+1
h

〉∣∣ ≤ 1

2∆t

(
∥Dn+1

1 −Dn
1 ∥2L2 + ∥Ah

(
un+1
h − un

h

)
∥2L2

)
.

Therefore, applying (3.16) in Lemma 3.5 with source term Dn+1
0 −Dn

0 , we obtain∣∣〈A⋆
h

(
Dn+1

1 −Dn
1

)
, dtu

n+1
h

〉∣∣ ≤ 1 + C2
d

2∆t
∥Dn+1 −Dn∥2L2 .

Since τ(ε) meets assumption (1.7), the latter estimate ensures that, as long as α0 ≤
(
τ0 (1 + C2

d)
)−1

, it holds

0 ≤ Rn+1
0 ,

which yields

Hn+1
0 −Hn

0

∆t
+

τ(ε)

ε2
κ0 Hn+1

0 ≤ 0 .

The result follows by applying a discrete Gronwall’s lemma and then applying Lemma 3.6 in order to substitute Hn
0

with the L2 norm of Dn − D∞ in the latter estimate.
Now we turn to the proof of the second item (ii) of Theorem 3.1. Following Section 2.3, we introduce Hn

1 given
by

(3.24) Hn
1 =

1

2
∥BhD

n∥2L2 + α1

〈
τ(ε)

ε
AhD

n
0 , D

n
1

〉
,

where α1 has to be determined. Once again, Hn
1 shares the same properties as its continuous analog

Lemma 3.7. Suppose that condition (1.7) on τ(ε) is satisfied. Then for all α1 ∈ (0, α1), with α1 = 1/(2 τ0) and
Dn = (Dn

k )k∈N, one has

∥BhD
n∥2L2 − ∥Dn −D∞∥2L2 ≤ 4Hn

1 ≤ 3 ∥BhD
n∥2L2 + ∥Dn −D∞∥2L2 .

Proof. The result is obtained applying the same method as in the proof of Lemma 2.5. □

We now compute the variation of the modified relative entropy between one time step from tn to tn+1 and split
it into three terms

Hn+1
1 −Hn

1

∆t
= J n+1

1 + α1 J n+1
2 − Rn+1

1 ,

where J n+1
1 is given by

J n+1
1 := −1

ε

∑
k≥2

√
k
〈
[A⋆

h,Ah]D
n+1
k−1 , A

⋆
hD

n+1
k

〉
− 1

τ(ε)

∑
k∈N⋆

k
∥∥Bh,kD

n+1
k

∥∥2
L2

and

J n+1
2 :=

τ(ε)

ε2

(〈
AhA⋆

hD
n+1
1 , Dn+1

1

〉
−
∥∥AhD

n+1
0

∥∥2
L2 +

√
2
〈
AhD

n+1
0 , A⋆

hD
n+1
2

〉)
− 1

ε

〈
Dn+1

1 , AhD
n+1
0

〉
whereas Rn

1 is given by

(3.25) Rn+1
1 =

1

∆t

(
1

2
∥Bh

(
Dn+1 −Dn

)
∥2L2 + α1

τ(ε)

ε

〈
Ah

(
Dn+1

0 −Dn
0

)
, Dn+1

1 −Dn
1

〉)
.

On the one hand we estimate the terms J n+1
1 and J n+1

2 following the same method as the one presented to estimate
their continuous analogs J1(t) and J2(t) (see the proof item (ii) in Theorem 2.1). On the other hand, the remainder
term Rn+1

1 can be treated as Rn+1
0 in the proof of (i) of Theorem 3.1. Indeed,∣∣〈Ah

(
Dn+1

0 −Dn
0

)
, Dn+1

1 −Dn
1

〉∣∣ ≤ 1

2

(
∥Dn+1

0 −Dn
0 ∥2L2 + ∥A⋆

(
Dn+1

1 −Dn
1

)
∥2L2

)
.

According to the mass conservation property (3.13), Dn+1
0 −Dn

0 meets condition (3.8). Therefore we may apply the
discrete Poincaré inequality (3.14) to bound ∥Dn+1

0 −Dn
0 ∥2L2 in the latter estimate, this yields∣∣〈Ah

(
Dn+1

0 −Dn
0

)
, Dn+1

1 −Dn
1

〉∣∣ ≤ 1 + C2
d

2
∥Bh

(
Dn+1 −Dn

)
∥2L2 .

As in the case of Rn+1
0 in the former section, the latter estimate ensures that, as long as α0 ≤

(
τ0 (1 + C2

d)
)−1

, it
holds

0 ≤ Rn+1
1 .

Hence, we obtain the result by adapting at the discrete level the proof of item (ii) in Theorem 2.1 to bound J n+1
1

and J n+1
2 and applying a discrete Gronwall lemma.
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3.5. Proof of Theorem 3.2. As in the continuous setting, we prove that the solution Dn = (Dn
k )k∈N to (3.1)

converges to Dn
τ0 = (Dn

τ0,k
)k∈N given by (3.6)-(3.7), whose long time behavior is easily obtained relying on the

discrete Poincaré inequality (3.14)

(3.26) ∥Dn
τ0 −D∞∥L2 ≤ ∥D0

τ0 −D∞∥L2

(
1 +

2 τ0
C2

d

∆t

)−n
2

, ∀ t ∈ R+ .

We estimate
∥∥Dn

0 −Dn
τ0,0

∥∥
H−1 by introducing the intermediate quantity E , meant to recover coercivity with respect

to the first coefficient Dn
0

(3.27) En =
1

2
∥Ah v

n
h∥2L2 ,

where vnh solves (3.9) with source term

g = Dn
0 +

τ(ε)

ε
A⋆

hD
n
1 − Dn

τ0,0 .

The following lemma ensures that the quantity En shares the same properties as its continuous analog. Indeed it
holds

Lemma 3.8. We consider En defined by (3.27). It holds uniformly with respect to ε

(3.28) En ≤ ∥Dn − Dn
τ0∥

2
H−1 + C2

d

τ(ε)2

ε2
∥BhD

n∥2L2 ,

and

(3.29)
1

4
∥Dn − Dn

τ0∥
2
H−1 − C2

d

τ(ε)2

2 ε2
∥BhD

n∥2L2 ≤ En .

Proof. Defining wn
h and uτ0 as the respective solutions to (3.9) with source term g = A⋆

hD
n
1 and Dτ0,0 − D∞,0, it

holds

vnh = un
h − un

τ0 +
τ(ε)

ε
wn

h .

Applying operator Ah to the latter relation, taking the L2 norm, and applying the triangular inequality, it yields

√
2 En ≤

∥∥Ah

(
un
h − un

τ0

)∥∥
L2 +

τ(ε)

ε
∥Ah w

n
h∥L2 ,

and ∥∥Ah

(
un
h − un

τ0

)∥∥
L2 − τ(ε)

ε
∥Ah w

n
h∥L2 ≤

√
2 En .

We estimate ∥Ah w
n
h∥L2 applying (3.16) in Lemma 3.5, this yields

√
2 En ≤ ∥Dn − Dn

τ0∥H−1 +
τ(ε)

ε
Cd ∥BhD

n∥L2 ,

and

∥Dn − Dn
τ0∥H−1 − τ(ε)

ε
Cd ∥BhD

n∥L2 ≤
√
2 En .

We obtain the result taking the square of the latter inequalities and applying Young’s inequality. □

We now treat the asymptotic limit ε → 0 corresponding to the case of (i) in Theorem 3.2 and therefore suppose
that τ(ε) fulfills the assumptions (1.7), (1.8) and (2.11). As in the continuous setting, we start by deriving the first
result in (i) of Theorem 3.2. We already know from the L2 estimate (3.22) that∥∥Dn+1

⊥
∥∥2
L2 − ∥Dn

⊥∥
2
L2

2∆t
+

1

τ(ε)

∥∥Dn+1
⊥

∥∥2
L2

≤ −
〈
Dn+1

0 −Dn
0

∆t
, Dn+1

0 −Dn
0

〉
− 1

2∆t

∑
k∈N∗

∥Dn+1
k −Dn

k∥2L2

≤ −
〈
Dn+1

0 −Dn
0

∆t
, Dn+1

0 −D∞,0

〉
.

Therefore, we replace Dn+1
0 − Dn

0 according to equation (3.1), and after applying the duality formula of Lemma
3.3-(1), we obtain ∥∥Dn+1

⊥
∥∥2
L2 − ∥Dn

⊥∥
2
L2

∆t
+

1

τ(ε)

∥∥Dn+1
⊥

∥∥2
L2 ≤ −1

ε

〈
Dn+1

1 , AhD
n+1
0

〉
,

22



Hence, after multiplying by ∆t and applying the Young inequality to bound the right hand side of the latter inequality,
it yields (

1 +
∆t

τ(ε)

)∥∥Dn+1
⊥

∥∥2
L2 ≤ ∥Dn

⊥∥
2
L2 + ∆t

τ(ε)

ε2
∥BhD

n+1∥2L2 .

To achieve the proof, it remains to bound ∥BhD
n+1∥2L2 by applying Theorem 3.1-(ii) and again following the line of

the proof of Theorem 2.2, we deduce

∥Dn
⊥∥

2
L2 ≤∥∥D0

⊥
∥∥2
L2

(
1 +

∆t

τ(ε)

)−n

+ 6
(
C(τ20 + 1) ∥D0 −D∞∥2L2 + ∥BhD

0∥2L2

) τ(ε)2

ε2

(
1 +

τ(ε)

ε2
κ∆t

)−n

.

Therefore we obtain the result taking the square root in the latter estimate and substituting τ(ε) with τ0 ε
2 according

to assumption (2.11).

To prove the second result of (i) in Theorem 3.2 we evaluate En as in the proof of Theorem 2.2 observing that

∥Ah v
n
h∥2L2 =

〈
Dn

0 +
τ(ε)

ε
A⋆

hD
n
1 − Dn

τ0,0, v
n
h

〉
hence, relying on equations (3.1) and (3.7) we deduce

En+1 − En

∆t
= − τ(ε)

ε2
∥Dn

0 +
τ(ε)

ε
A⋆

hD
n
1 −Dn

τ0∥
2
L2 + En+1

1 + En+1
2 + En+1

3 − Rn+1
3 ,

where En+1
1 , En+1

2 and En+1
3 are the numerical equivalents of the terms E1(t), E2(t) and E3(t) in the proof of Theorem

2.2 

En+1
1 =

(
τ0 −

τ(ε)

ε2

)〈
A⋆

hAh D
n+1
τ0,0

, vn+1
h

〉
,

En+1
2 =

τ(ε)2

ε3
〈
A⋆

hAh D
n+1
1 , vn+1

h

〉
,

En+1
3 =

√
2
τ(ε)

ε2

〈
(A⋆

h)
2
Dn+1

2 , vn+1
h

〉
,

and Rn+1
3 is a numerical dissipation term

Rn+1
3 =

1

2∆t

∥∥Ah

(
vn+1
h − vnh

)∥∥2
L2 .

Since Rn+1
3 is positive, we apply the same method as the one presented in the proof of Theorem 2.2 and therefore

we obtain the following estimate for En(
1 +

τ(ε)∆t

C2
d ε

2

)
En+1 ≤ En + C∆t

τ(ε)

ε2
(
1 + τ20

) ∥∥Dn+1
⊥

∥∥2
L2

+ C∆t
ε2

τ(ε)

∣∣∣∣τ0 − τ(ε)

ε2

∣∣∣∣2 ∥Dn+1
τ0 −D∞∥2L2 ,

for some constant C depending only on ϕ∞ and T0. In the latter inequality, we bound ∥Dn+1
τ0 −D∞∥2L2 according

to (3.26) and the norm of D⊥ according to the first estimate of (i) in Theorem 3.2. Then we multiply the inequality

by

(
1 +

τ(ε)∆t

C2
d ε

2

)n

and sum for k ranging from 0 to n− 1, it yields

En ≤
(
E0 + C

τ(ε)2

ε2
(τ60 + 1)∥D0 −D∞∥2H1

)(
1 +

τ(ε)

ε2
κ∆t

)−n

+ C

∣∣∣∣τ0 ε2τ(ε)
− 1

∣∣∣∣2 ∥D0
τ0 −D∞∥2L2

(
2 τ0 ε

2

τ(ε)
− 1

)−1(
1 +

τ(ε)

ε2
κ∆t

)−n

.

To conclude, we substitute En (resp. E0) in the latter estimate according to (3.29) (resp. (3.28)) in Lemma 2.6 and

then apply assumption (2.11) on τ(ε), which ensures

(
2 τ0 ε

2

τ(ε)
− 1

)−1

≤ 3, this yields

∥Dn
0 −Dn

τ0,0∥
2
H−1 ≤C

(
∥D0

0 −D0
τ0,0∥

2
H−1 +

τ(ε)2

ε2
(τ60 + 1)∥D0 −D∞∥2H1

)(
1 +

τ(ε)

ε2
κ∆t

)−n

+C

∣∣∣∣τ0 ε2τ(ε)
− 1

∣∣∣∣2 ∥D0
τ0 −D∞∥2L2

(
1 +

τ(ε)

ε2
κ∆t

)−n

.
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Figure 1. Test 1 : centered Maxwellian. time evolution in log scale of (a) ∥f − f∞∥
L2(f

−1
∞ )

, (b) ∥f − ρM∥
L2(f

−1
∞ )

.

We obtain the result taking the square root in the latter estimate and substituting τ(ε) with τ0 ε
2according to

assumption (2.11).
Finally the proof of the second item follows the same lines replacing Dn

τ0 by D∞ in the discrete functional En.

4. Numerical simulations

We performed several numerical simulations which confirm the accuracy of the scheme (3.1). We do not detail this
process here and rather focus on the physical interpretation and the quantitative results obtained in our experiments.
We refer to [4] for a precise discussion on that matter.

In this section, we want to illustrate the quantitative estimates of the solution obtained using the Hermite Spectral
method in velocity and finite volume scheme in space for the one-dimensional Vlasov-Fokker-Planck equation. We
choose τ(ε) = τ0 ε

2 with τ0 = 5 and consider the Vlasov-Fokker-Planck equation (1.1) with E∞ = −∂xϕ∞ and

ϕ∞(x) = 0.1 cos

(
2π x

L

)
+ 0.9 cos

(
4π x

L

)
,

The stationary state is given by the Maxwell-Boltzmann distribution

f∞(x, v) =
c0√
2π

exp

(
−
(
ϕ∞ +

|v|2

2

))
,

where c0 is given by mass conservation ∫
T×R

f∞dvdx =

∫
T×R

f0dvdx,

where f0 is the initial datum.
In our simulation, we take a time step ∆t = 10−3, a number of modes NH = 200 and Nx = 64. It is worth to

mention that all the numerical simulations presented in this section are not affected by the numerical parameters,
which allows us to focus our discussion on the quantitative results on the diffusive limit ε → 0 and large time behavior.

4.1. Test 1 : centered Maxwellian. For the first test, we choose the following initial condition

f0(x, v) =
1√
2π

(
1 + δ cos

(
2π x

L

))
exp

(
−|v|2

2

)
,

with δ = 0.5 and L = 10.
On the one hand, we present in Figure 1 the time evolution of ∥f − f∞∥L2(f−1

∞ ) and the relative entropy on f ,

∥f − ρM∥L2(f−1
∞ ) = ∥D⊥(t)∥L2 .

The most striking feature in this test consists in the oscillatory behavior of the relative entropy which unfolds in
the relaxation of f towards its equilibrium. These oscillations may be observed in Figure 1-(b) and occur for various
values of ε ranging from 1 represented by blue curves to 2.10−1 represented by red curves.
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Figure 2. Test 1 : centered Maxwellian. time evolution in log scale of (a) ∥ρ − ρ∞∥
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Figure 3. Test 1 : centered Maxwellian. time evolution in log scale of ∥f − f∞∥
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(pink) and ∥ρτ0
− ρ∞∥
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∞ )

(black) for (a) ε = 1 and (b) ε = 10−1.

We also present in Figure 2 the relaxation to equilibrium of macroscopic quantities

∥D0 −D∞,0∥L2 = ∥ρ− ρ∞∥L2(f−1
∞ )

and the norm of the first moment D1. Time oscillations, observed on the distribution function, seem to affect
macroscopic quantities associated to the solution as moments D0 and D1.

On the other hand, we provide In Figure 3, a detailed description in the case ε = 1, where we see that the oscillations
of the spatial density and the ones of the higher modes in velocity are asynchronous, this may be interpreted as a
transfer of information between these two quantities. This phenomenon has already been investigated for non-linear
kinetic models (see [18]) but we show through these experiments that even the simple model at play here captures
this phenomena.

These oscillations stay visible for surprisingly small values of ε, up to 10−1. It showcases the robustness of our
scheme, which is still able to capture them at low computational cost. To be noted that our numerical experiments
indicate that a non zero external force field seems to be mandatory to observe this oscillatory behavior. We also
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emphasize that these oscillations seem to be quite sensitive to the choice of the initial data and the external field
(see the second numerical test with a different initial data, where such oscillations disappear for large time).

This leads us to the second feature of this test, which is the asymptotic preserving property of the scheme for
various values of ε. The method is accurate on large time intervals in the situation where ε = 1 (see Figure 3-(a)),
which corresponds to the long time behavior of the model but it is also accurate when ε ≪ 1. Indeed, as it is shown in
Figure 2-(a), the purple error curve of the density ρ corresponds exactly to the circled error curve of the macroscopic
model ρτ0 when ε = 10−3 and even smaller (not shown since the curves coincide).

Finally we focus on the intermediate value ε = 10−1, for which we observe in Figures 1-(a), 2-(a) and 3-(b), a
somehow surprising phenomenon: the kinetic model relaxes faster towards equilibrium than the macroscopic one.
This appears to be a consequence of our choice of initial data which is already at local equilibrium at time t = 0.
This aspect of the experiment justifies our efforts to cover a wide range of values for the scaling parameter ε: it
enables to capture intermediate regimes which may display peculiar phenomena. As we will see in the next section,
the reverse situation is possible as well, when the initial condition is far from equilibrium.

We conclude this section by drawing the readers attention towards Figure 4, which features the graph of the
solution f at different times, in the case ε = 1 and on which we witness its intricate relaxation towards equilibrium.

4.2. Test 2 : shifted Maxwellian. We now choose the same parameter as before excepted that the initial condition
is a shifted Maxwellian

f0(x, v) =
1√
2π

(
1 + δ cos

(
2π x

L

))
exp

(
−|v − u0|2

2

)
,

with u0 = 1, which is far from equilibrium.
First, we focus on the case ε = 1 displayed in Figure 5, where we observe that unlike in the previous test, the

oscillatory relaxation stops after a short time and is replaced by a slower but straight relaxation towards equilibrium.
Another interesting comment on Figure 5 is that all the curves associated to value of ε below 5.10−2 (red, beige, pink
and purple) are parallel. These two features might be explained by a fine spectral analysis of the model at play.
We now zoom in to focus on smaller time intervals and propose a detailed description of these dynamics in Figure
6, where we distinguish three phases constituting a great illustration for the result presented in item (i) of Theorem
3.2:

(1) the first phase is the initial time layer, it occurs on negligible time intervals compared to the time scale chosen
in Figure 6 but it is still visible if we focus on the red curves, representing the norm of D⊥, in plots (a) to
(d). As predicted by the first result in (i) of Theorem 3.2, higher Hermite modes gathered in the quantity
D⊥ undergo a steep exponential descent with theoretical rate of order (ε2 τ0)

−1, until they reach a critical
level of order ε;

(2) the second phase corresponds to the diffusive regime where f is close to ρτ0 M. Indeed we see that for times
ranging from ∼ 0 up to t = 1 in the case ε = 10−2 and increasing up to t = 3 in the case ε = 10−5, the red
curve, which represents the norm of D⊥, is parallel to the pink line corresponding to the norm of ρ − ρτ0
which itself coincides with the black curve representing the norm of ρτ0 − ρ∞. It indicates that, for a finite
amount of time which increases as ε goes to zero, the kinetic model behaves like the macroscopic one;

(3) the last phase is the long time behavior, it starts as the error between ρτ0 and ρ is of the same order as
the error between ρ and ρ∞. In Figure 6 (a)-(d), it corresponds to the intersection between circled blue
and black lines. As predicted by the second result in (i) of Theorem 3.2, this circled curve, representing the
error ∥ρ − ρτ0∥, starts with an ordinate of order ε at time t = 0, then it decays with a rate proportional
to τ0 but smaller than the relaxation rate of the macroscopic model. This constitutes a striking illustration
of ”hypocoercivity” phenomenon induced by the transport term proper to kinetic equations. During this
final phase, the solution f to (1.2) slowly relaxes towards equilibrium. A surprising and unexpected fact
is that the transition from diffusive regime to long time behavior occurs in a synchronized fashion for the
spatial density and higher modes in velocity. Indeed, as it can be observed in plots (a) to (c) of Figure 6,
the inflections points of the red and the pink curves are almost aligned.

5. Conclusion and perspectives

In the present article, we design a numerical method capable to capture a rich variety of regimes for a Vlasov-
Fokker-Planck equation with external force field. We prove quantitative estimates for all the regimes of interest, and
do this uniformly with respect to all parameter at play. We illustrate the robustness of our scheme by proposing sev-
eral numerical tests in which we capture a wide variety of situations (exponential decay with oscillations, transition
phase between diffusive regime an long time behavior, initial time layer, etc ...). Furthermore, we built the method
such that it should be easily adaptable in any dimension, at least for cartesian mesh.

Two questions arise naturally from this work. The first one is to build on the groundwork laid in this article
in order to design a scheme which takes into account non-linear coupling with Poisson for the electric force field.
This challenging perspective would be a great improvement since even for the continuous model, there exists to our
knowledge very few results which treat the longtime behavior and the diffusive regime with the accuracy proposed in
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Figure 4. Test 1 : centered Maxwellian. snapshots of the distribution function for ε = 1 at time t = 0, 0.5, 1.5, 3, 5 and
20.

this article. Up to our knowledge, all the works on this subject have restrictions on the dimension of the phase-space
and therefore, it would naturally be interesting to propose a method which applies in the physical case d = 3.
Another interesting question arose from our numerical tests, in which we witnessed oscillating behaviors in the
solution’s relaxation towards equilibrium as well as transition phase between diffusive regime and longtime behavior.
It would be of great interest to carry out a fine spectral analysis of the model both at the continuous and the discrete
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Figure 5. Test 2 : shifted Maxwellian. time evolution in log scale of (a) ∥f − f∞∥
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∞ )
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and (d) ∥D1∥L2 .

level in order to provide a quantitative description of these phenomena: we may hope for precise and enlightening
results due to the simplicity of our model.
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