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ON A DISCRETE FRAMEWORK OF HYPOCOERCIVITY FOR KINETIC EQUATIONS

ALAIN BLAUSTEIN AND FRANCIS FILBET

ABSTRACT. We propose and study a fully discrete finite volume scheme for the linear Vlasov-Fokker-Planck equa-
tion written as an hyperbolic system using Hermite polynomials in velocity. This approach naturally preserves the
stationary solution and the weighted L2 relative entropy. Then, we adapt the arguments developed in [13] based
on hypocoercivity methods to get quantitative estimates on the convergence to equilibrium of the discrete solution.
Finally, we prove that in the diffusive limit, the scheme is asymptotic preserving with respect to both the time variable
and the scaling parameter at play.
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1. INTRODUCTION

This article is devoted to the numerical approximation and analysis of the linear Vlasov-Fokker-Planck equation,
corresponding to the kinetic description of the Brownian motion of a large system of charged particles under the
effect of a force field.

Our main motivation comes from an electrostatic plasma composed of charged particles, where the Coulomb force
are taken into account. The time evolution of the electron distribution function f solves the Vlasov-Fokker-Planck
system coupled with the Poisson equation giving a self-consistent potential ®:

a e 1 .
OF ¢ oVaf + BV f = Ldivy (0f + Ty Vo),
at me Te
—e0Ad = qe/ fdv,
R3
where E = —V,® is the self-consistent electric field, €y is the vacuum permittivity, g. and m, are elementary charge

and mass of the electrons, whereas 7. is the relaxation time due to the collisions of the particles with the surrounding
bath and Ty the background temperature. In the present article, we will not consider the coupling with the Poisson
equation and suppose that the electric field E is given and only depends on the space variable. We refer to [19] and
our forthcoming work [6] dedicated to the numerical approximation and analysis of the Vlasov-Poisson-Fokker-Planck
system.

Considering € > 0 as the square root of the ratio between the mass of electrons and ions and 7(¢) > 0 the ratio
between the elapsed time between two collisions of electrons and the observable time, it allows to identify different
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regimes and the Vlasov equation may be written in a adimensional form

(1.1) e o Vuf + B@) Vof = —divy (uf + Ty Vuf),
ot 7(e)

Our main purpose here is to build and analyze a numerical scheme able to capture two regimes of interest for equation
(1.1) in a linear framework: the long time behavior ¢ — oo and the diffusive regime ¢ — 0. In various situations, the
scaling parameters at play may be non homogeneous across the system leading to intricate situations, where both
processes may coexist. Thus, we aim at designing a scheme robust enough to capture simultaneously these different
behaviors.

More precisely, we consider the one dimensional Vlasov-Fokker-Planck equation with periodic boundary conditions
in space, which reads

1 1
(12) 8tf + = (’anf + Eoo 8Uf) = 781) (Uf + TO 8vf)a

€ 7(e)
with ¢ > 0, position € T and velocity v € R, whereas the electric field derives from a potential ¢, such that
Eo = —0;¢00, with the following regularity assumption

(1.3) boo € WH>(T).
We also define the density p by integrating the distribution function in velocity,

(1.4) plt,x) = /Rf(t,a:,v)dv.

It is worth to mention that there are already several works on preserving large-time behaviors of solutions to the
Fokker-Planck equation or related kinetic models. On the one hand, a fully discrete finite difference scheme for the
homogeneous Fokker-Planck equation has been proposed in the pioneering work of Chang and Cooper [10]. This
scheme preserves the stationary solution and the entropy decay of the numerical solution. On the other hand, finite
volume schemes preserving the exponential trend to equilibrium have been studied for non-linear convection-diffusion
equations (see for example [31, 2, 7, 8, 22]). More recently, in [29], the authors investigate the question of describing
correctly the equilibrium state of non-linear diffusion and kinetic models for high order schemes. Let us also mention
some works on boundary value problems [16, 9] where non-homogeneous Dirichlet boundary conditions are dealt
with.

In the case of space non homogeneous kinetic equations, the convergence to equilibrium becomes tricky because of
the lack of coercivity since dissipation occurs only in the velocity variable whereas transport acts in the space variable.
Therefore, only few results are available and a better understanding of hypocoercive structures at the discrete level is
challenging. Let us mention a first rigorous work in this direction on the Kolmogorov equation [30, 20, 21]. In [20], a
time-splitting scheme is applied and it is shown that solutions have polynomial decay in time. In [30, 21], a different
approach has been used, based on the work of Hérau [23] and Villani [33], for finite difference and a finite element
schemes. Later, Dujardin, Hérau and Lafitte [14] studied a finite difference scheme for the kinetic Fokker-Planck
equation. Finally, in a more recent work [5], the authors established a discrete hypocoercivity framework based on
the continuous approach provided in [13]. It is based on a modified discrete entropy, equivalent to a weighted L2
norm involving macroscopic quantities and the authors show quantitative estimates on the numerical solution for
large time and in the limit € — 0.

The present contribution can be considered as a continuation of this latter work in order to discretize the kinetic
Fokker-Planck equation with an applied force field. On the one hand, we consider the case where the interactions
associated to collisions and electrostatic effects have the same magnitude, that is, 7(¢) ~ €, hence the limit t/e — +oo
corresponds to the long time behavior of equation (1.2). In this regime, the distribution function f relaxes towards
the stationary solution to the Vlasov-Fokker-Planck equation po, M, where the Maxwellian M is given by

_ 1 |U|2>
MO) = e e (57 )

whereas the density po, is determined by

a5 o = e (22),

where the constant cq is fixed by the conservation of mass, that is,

/poodz = / fo(z,v)dxdo.
T TxR

Thus, we set fo the stationary state of (1.2), defined as

foo(x,v) = pOO(x)M(U)
and we expect that f — fo as t/e — +o0.



On the other hand, the diffusive regime corresponds to a frontier where collisions dominate but still not enough
to cancel completely the electrostatic effects. This situation occurs as ¢ — 0 in the case where 7(g) ~ 792, for
some 1y > 0. Due to collisions, the distribution of velocities also relaxes towards a Maxwellian equilibrium. However,
in this case, the spatial distribution converges to a time dependent distribution p whose dynamics are driven by a
drift-diffusion equation depending on the force field F.,. Indeed, performing the change of variable * — = + T9ewv
in (1.2) and integrating with respect to v, we deduce that the quantity

7 (t,x) :/Rf(t,a:ngsv,v)dv,

solves the following equation

Oy + To Oy </Eoof(t,x—7'05v,v) dv — T08$7r> =0.
R

According to its definition, 7 verifies: p ~ 7 in the limit ¢ — 0. Therefore, we may formally replace m with p and
€ with 0 in the latter equation. This yields

f(tv x, U) :) p"’o(t7 LC) M(’U) ’
where p,, solves
(1.6) atp-ro + 100, (Eoo Pro — To O pTo) =0.

To be noted that this regime is an intermediate situation which contains more information than the long time
asymptotic since we have p — ps by taking either ¢ — 400 or 79 — +00 in the latter equation.

At the discrete level, Asymptotic-Preserving schemes have been developed to capture in a discrete setting the
diffusion limit, so that in the limit ¢ — 0, the numerical discretization converges to the macroscopic model (see for
instance [25, 28, 17, 27] on finite difference and finite volume schemes and [12, 11] on particle methods).

In the present article, our aim is to design a numerical scheme which is able to capture these two regimes but also
all the intermediate situations where €2 < 7(¢) < e. More precisely, we suppose that

(1.7) sup@ < 7o € (0, +00)
e>0 €

and distinguish two cases on 7(¢) :

(i) either the diffusive regime assumption

7(e)
1.8 — —
(1.8) = ) To < oo,
where collisional effects strongly dominate;

(#4) or the intermediate regime assumption

7(e)
1. — —
( 9) €2 =0 too,
which may for instance correspond to 7(g) = £?, with 1 < 8 < 2. It describes all the intermediate situations
between long time and diffusive regime.

The starting point of our analysis is the following estimate, obtained multiplying equation (1.2) by f/ foo, and
balancing the transport term with the source term corresponding to the electric field thanks to the weight £}
=l fldrdo + 20
TxR

) Jr|” (fi)

This estimate is important since it yields a L? stability result on the solution to the Vlasov-Fokker-Planck equation
(1.2).

Our purpose is to design a numerical scheme for which such estimate occurs. To this aim, we split our approach in
two steps: first we apply a Hermite spectral decomposition in velocity of f and then we apply a structure preserving
finite volume scheme for the space discretization. In the next section (Section 2), we provide explicit convergence
rates for the continuous model written in the Hermite basis (see Theorems 2.1 and 2.2). This first step allows us
to present the general strategy and to highlight the main properties of the transport operator in order to design
suitable numerical scheme. Therefore, in Section 3 we adapt these latter results without any loss to the fully discrete
setting using a structure preserving finite volume scheme and an implicit Euler scheme for the time discretization (see
Theorems 3.1 and 3.2). The variety of situations that we aim to cover may lead to various and intricate behaviors.
Therefore, we successfully put great efforts into providing results which are uniform with respect to all parameters
at play: time ¢, scaling parameters (g, 7p) and eventually the numerical discretization. The result is worth the pain,
since we propose in the Section 4 various simulations, in which we are able to capture, at low computational cost, a
rich variety of situations.

2

1d
foodzdv = 0.
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2. HERMITE’S DECOMPOSITION FOR THE VELOCITY VARIABLE

The purpose of this section is to present a formulation of the Vlasov-Fokker-Planck equation (1.2) based on Hermite
polynomials and to provide quantitative results on f when ¢ — 0 and ¢ — +o00. These results are identical to the ones
obtained in the continuous case except that there are formulated on the corresponding Hermite’s coefficients solution
to a linear hyperbolic system. This formulation is well adapted to prepare the fully discrete setting in Section 3.
We first use Hermite polynomials in the velocity variable and write the Vlasov-Fokker-Planck equation (1.2) as an
infinite hyperbolic system for the Hermite coefficients depending only on time and space. The idea is to apply a
Galerkin method only keeping a small finite set of orthogonal polynomials rather than discretizing the distribution
function in velocity [1, 26]. The merit to use orthogonal basis like the so-called scaled Hermite basis has been shown
in [24, 32] or more recently [15, 3] for the Vlasov-Poisson system. In this context the family of Hermite’s functions
(Uk) ey defined as

(o) = Hy (ﬁ) M),

constitutes an orthonormal system for the inverse Gaussian weight, that is,
/ V() Uy (o) M~ (0) dv = 64,
R

In the latter definition, (Hy),cy stands for the family of Hermite polynomials defined recursively as follows H_; = 0,
HO =1 and
EHp(§) = VEHr1(6) + VE+1THpa(€), VE 2 0.

Let us also point out that Hermite’s polynomials verify the following relation
Hj() = VEH,1(§), Yk >0.

Taking advantage of the latter relations, one can see why Hermite’s functions arise naturally when studying the
Vlasov-Poisson-Fokker-Planck model, especially in the diffusive regime, as they constitute an orthonormal basis
which diagonalizes the Fokker-Planck operator:

(9U[U\I/k + TO&,\I/k} = —kV¥,.

Therefore, we consider the decomposition of f into its components C' = (Cy), ¢y in the Hermite basis

(2.1) Fltaw) = 3 Culta) Ue(v).

kEN
It is worth mentioning that we also may consider a truncated series neglecting high order coefficient in order to
construct a spectrally accurate approximation of f in the velocity variable.

As we have shown before, Hermite’s decomposition with respect to the velocity variable is a suitable choice in our
setting. When it comes to the space variable, we see from estimate (1.10) that the natural functional framework here
is the L? space with weight p!. Unfortunately, it is not very well adapted to the space discretization since it may
generate additional spurious terms difficult to control when dealing with discrete integration by part. We bypass this
difficulty by integrating the weight in the quantity of interest: instead of working directly with f, we consider the
quantity f /+/p_ in order to get a well-balanced scheme in the same spirit to what has been already done in [9, 16]
for well-balanced finite volume schemes. More precisely, we set

Ck
VP

in (2.1), and inject this ansatz in (1.2). Using that po Esxw = To0zpoo, wWe get that D = (Dy)ren satisfies the
following system

Dk =

9:Dy, + 1(\/EAD,H —VEF 1A*Dk+1> - - p,,

(2.2) € 7(€)
Dy(t =0) = Dt

where operators A and A* are given by

Ew

= +/Tp 0, u — ———
Au + 0 Oz 2\/’1?

u,

E
A u = —/TyOpu — —2=u.
! RV i
In this framework, the equilibrium D, to (2.2) is given by

{ Vs k=0,

0, else,
4

)



and estimate (1.10) simply rewrites

1d 1 2
(2.4) 33 1P®) — Dooll72 + ) > kD)2 = 0,
keN*
where || - || 72 stands for the overall L?-norm with no weight
IDI72 = > I DxlZaer) -
keN

On top of that, the limit of the diffusive regime is given by D;, = (D, &), cn defined as follows

Do, if k=0,
(2.5) Dik =
0, else,

where the first Hermite coefficient D, ¢ solves the following drift-diffusion equation

OtDry0 + 10 A"AD7 0 = 0,
(2.6) .
DT(),O(t = O) = Dlrr(;,Ov
which is obtained substituting pr, with D, o/p__ in equation (1.6). We define D = (b0 D%O)
the Kronecker symbol.

N where d;¢ is

To conclude this section, we introduce some additional norms which arise naturally along our analysis. In Section
2.3, we consider the following H ! norm defined on the L? subspace orthogonal to VP forall g € L? (T) which
meets the condition

(2.7) /Tg\/f)oodx 0,

we set
9l = A ull g2y
where u solves the following elliptic equation
A" Au = g,
(2.8)
/Tu\/ﬁoo dz = 0.

The latter equation admits a unique solution in H? (T) for any data g € L?(T) that meets the compatibility condition
(2.7). This well-posedness result crucially relies on the Poincaré inequality (2.18).
In Section 2.3, we use the following H' norm, defined for all D = (Dy), oy as follows

IBD|Z: = Y 1Bk Dill72cr)
KeN

where the family of differential operator B = (Bk),, - is defined as follows
A ifk =0,

(2.9) B =
A*, else.

To end with, we introduce the notation D; = (D, x)ken, which corresponds to the Hermite coefficients of f — p M,
that is

(2.10) Dy =

so that

1Dz = lf = pMllp2gpony-
5



2.1. Main results. In this section, we present two results which aim at describing the dynamics of (1.2) in various
regimes ranging from long time behavior to diffusive limit. We aim for estimates which capture simultaneously and
quantitatively the limits t — 400 and € — 0, in order to lay the groundwork for our upcoming numerical analysis,
in which we will build a scheme capable of reproducing these estimates exactly.

Our first main result tackles the long time behavior of the solution D = (Dy,); oy to (1.2). It is uniform with respect
¢ and covers all the regimes of interests since we only impose assumption (1.7) on the scaling parameter 7(¢). This
result is the first step towards its discrete analog, Theorem 3.1.

Theorem 2.1. Suppose that condition (1.7) on 7(¢) is satisfied and let D = (Dg)gen be the solution to (2.2) with
an initial datum D™. There exists some positive constant C depending only on ¢ and Ty such that

(i) under the condition ||DinHL2 < 400, it holds for all timest > 0
. T(e
D) = Daclys < V30 = Dl exp (-2 vt

(#3) under the condition HBD“‘HL2 + HDin < 400, it holds for all timest > 0

I,
IBD@2 < V3(C o+ 1) [0 = Dl + 180" ) exo (-5t

where £ > 0 is given by
1

C(r+1)°

The proof of this result is provided in Section 2.3. The main difficulty here consists in proving the convergence of
the first coefficient Dy in the Hermite decomposition of f towards the equilibrium /p_ . We adapt hypocoercivity
methods developed in [33, 13] to the framework of Hermite decomposition. Instead of estimating directly the quan-
tities of interest, we introduce modified entropy functionals (see (2.20) and (2.27)), in order to recover dissipation
and thus a convergence rate on Dy. Then, the second item tackles the convergence in a H' setting. Though a bit
more technical, this second convergence result contains no main additional difficulty in comparison to the L? con-
vergence result. Actually this latter result is essentially motivated by the analysis of the regime ¢ — 0 presented below.

R =

This leads us to the second main result in this section, which describes the behavior of the system as e vanishes.
We distinguish the diffusive regime, which corresponds to the case where 7(¢) satisfies (1.8) and the intermediate
situations between long time and diffusive regime where 7(¢) satisfies (1.9). We will adapt this result into the fully
discrete setting in Theorem 3.2.

Theorem 2.2. Suppose that 7(¢) meets assumption (1.7). For all positive €, consider D = (Dy)ren the solution to
(2.2) with an initial datum D™ such that

1D 5 += [IBD™[|72 + [D™[|72 < +oe.
The following statements hold true uniformly with respect to €

(i) suppose that T(¢) satisfies (1.8), that is T(¢) ~ 19 €2 and for simplicity, suppose

(2.11)

™€) gl <l veso
7'062 2

and consider D, = (D, k)ren given by (2.5). On the one hand, it holds for all time t € RT
IDL ()|l 2 < || D], e /4™ + 792 C(Fo +1) || D — D

where D] is given in (2.10); on the other hand, it holds
| Do(t) - mamH1<cme Din s + €70 (73 + DD = Daol 1) e

—T0 Kt
OOHHl € Y

7'06

vl - 1‘ D~ D], e 7%

(ii) suppose that 7(g) satisfies (1.9), that is 7'(5)/5 — 400 as € vanishes. Then it holds for all time t € RT

||DJ_ HL2 H THL2 e—t/(QT(E)) + @C(FO + 1) HDin _ DOCHHl e T(;) mt,
as well as
IDo(t) - D <C (HDBH = Docol| s + @ (75 + 1) || D™ - Doon) TRt

In the latter estimate, constant C only depends on ¢~ and Ty and exponent k is given by
1
CFi+1)"
6
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The proof of this result is provided in Section 2.4, it showcases two major difficulties. The first one is similar to the
one encountered in Theorem 2.1; instead of estimating directly the H~' norm between the first Hermite coefficient
Dy and its limit, we find the right intermediate quantity in order to recover dissipation (see (2.29)). However, unlike
in the case of Theorem 2.1, we crucially need to incorporate derivatives of the solution D to (1.2) in this quantity
in order to obtain some convergence rates. This leads us to the second difficulty, which is that we propagate some
regularity. Furthermore, since Theorem 2.2 describes simultaneously the large time behavior and the asymptotic
€ — 0, it is not sufficient to propagate derivative globally nor uniformly with respect to time, we need instead to
prove a convergence result in regular norms. This motivates item (i¢) in Theorem 2.1, which will play a key role in
our proof. This regularity issue explains why we prove H ! convergence with respect to the first Hermite coefficient
whereas we achieve strong L? convergence with respect to other coefficients. To be noted that strong L? convergence
for the first coefficient may be achieved with our method at the price of loosing pointwise estimate with respect to
time and thus considering integrated norms with respect to the time variable.

Theorems 2.1 and 2.2 fully answer their purpose, which is to describe the dynamics of (1.2) in the regime of
interests, uniformly with respect to all parameters at play here.

2.2. Preliminary results. Let us first emphasize the important properties satisfied by A, which we will need to
recover later on, in the discrete setting. First, A* is its dual operator in L?(T), indeed for all u, v € H(T) it holds

(2.12) (A*u, v) = (Av, u),
where (., .) denotes the classical scalar product in L?(T). Furthermore, D o lies in the kernel of A, indeed
(2.13) ADoo = 0;

in this setting, conservation of mass is ensured by the following property

(2.14) /A*u\/ﬁoo dz =0,
T

indeed, considering equation (2.2) with index k& = 0 integrated over T and applying the latter relation with u = Dy,
we obtain

i/Do(o\/ﬁ dr = 0,
at Jy %0

and therefore

(2.15) /TDO(t) VP dz = /TDOO}O Vo dx;

we also point out that since

\/CZTO(A—’_'A*) = md)oov
it holds

1
2.1 * 2 < — ||Ooo || W1, 2,
(2.16) | (A+ A ul L2 < T [@oollwroe[lullL

on top of that, operators A and A* do not commute and we have

A A = AA — A A = 0100 ,
which yields
(2.17) A, A ullze < ll¢oollwz [lullL2;

the last key property verified by operator A is the following Poincaré-Wirtinger inequality: under the compatibility
condition (2.7) on u € H' (T) it holds
U
(72)
VPoo

for some positive constant C'p depending only on the potential ¢, and Ty. A proof of this result will be given in the
discrete setting (see Lemma 3.3), we do not detail it in the continuous case since it is not our main interest here.

) 1/2
Poo dx) = Cp|Aullr:,

(2.18) lull > < Cpy/Ty (/T




2.3. Proof of Theorem 2.1. It is worth to mention that estimate (2.4) itself is not sufficient to conclude on the
rate of convergence of D to the equilibrium D, since there is no dissipation with respect to the zero-th Hermite
coefficient Dy. Therefore, it does not provide quantitative estimates when it comes to its convergence towards Do .
Recovering this dissipation is the key feature of hypocoercivity [33, 13]. In our setting it is done by combining the
equations on Dy and Dy, to remove stiff terms

T(e T(e
(2.19) o (Do + (E)A*Dl) + g (A*ADO - V2 (.A*)QDQ) =0.
To prove quantitative estimates on the solution to (2.2), we therefore introduce the "modified entropy functional”
[33, 13]: for any ag > 0, which will be specified later, we define Hg as

1
(2.20) Ho[D|Dwo] = 3 |D(t) — Dool|32 + o <T(€E) A*Dl,u5> ,
where u® is the particular solution to equation (2.8) with source term g = Dy — Do . To be noted that g =

Dy — D fulfills the compatibility condition (2.7), thanks to the conservation of mass property (2.14).
The first step consists in proving some intermediate results on the solutions u° to (2.8)

Lemma 2.3. Consider any g € L*(T) which meets condition (2.7) and u the corresponding solution to (2.8). Then,
u satisfies the following estimate

(2.21) lAulls < Crlglhs,
and
Cp
(2.22) 1Al < (1 + 2 ||¢oo||wm) lgllez

where Cp is the Poincaré constant in (2.18).
Moreover, considering now the solution D to (2.2) and u® the solution to (2.8) with source term g = Dy — Do 0,
it holds for all timet > 0

(2.23) e[ Aduu(t)llL2 < [D1(t)l 12
Proof. The first estimate is obtained by testing the elliptic equation (2.8) against v and applying (2.12)

[AulZ: < llgllze flullz2
hence the Wirtinger-Poincaré inequality (2.18) yields,

[Aulz> < CplglLe-

For the second estimate, we rewrite A2u as follows

Au = —A*Au + (A+ A*) Au,
then we replace A*Au according to equation (2.8), take the L? norm on both sides of the relation and apply in turn
(2.16) to estimate operator A + A* and item (2.21) to estimate the norm of Auw, it yields

Cp
1A < (1 + o ||¢W|W1,m) lgllz

For the third estimate we consider now that D is solution to (2.2) and first take the time derivative of the elliptic
equation (2.8) and use the equation (2.2) on Dy to get

e (A*Au®) = €9y (Dy — Do) = A*Dy .
Then multiply by d;u® and use (2.12) to get

1 1
|0 Au|72 = (D1, 0uAwS) < —[IDallr2 [|0nA w2
O

Thanks to the latter result we now prove that for small enough oy > 0, the square root of the modified entropy
is equivalent to the L2 norm of D — D.

Lemma 2.4. Suppose that condition (1.7) on 7(¢) is satisfied. Then for all oy € (0, ), with @y = 1/(47¢ Cp) and
D € L*(T) such that Dy — D, satisfies the compatibility condition (2.7), one has

(2.24) |D = Duo |22 < 4Ho[D|Doo] < 3||D — Doo|22 -



Proof. We estimate the additional term in the expression of Hy by applying the duality formula (2.12) and then
Cauchy-Schwarz inequality

(A" Dy, ) [ = [ (D1, Au®) e | < ||Daflzz [[A w2
Then, we apply item (2.21) of Lemma 2.3 with u® and g = Dy — D0 and upper bound the norm of A u® accordingly
[D1]lz2 Aw L2 < Cp D = Decll7e

hence, applying assumption (1.7), we deduce
T(e
Qo % | (A*Dl,u‘E) | < ag70Cp ||D — DooHiz .
Choosing @y = 1/(47¢ Cp), the result follows for o € (0, @p). O

Relying on the previous lemmas, we are now able to carry out the proof of the first item (i) of Theorem 2.1. We
compute the time derivative of the modified relative entropy and split into three terms

SHIDOID] = T(0) + a0 Tolt) + a0 Ta(t),

where the first one corresponds to the dissipation of the L? norm (2.4),

1 2
Iy = ——= > _KklDxll2
7(e) % L
whereas the other ones correspond to the additional term of the modified relative entropy,
1
T o= T (A A(Dy — Dac) — VI(AY Do) — L (D1, ),

I3 = —|—@ <A*D1, 8tu5>.

On the one hand, the term Zy gives the expected dissipation on (Dy — Do o) since u® solves (2.8) with source term

(Do — Doo,o). On the other hand we get some additional terms which can be estimated thanks to (2.21) and (2.22)

in Lemma 2.3, it yields,
7(e)

L, < ——5|1Do—Duyo
€

2

T(E) Cp
ot TV (14 S8 folwne ) 100~ Dl Dl

+— Do = Deoollz2 D122

7(g) 2 C (71(e) 2 1 2
< 720 0 ID0- Ducols + 5 (TPl + 5 IDAIE: ).
for any positive 1 and for some positive constant C' depending only on Ty and ¢,. The term Z3 is estimated directly
by applying (2.23) of Lemma 2.3,

I3 < LE)||D1||%2.

22
From these latter estimates and taking n = 1/(2C), we get the following inequality

d
— D|D
LolpID.]

7(e) [ o 2 e? 2 g2 2
< —2 | = ||Dg— Ds - C° (1 k|| D .
<7 ( 2100~ Dol + (=5 ) ) kI

We choose «q sufficiently small such that

7= (e (i) )

which, according to assumption (1.7) on 7(g), is fulfilled as long as
ap € —t
T O+’
for some constant C' depending only on ¢, and Tp, and taking xo such that 3k¢/4 = ag/2, we derive the following
estimate

d 7(€) 3 Ko 9
—Ho|D|Doo| + —= — ||D — Do <0.
9



Then applying Lemma 2.4 and taking oy < @p, we deduce

d
*Ho[D‘Doo] + ?HOHO[D|D00] <0,

which yields after applying Gronwall’s lemma, for any ¢t > 0,

; T(e
Ho[D(t)‘Doo] < HO[DIH|DOO] €xXp (_552) Ko t) .
We conclude this proof by applying Lemma 2.4 in order to substitute Hy with the L? norm of D — Dy in the latter

estimate.

We now turn to the proof of the second item (i) of Theorem 2.1. To estimate the norm of BD, we apply the
operator By, to (2.2) and next multiply by By Dy, integrate with respect to € T and sum over k € N, after re-indexing
the sum with respect to k, it yields

d
3 IBP@IIZ: = Ji(#),

N =

where 77 is defined as follows

Ji= —ﬁ 1B D72 + f(<6k 1 A* Dy, Bu—1Dy—1) — (BeADi_1, BiDy)).

keN~*
Hence applying an integration by part and from the Speciﬁc choice (2.9) of B, we have
(2.25) T = Z k||BiDyl3> — = Z\F ([A*, A| Dj_1, A*Dy).
kEN* k>2

Applying Young inequality and property (2.17) on the commutator [A*, A] we get that

L (m
T € (Domliae —1) 3 kIBDUE + 5 T S D42
7() kEN* k>1
Therefore, choosing 7 < 1/||¢oc |2, » it yields
1d
2.26 BD k|| BxD < c e D .
(2.20) 3 3t Bl + 5y 3 kB ¢ ;|| 2

Again since there is no dissipation on the zero-th Hermite coefficient of BD, we proceed as for the L? estimate and
introduce a correction H; given by

1
(2.27) Hi[D|Doc] = 5 |BD|32 + a; <T(€E)ADO,D1>,

where 7 has to be determined. First, we point out that for small enough o7 > 0, the modified entropy H; is
controlled by the squares of the L? norms of D — D, and BD.

Lemma 2.5. Suppose that condition (1.7) on 7(g) is satisfied. Then for all an € (0,a@1), with &1 = 1/(27) and
D € L?(T), one has

(2.28) IBD|7> — |D — Doll7> < 4H1[D|Doo] < 3[IBDI|72 + [|D — Dosll72 -

Proof. The result is obtained applying the Young inequality to the additional term in the definition (2.27) of H; and
using that ADy o = 0. O

To complete the proof of the second item (i¢) in Theorem 2.1, we compute the time derivative of the modified
relative entropy and split into two terms

d
EHI[D|DOO] =0 +a1Ja,

where the first one corresponds to the dissipation of the L? norm of B(D — D) for which we already have an
estimate (2.26), that is,

1
Ji < T30 Z k|1Br Dill7- + ¢ty Z”Dk”m,

kEN* k>1
whereas the other one corresponds to the additional term of the modified relative entropy,
L ( ) * . \f * o 1
Jo 1= (AA*D1q, Dy) HAD0||L2 + V2(A Dy, A*D3) . (D1, ADy) .

62
10



From properties (2.12) and (2.13) of operators (A, A*), we have
1 7(e)1/?
A*Dy, —— (Do — Do :
A DL T (Do = Daco)
Applying Young inequality on the third term in the definition of J5 and on the latter term, it yields

2
@s—ﬁﬂ|me—(wd@)kawmﬁwwr MMJ

kEN*

%(Dl,AD()) - <

Therefore, from these estimates, we get the following inequality

d €
—H1[D|Ds] < (C-l—oq)%HD—DOOHQH

dt
7(e) g?
T [al | A Doll7- + (T(E)Q —2a <1+ e >) > kBkaan],

keN*

choosing «; sufficiently small such that
g2 g2
< -2 1
o < (s 2 (14 553) )

ap <

which is verified under the condition
24372
we get that
d
Conipina] + 7 2801, < 0 T D - D
Furthermore, taking a; < 1/(27¢) and applying Lemma 2.5, we obtain

d 2w T(e
anipina + T2 2. < 0" D - Do,

. (2
K1 =mm| —, K
1 3 y IO

and multiply the latter inequality by exp (TS) 2o

Then we set

t), integrate in time and apply the first item (7) of Theorem 2.1
to estimate the right hand side, this yields

= in 2 in TE
H1[D(t)|Doo] < (C’ (75 +1) |D™ = Dol o + HilD |Doo]) exp (—6(2) K1 t) .
We conclude this proof by substituting H; with the norm of BD in the latter estimate according to Lemma 2.5.

2.4. Proof of Theorem 2.2. Once again, instead of estimating directly the H~! norm of Dy — D,,, we introduce
the following quantity, meant to recover dissipation on the zero-th Hermite coefficient

(220) £t) = 3 IAv (W)

where v°(t) solves the elliptic equation (2.8) with source term given by

o(6) = Do(t) + " A D) ~ Dryolt),

where Dy(t) and Dy (t) are the first two components of the solution D(t) of (2.2) and Dy, o(?) is either the unique
solution to the convection-diffusion equation (2.6) when 7(e) satisfies (1.8), that is 7(¢)/e? — 79 < +oo or the
stationary solution Dy, o given by (2.3) when 7(e) satisfies (1.9), that is 7(¢)/e? — +oc0. The latter right hand side
is motivated by equation (2.19) since it is given by the difference between Dy + %‘s) A*D; and D, o. We point out
that the latter source term meets the compatibility condition (2.7) thanks to property (2.14), which ensures that
A*Di(t) is orthogonal to /p__ in L (T).

Before proving the first item of Theorem 2.2, let us present some preliminary results. On the one hand, the
following Lemma ensures that £(t) is controlled by the squares of the L? norm of BD(t) and the H~! norm of
Dy(t) = Dry 0(t)

11



Lemma 2.6. We consider E(t) defined by (2.29). It holds uniformly with respect to e

2
T\E
(2.30) £(1) < 1D0(t) ~ Dol + 3 S IBDO)IE.
and
1 7(g)?
(2.31) HID0() ~ Dryo( s~ O3 DL BD@)IE, < £0).

Proof. Defining w® and u,, as the respective solutions to (2.8) with source term g = A*D; and D, 0 — Do, it
holds
T(e
P O

We apply operator A to the latter relation, take the L? norm, and apply the triangular inequality, it yields

T(E
VIE < A —wr)llpe + 2 JAwf e

5
and

£
MA@ —u)llye — “E JAuf]l,s < VEE.

€
We estimate ||Aw®||,. applying (2.21) in Lemma 2.3 with source term g = A*D;, this yields

T\E
VEE < Dy~ Dryolls + 2 Cp 18D e,

and
T\E
HDO_DTO,OHH—l — %CPHBD”LQ < V2E.

We obtain the result taking the square of the latter inequalities and applying Young’s inequality.
O

On the other hand, when 7y is finite, we observe that the long time behavior of D, o may be easily investigated.
Indeed, since A Do o = 0, we have that D, o — Do o also solves (2.6). Therefore, multiplying (2.6) by Dx,,0 — Doo,0,
integrating over T and applying the Poincaré inequality (2.18), we obtain the following estimate after applying
Gronwall lemma

; T
(2.32) D+ (t) = Doollzz < |DI — Dol 2 exp (Cg t) , VteRT.
P
We are now able to prove the first item (i) of Theorem 2.2, which treats the case where 7(g) ~ 12, when € — 0
where 79 € Rf. To derive the first estimate in item (i) of Theorem 2.2, our starting point is the L? estimate (2.4)
which ensures

1d 2 1 2 1d 9
—— ||DL(t — || DL(t < —= —||Do(t) — Do
53101 OlEs + 5 IDLOIZ: < 5 G 1Dol) ~ Dol
1
< - (A*D1(t), Do(t) — Deo o)
1
= = (Di{t), A(Do(t) — D))
hence it gives from the Young inequality
d 2 1 2 T(E) 2
T DLtz + ) D)7 < 3 1BD()]|72 -

We bound ||BD(t)||2> applying item (ii) of Theorem 2.1. After multiplying the latter estimate by e*/7(*) and
integrating with respect to time, it yields

e (55)

= in 2 inll2 37‘(8)2 7’(5)
+ (O + D" = Dal, + [BD"3) 52D e (<D ),

IDL®)]7. < | DY

where C' is a positive constant depending only on ¢ and Ty and « = (C (75 + 1))71. Then we apply condition (1.7)
on 7(g), which ensures that taking C' greater than 2 in the definition of &, it holds 1/2 < 1 — x7(g)?/e? uniformly
with respect to e. Therefore, we deduce the following estimate, which yields the first result in (i) of Theorem (2.1),
after taking its square root and applying assumption (2.11) in order to substitute 7(¢) with 792
2
2 2t _ ; 2 mn2 \ 7€) _r@
IDLOIE < [DE [ e + 6 (O +1) D" D2+ [BD"2.) T e ne.
12



We now prove the second result in item (¢) of Theorem 2.2. To do so, we evaluate £ observing that

d&
(oo o))

Therefore, relying on equations (2.19) and (2.6) we deduce

d& T(e T(e) .,
E = —gHDO"ﬂ‘%A Dl_DTo,OHQL? + &+ & + &3,

where

51 = <7’0 — T{E?) <A*AD7—070, UE> y

2
82 T(&Z) <A*A D1 5 UE> s

& = \/57'5;) <(A*)2 Do, ,Ua>_
We rewrite &, & and & according to the following considerations: first, we notice that Dy o solves (2.13) and

therefore add Do to the left hand side of the bracket in &, second we apply the duality formula (2.12) in &1, &
and &3 and then replace v® in £ and &; according to the relation

.A*.AU DO + — ( ) .A*D1 DTQ,O .

Hence, we obtain

(e T\E
81 = (TO — £2)> <D7'0,0 - Doo,O7 DO + (?) A*Dl - DTU7O> ’

2
T(;) <D1,Do+ ™€) gp, - Dm,o>,

& = \/5@ (Dy, A7)

&

2
To estimate &, we apply Young’s inequality, which yields

T]T( ) ( ) * 2 1 62
E < D 7 D N Lo .
' 1D + A*Dy = Dy ollz + 2 () 70
for all positive 1. To estimate &, we apply Young’s inequality and then assumption (1.7) which ensures that
T(e)®/e* < (7(2) () /2, this gives

g < 176
2 g2
for all positive 1. To estimate £3, we apply Young’s inequality and then bound the norm of A2 v® by applying item
(2.22) in Lemma 2.3 with source term

HDTo - DOOH%ﬂ ’

LE)Q
o2

( ) L7(e)

« _ 2
|Dy + =2 A*Dy — Dy 0|22 + ez rollDelza s

T(e
g = D0+%A*D1—DTO,07

it yields
Cr(e)
2

T\E T\E
& <05 1Do+ T aps - Dol + ST L

for some constant C' depending only on ¢, and T;. We gather the latter estimates, take n = 1/4 and apply item
(2.21) in Lemma 2.3, which ensures that
C? €
£ < P 1 Do + (€>A*D1 —Dryoll32
Therefore, we obtain

dé’ 7(e)
+ C2 2

T() MOl
e < 0™ (i) DL+ 02 |- 7O

7(e)

€
for some constant C' depending only on ¢, and Ty. Then we multiply the latter estimate by exp (67'—2( )2 t) and
LE
integrate with respect to time. After applying (2.32) to estimate ||D;, — Dool|2 and the first result in item (3) of
Theorem 2.2 to estimate the norm of D, it yields

slt) < (5(0) +C T(;)z (7 +1)||p™ - DOOH;) exp <T€(§) m)

2 -1
‘ 27 &2 7(¢)
D® — D%, [ —— —1 ——2kt]).
|| To ||L2 ( 7_(5) ) eXp( 52 K

13
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2
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7(e)




To conclude, we substitute £(t) (resp. £(0)) in the latter estimate according to (2.31) (resp. (2.30)) in Lemma 2.6

27’052

7(e)

-1
and then apply assumption (2.11) on 7(¢), which ensures ( — 1) < 3, this yields

1Do(t) = Do)+ <
7(e)?

e2

% (nDen DR+

0,

(78 +1) HDin—Doom{l) TR

T(e)

2
T0 € : _ t
D — D726 = "t

7(e)
We obtain the second estimate provided in (7) of Theorem 2.2 taking the square root in the latter estimate and
applying assumption (2.11) in order to substitute 7(¢) with 79 &2

To prove the second item (i7) of Theorem 2.2, we follow the same lines as the ones for item (¢) replacing D,, by
Do, and observing that Do, also solves the equation (2.6) since it is a stationary solution. Therefore, computations
are even simpler since the term &; vanishes in this case. As a consequence the estimate provided in item (ii) follows.

2
-1

3. FINITE VOLUME DISCRETIZATION FOR THE SPACE VARIABLE

In this section we present a finite volume scheme for (2.2). Then we prove discrete hypocoercive estimates on the
discrete solution to investigate the long time behavior and the speed of convergence to the steady state. Finally, we
prove an asymptotic preserving property for the diffusive limit taking 7(g) ~ 79 €2 with error estimates with respect
to €. Thanks to the groundwork laid in the previous Section, we are able to propose a scheme which describes all
the variety of regimes that we aim to capture in this article.

3.1. Numerical scheme. For simplicity purposes, we consider the problem in one space dimension. It will be
straightforward to generalize this construction for Cartesian meshes in multidimensional case. In a one-dimensional
setting, we consider an interval (a,b) of R and for N, € N*, we introduce the set J = {1,..., N, } and a family of
control volumes (Kj)jej such that K; = }l‘j,l/g, Tjf1/2 [ with z; the middle of the interval K; and

G/:l'l/g <z < 1'3/2 < ... < mjfl/Q < € < (Ej+1/2 <. < TN, < $N1+1/2 =b.

Let us set
{ Azj =172 —Tj_1y2, for j€ T,

Arip12 = i1 — x4, for 1 <j< N, —1.
We also introduce the parameter h such that
h = maxAz; .
JjET
Let At be the time step. We set t* = nAt with n € N. A time discretization of R™ is then given by the increasing
sequence of (t"),en. In the sequel, we will denote by D} the approximation of Dy ("), where the index k represents
the k-th mode of the Hermite decomposition, whereas Dy ; is an approximation of the mean value of Dy over the
cell K; at time t".
First of all, the initial condition is discretized on each cell K; by:

1 .
0 in -
Dy = —xj /Kj DM (z)dx, j€T.

The finite volume scheme is obtained by integrating the equation (2.2) over each control volume K; and over each
time step. Concerning the time discretization, we can choose any implicit method (backward Euler, Implicit Runge-
Kutta,...). Since in this paper we are interested in the spatial discretization, we will only consider a backward Euler
method afterwards. Let us now focus on the spatial discretization.

By integrating equation (2.2) on K for j € J, we obtain the numerical scheme: for D = (D} ;)jes

3.1 ‘D/:L+1 B ‘D/? 1 \/EA DTL+1 \/ﬁA* Dn+1 _ k Dn+1
(3.1) TJFg( nDpZy — VE+ hk+1)—_@k ;
where Aj, (resp. A}) is an approximation of the operator A (resp. A*) given by
(3.2) A = (Aj)jes and Aj = (A})jes -
and where for D = (D;);es it holds
Diy1—D; 4 FEoo i .
D = +yT | T —1— - =D,
’ D1 —Dj_ FEooj
*D NGy Jj+1 j—1 00,7 D. .
A v 0( Az, T am Pi) JET

14



whereas the discrete electric field E ; is given by

(3.4) . _ Pooytl — P12 VP it1 ™ VPooj1

oo 2Az; ﬁ(xw. 2 Azx; ’

where p ; is an approximation of the stationary density p., on the cell K;. This latter formula is consistent with

the definition of \/p_ = co e~ ®>/(To) and the fact that
1 1
o a:t co — T T — ax .
a1, 00 N

This choice of discretization is motivated by preserving at the discrete level the key properties (2.12)-(2.18). In
the end, we propose the following approximation of the continuous solution f to (1.2)

FMa,0) = ) /b (@) Di () Ui(v)

keN

where for each k > 0 and n > 0, we define a piecewise constant function Dy from the numerical values (Dj j) jeg as
Dy (z) =Dy ;, reK;.
In this context the equilibrium D, is given by

VB it k=0,
Doo,k =

0, else;

(3.5)

as for the limit in the diffusive regime D}, = (D]  )ken, it is given by

D7 o, if k=0,
(3'6) 7"}0716 =

0, else,
where D7, solves the following discrete version of equation (2.6)

Dn+1 o n

D
(3.7) TR b AR ALDY = 0.

We now introduce the norms we will work with in this section. We denote by (.,.) the L? scalar product for any
u = (uj)jeg and v = (vj)jeg,
(u, v) = Z Axju;v;
JET
and
1/2

ull2 = Z Azju?
JET
As in the (2.7), we consider the following H~' norm defined on the L? subspace orthogonal to VP forall g, =
(97) e which meets the condition

(3.8) Y ArjgiVpy; =0,
JjeT
we set
lgnll -2 = HAuhHL2(’H‘) )
where u;, = (u;);es is the solution to the discrete equivalent of equation (2.8)

(AR An)un = g,

Z A.’Ej Uj \/ﬁoo,j =0.

JjET

(3.9)

We also use the H' norm, analog to the one given in (2.9), defined for all D = (Dy), oy as follows

1B Dllze = Y 1B Dl
keN

where the family of discrete operator B, = (Bp,k), - is given as follows

Ap,if k=0,
(3.10) Bpx =
Az, else.

To conclude with this section, we take the same definition of D as in the continuous setting.
15



3.2. Main results. We can now release the two results that constitute the core of this article. Thanks to our choice
of discretization, they are an exact translation of their continuous analogs, Theorems 2.1 and 2.2, into the discrete
setting, without any loss of accuracy nor uniformity with respect to the parameters at play in our analysis. On top
of that, the results are also uniform with respect to the discretization parameters.

This first result is the continuous analog of Theorem 2.1, it ensures that our scheme has the same long time
behavior as the continuous model

Theorem 3.1. Suppose that condition (1.7) on 7(g) is satisfied and Let D™ = (D} )ken be the solution to (3.1). The
following statements hold true

(i) there exists some positive constant Cy depending only on ¢oo and Ty such that for alle > 0 and alln > 0,
we have

—n/2
T(e
ID" = Dol < V30" - Do (1 + 19 At) ;
(#i) suppose in addition that the mesh is reqular enough so that the quantity
(3.11) R;, = sup |ijAxi_1 —1|
(i,5)eT?
stays uniformly bounded with respect to the discretization parameter h. Then there exists a positive constant
Cy (depending only on doo, To and Ry, ) such that that for alle > 0 and allm > 0, we have

1BrD™ |2 < V3 (Cy(Fo+1)||BnD°|,, + ||D° = Duo,2) <1 + %nl At> .,

In the previous estimates k; > 0 is given by
1

Our second result deals with the asymptotic € — 0, it is the discrete analog of Theorem 2.2

R; =

Theorem 3.2. Suppose that 7(c) meets assumption (1.7) and that the mesh meets assumption (3.11). Consider the
solution D™ = (D} )ken to (3.1). The following statements hold true uniformly with respect to e

(i) suppose that T() satisfies (1.8) and (2.11) and consider DY, = (D2 \)ren given by (3.6). Then it holds for

alln >0,
1Dl < DY, (1 + 2212>g + 10eC(Fo+1)|D° = Decl| ;s (1+ 70k AL,
and
195 = D2olly 2 < € (D8 = DRl + 270 (734 1) [D° = D) 1+ romity
c :0; 1| D2~ D], (1 4+ o)

(ii) suppose that 7(g) satisfies (1.9). Then it holds for any n >0

_n

At —% T(e = T(e 2
IDL|7. < |IDL|l32 <1 + T(€)> + QC(TO +1) || D° = Dac| s (1 T ;)nm) ,

and
7(e T(e —%
mte) (7o +1)||D° - DOOHH1> (1 + E(Q)KAQ .
In the latter estimate, constant C only depends on ¢, Ty and Ry, and exponent k is given by

1
C(rg+1)°

195 - D olly -+ <€ (198 - Doll 2 +

KR =

Furthermore the shorthand notation ||-|| ;. stands for
2 2 2
[1Dzs = [IBD|[2 + [ D72 -

The proof of these results follows almost exactly the same lines as the proof of Theorems 2.1 and 2.2 thanks to
the Lemma 3.3, which constitutes the keystone of our analysis and which ensures that our discretization A;, of oper-
ator A shares all the important properties (2.12)-(2.18) of its continuous analog. The only difference comes down to
some numerical remainder terms that we easily control applying methods already developed in the continuous section.
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3.3. Preliminary properties. This section is dedicated to the following fundamental Lemma, which ensures that
the key properties (2.12)-(2.18) of the continuous operator A are preserved by its discrete analog A;,. Thanks to this
Lemma, all the computations carried in Section 2 directly translate into the discrete framework.

Lemma 3.3. Consider the discrete operators Ap and A} given in (3.2). Then we have for any u = (u;);ey and
v = (vj)jeq
(1) preservation of the duality formula

(Apu, v) = (u, Ajv);
(2) preservation of the kernel of operator A
AhDoo70 = Oa

where the equilibrium Do, is given by (3.5);
(8) preservation of the mass conservation properties

(3.12) > Az Ajuyp, =0,
JET
and for all n > 0, the solution D = (Dg ;)jes to (3.1) with index k = 0 verifies
j€eT j€eT

(4) preservation of the sum property
1
| (An + A7) ull2 < T [@oclwoe llull 2 ;

(5) preservation with the commutator property
| 1A, Al ullze < Clluollwncs lullz2
where constant C' depends only on Ry, (see (3.11)), it is explicitly given by
C =2+ Ry;

(6) conservation of the Poincaré-Wirtinger inequality: under condition (3.8) on u there exists a constant Cgq > 0
depending only on ¢ and Ty such that

(3.14) lull> < CallAnullze-

Remark 3.4. When the mesh is regular, item (5) in Lemma 3.3 may be improved into a consistent estimate compared
to its continuous analog (2.17), indeed we easily obtain

N h
s Alulzs < (Iomelbwere + 5 el ) el

for any u = (uj)jej’ following the same method as in the proof.

Proof. To prove item (1), we consider any (u;);es and (v;)jes, we have after a discrete integration by part and
using periodic boundary conditions

(Apu, vy = ZAmjAjuvj

jeT
Wig1 — Ui Fo
= > VD (#12]1% - ijﬁ“j”j)
jeJ
S Vil — V-1 Fej N
= Zf TO(QUJJFAIJQTOUJUJ) :<U,Ah'l}>.
jeJ

To prove item (2), we look for D = (Dy),cy such that A, Dy = 0, that is,
VT Poo.j+1 — Pooij—1 py
2 A, 2T, 07 )
Hence, from the particular choice of the discrete electric field (3.4), we have that
Doj1=Doj1 _ VP jr1 = VP, i1
Dy, VPoo i

0=A,Dy =

(Do,j+1 —Do,j-1 +

:07

which yields to definition (3.5).
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We turn to the mass conservation property (3). According to the definition (3.3) of A}, it holds

f Ujp1 —Uj—1 | VPooji1 ~ VPoojo1
’A;u\/ﬁoo,j A.Ij = - TQ (\/ﬁoo,j J 5 J =+ Sty B ©0:J uj | -

Therefore, relation (3.12) is obtained summing the latter over j € J and performing a discrete integration by part.
Relation (3.13) is obtained evaluating equation (3.1) with index k£ = 0 and j € J, multiplying by \/p_ ; Az;, then
summing over j € J and applying relation (3.12) with v = D},

We prove item (4) taking the L? norm in the following relation

/ 2TVO \/ﬁoo J+1 - \/ﬁoo j—1
TO A+A* u = — J J Uj ,
( J J) \/ﬁoo,j 2 A.’L’j J
which holds for any u = (u;) ;-
We turn to item (5) and compute the commutator for the discrete operator [Ay,, A}] as
[Ap, Ailju = (Ap A = Aj An)ju

Fo ji1— FEso i Fo i1 —2F« i+ FEx i_
_ J+1 Jj—1 (uj+1+uj71) _ J+1 g T J—1

(g1 —uj-1),

4A$]‘ 4A$J
and therefore, we deduce item (5) taking the L? norm in the latter result.
Finally, we prove the Poincaré inequality (3.14). Consider u = (u;),;. , which meets condition (3.8) and let us

denote by 5., the mean of p

o — Z AZL']‘ Poo,j -
JjET
First using the zero weighted average assumption (3.8) on u, we remark that the cross term vanishes and

2
w
[ull7z =) Az, (\[] ) Poo,j 5
jeq P,

2
Uk U4
= 55— Az Ay, - Poo.j Pook s
Z 2 A (\/ﬁoo,k \/ﬁow») e

2P JET keT
2
1 U U
L S YA an ( I ) s
P oo keJ j<k \/poo,k \/'Boou'
For j < k, we have
k—1
U Uj Up+1 (7

\/ﬁoo,k \/ﬁoo,j \/ﬁooJ-i-l \/ﬁoo,l

1=j
which yields

2
_ Ul41 up
(3.15) Jul2: < 7w <§ : - ) .
eJ \/ﬁoo,l+l \/ﬁoo,l

On the other hand, we set for any j € J

\[ﬁ B ﬁoo,j—l + \/ﬁoo,j-u \/ﬁoo,j-‘rl - \/ﬁoo,j—l
J

o = 2 , and 7n; =

and observe that the discrete operator Aju may be written as

\/ﬁoo,j—&-l \/ﬁoo,j \/ﬁoo,j \/ﬁoo,j—l

—— Aju =
VPooj 2
Then we have using periodic boundary conditions
mz( Uitl Yy ) _ \/TOZ< Uit1 Uy >+< Ui U1 )
jieg ‘/ﬁoo7j+1 \/ﬁoo,j 2 JjET \/'Boo,j+1 \/poo,j \/ﬁoo,j \/ﬁoo,j—l

Al‘a \/}( Uj+1 Uj N5 — Nj+1
— Z — TO J _ J J J
sz VP, VPoojir VP 2

Hence using that ¢, is Lipschitzian, we have

mj+1 —n;] < Cg h,
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which yields that
Ui+l Ujt1 U

Vi, .
\/ﬁoo,j+1 \/ﬁoo,j \/ﬁoo,jJrl \/ﬁm,j
On the one hand, we consider the case when h is small enough such that 1 — Cyh > 1/2, we get that
Z _ Z Ax;
FISVA \/f)ooaj'*'l \[ \/CZTO JET \f

On the other hand, when 1 — Cy h < 1/2 (the space step h is large), we use the fact that in finite dimension, both
semi-norms are equivalent. Thus, there exists a constant C” > 0, independent of h, such that

jeg \/ﬁoo,j-i-l \[

Gathering the latter result with (3.15), it yields

< Z&LAJ?” +O¢h\/ﬁz

jieg 00,] jeg

Uj+1 U

[ Ajul

Z Al’j
\/TO jeg Voo j

Uj+1 U

| Ajul.

lullZ> <

/ 2 2
(C ) 3 A% ul]
jET f 00,7

Using the Cauchy-Schwarz inequality, we obtain the result
lullfz < CF [l A ullZe
where C3 is given by

C2 — ( ¢> poo Al’j .
(N D D

O

From the latter results, we may now get estimates on the solution uy to (3.9) as in Lemma 2.3 in the continuous
setting.

Lemma 3.5. Let us consider the solution up to (3.9) with source term g = (g;)jey satisfying the compatibility
assumption (3.8). Then, uy satisfies the following estimate

(3.16) A unllzs < Callgllss
and

C
(3.17) 2wl < (1 - oL ||ax¢oo||me) lgllze

Moreover, consider now (D} )ken solution to (3.1) and uj, = (u})jeg the corresponding solution to (3.9) with the
source term Dy — \/p__. Then we define dtun"'1 as

n+1 n
ntl _ Up T Up
(318) dtuh = At )
which satisfies
(3.19) e||Andeup ™| . < IDFpe

Proof. We follow the proof of Lemma 2.3, we multiply (3.9) by Az; u;, sum over ¢« € J and apply item (1) of Lemma
3.3, it yields
AR unlZ2 < 1D = v/pollze lunlcz
hence the discrete Wirtinger-Poincaré inequality (3.14), obtained in Lemma 3.3, gives
AR unl[2 < CallD = /polle2 -

For the second estimate, we observe that

\/ﬁoo,j+1 B \/ﬁoo,jq

(.Ah-‘r.A*)'uh: Ui
h/) 2A.’17] \/ﬁm’j J
hence we obtain
VP i1~ VPoo
2y _ ©0,j+1 ©0,j—1
(Ah)_] Up, (Ah .Ah) up + 2ij \[oo] .A Up,
VP jr1 — VPoo

- — (DOJ- —\/EOOJ.) + OZJAJ; N 0L gy,

VP j
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Since ¢ is Lipschitzian and applying (3.16), we obtain the result
A7 unllze < ClID(E) = v/poollze -

For the third estimate we consider now the solution D™ = (D}!)ken to (3.1) and u} the solution to (3.9) with source
term Dy — \/p_ . We get for any j € J,

+1

Do, —Dg,;
At

Then we multiply by Az; dyu} ™, sum over j € J and use (2.12) to get

1
(AZA}I)J dtuz+1 = — EA;( D?"l‘l .

1 1
[An e 7 = 2 (DFF Andie ™) < ZIDF e ([ An di
O

3.4. Proof of Theorem 3.1. We split the proof of Theorem 3.1 into two steps corresponding to the L? and H'
convergence result. Thanks to Lemma 3.5, the method followed in Section 2 to prove the continuous analog to this
result (Theorem 2.1) directly applies here, excepted for some additional numerical remainders for which we give a
detailed method in order to get control over.

We define H{ as

1 T(e
(3.20) Hy = §||D”—DOOH%2 + ag <E:_)AZD71’,UZ>,
where u™ is solution to (3.9) with Dy — /p_  as a source term. First let us point out that Hg shares the same

properties as its continuous analog, indeed it holds

Lemma 3.6. Suppose that condition (1.7) on 7(g) is satisfied. Then for all ag € (0,ap), with &g = 1/(479 Cy) and
D" = (DZ,j)jeJ,keN} one has

1 3
(3.21) 1 ID" = Decllf < Hi < S1ID" = DecllZ2.

Proof. The proof follows the same lines as the one of Lemma 2.4. O

We are now able to proceed to the proof of the first item (¢) of Theorem 3.1. On the one hand, proceeding as the
proof of item (i) in Theorem 2.1, it yields from Lemma 3.3

n+1 n
Ho ™ —Hg

(3.22) N

1 1 1 1
:Iin+ +a()I§+ +CK()I§1+ —Rng,

where

1 2
n+l1 _ - n+1
R L
kEN*
whereas the other terms correspond to the additional term of the modified relative entropy,

T T\E * n * n n 1 * n n
I2+1 = 7% <~Ah~Ah (D0+1 - \/ﬁoo) - \@(Ah)z D2+1a uh+1> Tz <Ah Dy +17 uh+1>a
T(e
I§L+1 = 4 6) <~AZ D{LH’ dtuz+1>7
where dtuZH is given in (3.18) and Ry is a purely numerical remainder given by
1
(3.23) Ry = S D D2+ 0 ) (G (D - DY) de )
€
Both terms Z3 ™ and Ig”'l can be estimated as in the proof of item (¢) in Theorem 2.1, which yields
n 7(e) n C (1(e) ) n 1 e
< —— (1 =Cn) IDgH! — Doooll7> + 2 (52||D2+1|%2 + ) Y132 )
for any positive n and for some positive constant C' depending only on Ty and ¢, and
n 7€) | yn
< ?"DlHH%Q'
From these latter estimates and taking n = 1/(2C) and as long as
< 1
« N =2, N\
" CcFE )

for C great enough and taking kg such that 3ko/4 = «g/2, we get that

LA IE)
At g2

n+1 n+1
Ko HO S *RO .
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Now we treat the remainder term RQH, observing that
1
(A5 (DE = D), )] < s (IDFF = DY + [1An (™ = i) [32)

Therefore, applying (3.16) in Lemma 3.5 with source term D(')”rl — D¢, we obtain

* n+1 n n+1 1 + Cﬁ n+1 n|2
‘<Ah(D1 —D1)7dtuh >|SW||D —D ||L2.
Since 7(g) meets assumption (1.7), the latter estimate ensures that, as long as ag < (7o (1 + 03))‘1, it holds
0< RZ)%H’
which yields
HoE —HE

T(E) n+1
At + 52 Ko HO S 0

The result follows by applying a discrete Gronwall’s lemma and then applying Lemma 3.6 in order to substitute #g
with the L? norm of D™ — D, in the latter estimate.

Now we turn to the proof of the second item (i) of Theorem 3.1. Following Section 2.3, we introduce H} given
by

1 T(e
(3.24) T = B HBthHQL? + a1 <E_:) .AhDg,D?>,

where oy has to be determined. Once again, H} shares the same properties as its continuous analog

Lemma 3.7. Suppose that condition (1.7) on 7(g) is satisfied. Then for all oy € (0,@1), with @y = 1/(27y) and
D™ = (D})ken, one has

IBD" |72 = | D" = Deollz= < 4HT < 3[BuD"||72 + D" — Doc|Z: -
Proof. The result is obtained applying the same method as in the proof of Lemma 2.5. O

We now compute the variation of the modified relative entropy between one time step from ¢" to t"*1 and split
it into three terms

Hn+l - HY n n n
1 N L = g+l qap ot — ROH,
where 77! is given by
T = T e Z\/E < [AZwAh] ij11a Ai*LDk+1> o () Z k HBh’kaHHH
k>2 keN*
and
mn T\E * n n n 2 n n
g = T ((aiprt D) — D+ Va(AD 4D )
1
_ g <D?+17 AhD6L+1>
whereas RT is given by
n+1 1 1 n+1 n 2 T(E) n+1 n n+1 n
(3.25) R = §||Bh (D" = D™ |72 + a1?<Ah (Dg*t —Dy), DY — DY) ).

On the one hand we estimate the terms Jf’“ and JQ"H following the same method as the one presented to estimate

their continuous analogs J (t) and J2(t) (see the proof item (i4) in Theorem 2.1). On the other hand, the remainder
term R can be treated as R in the proof of (i) of Theorem 3.1. Indeed,

1
[(An (D5 = Dg), DYt = DY) < 5 (ID5 ™! = Dill7z + | A" (D7 = DY) II7:) -

According to the mass conservation property (3.13), Dit — D meets condition (3.8). Therefore we may apply the

discrete Poincaré inequality (3.14) to bound || Dyt — D§||2, in the latter estimate, this yields

1+C?
2

[{(An (D5 = Dg), DI = DY) < 1Bu (D" = D") |72 -

As in the case of Rg“ in the former section, the latter estimate ensures that, as long as ap < (?0 1+ Cﬁ))_l, it
holds
1
0 < R,
Hence, we obtain the result by adapting at the discrete level the proof of item (ii) in Theorem 2.1 to bound J;"™*

and J2”+1 and applying a discrete Gronwall lemma.
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3.5. Proof of Theorem 3.2. As in the continuous setting, we prove that the solution D" = (D})gen to (3.1)
converges to D' = (D?mk)%N given by (3.6)-(3.7), whose long time behavior is easily obtained relying on the
discrete Poincaré inequality (3.14)

Bl
(3.26) ID%, = Desllzs < 105, ~ Dolas (1 + FR A1) veeR.

We estimate HD{} S || H-1 by introducing the intermediate quantity £, meant to recover coercivity with respect

to the first coefficient Df
1
(3.27) £ = 5 A vilIZ:

where v}’ solves (3.9) with source term

9
g =Dy + —T(E)A;;D” D

7'00

The following lemma ensures that the quantity £ shares the same properties as its continuous analog. Indeed it
holds

Lemma 3.8. We consider £" defined by (3.27). It holds uniformly with respect to €

(3.28) E" < |D" = D} |31 + CF = 172,
and

Lo n 7(e)? n
(3.29) 10" = DrEe - e TS 3. < &

Proof. Defining w} and u,, as the respective solutions to (3.9) with source term g = A} D} and D, o — Do, it

holds
€
vy = up — up + %wﬁ

Applying operator Ay, to the latter relation, taking the L? norm, and applying the triangular inequality, it yields
VIET < [l An (i — ) o+ " Al
and
7(e) n /o
HAh (Uh *UTO)HLz T ”AhwhHL2 < v2¢én.

We estimate ||.Aj wi|| ;. applying (3.16) in Lemma 3.5, this yields

T\E
VEET < ID" — Dl + T Ca 18D,

and
n_ pn 7(e) n oY
|D™ — D llg-1 — —~ Cyq||BrD"||L2 < V2&™.
We obtain the result taking the square of the latter inequalities and applying Young’s inequality. O

We now treat the asymptotic limit e — 0 corresponding to the case of (i) in Theorem 3.2 and therefore suppose
that 7(¢) fulfills the assumptions (1.7), (1.8) and (2.11). As in the continuous setting, we start by deriving the first
result in (i) of Theorem 3.2. We already know from the L? estimate (3.22) that

HDTAH; 1D 117 L [ n+1H
2 At 7(g) L2
n+1 1
< (B oy o np) - o S IDE - il
keN*
Dt — pr
: ‘<°At°’D3“‘D‘>°’O>'

Therefore, we replace DSH — D} according to equation (3.1), and after applying the duality formula of Lemma
3.3-(1), we obtain

105 e ~ D2 | 1|
At 7(e)

DY <~ (DpF, Ay,
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Hence, after multiplying by At and applying the Young inequality to bound the right hand side of the latter inequality,
it yields

At
<1+ ( )HD’"«+1HL2 ||D ||L2 + At —2 ( ) HB Dn+1||2

To achieve the proof, it remains to bound ||B,D"!||2, by applying Theorem 3.1-(ii) and again following the line of
the proof of Theorem 2.2, we deduce

2
1Dz <

At \ " _ 7(g)? T(e o
120 (14 25)  + 6(CR+ 01D - Dl + 1BD°1) T (14 Zdwae)

Therefore we obtain the result taking the square root in the latter estimate and substituting (&) with 79 €2 according
to assumption (2.11).

To prove the second result of (i) in Theorem 3.2 we evaluate £" as in the proof of Theorem 2.2 observing that
T(e
w2 = (D5 + " At - Dp )

hence, relying on equations (3.1) and (3.7) we deduce
gn—i—l _&n
At

where £, £51 and £ are the numerical equivalents of the terms & (), £(t) and E(t) in the proof of Theorem
2.2

= - Ts(j) I1Dg + TS) AiDY = Dp|l7. + &7 + &7+ & - Ry,

n T E) * n n
entt _ (70_52) (AR Ay DI o+,

52n+1 —_ < ./4 Dn+1 n—4—1>7

gt = vl (P Dy ),
and ’Rg“ is a numerical dissipation term

n n n 2
R ]

Since RQH is positive, we apply the same method as the one presented in the proof of Theorem 2.2 and therefore
we obtain the following estimate for £"

<1+ C(Q) . >gn+1 <gn+ CAt ( ) (1+—2) HDn—‘rlHL2

g2 7(¢) 2
CAt—— |7 - T
+ 7(e) 70 g2

for some constant C' depending only on ¢, and Ty. In the latter inequality, we bound HD?O+1 — DooH%z according
to (3.26) and the norm of D, according to the first estimate of (¢) in Theorem 3.2. Then we multiply the inequality

At\"
by (1 + 7€) ) and sum for k ranging from 0 to n — 1, it yields

107 = Declf7

022

2 —n
& < (80 + C—T(‘? (75 +1)||D° — Dmllip> (1 + % nAt)
== 1

2 270 €2 -t 7(e) -
0o 2 0 . &)
o e ol (5 1) (17 e

1 C To €
To conclude, we substitute £ (resp. £°) in the latter estimate according to (3.29) (resp. (3.28)) in Lemma 2.6 and

27‘082

©)
. re)? ) )
1D = D olfs <€ (108 = D8, olfs + "5 (74 DIDP = Dl ) (14 75wt

2 7'(6) —n
| D2 — Dool|32 (1+ szfmt> .
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then apply assumption (2.11) on 7(g), which ensures ( - 1) < 3, this yields

7'082

+C @)
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FIGURE 1. Test 1 : centered Maxwellian. time evolution in log scale of (a) ||f — fQOHLZ(f;Ol)7 ®) |If — pM”Lz(f;ol)'

We obtain the result taking the square root in the latter estimate and substituting 7(¢) with 79 e2according to
assumption (2.11).
Finally the proof of the second item follows the same lines replacing D7 by Do, in the discrete functional £".

4. NUMERICAL SIMULATIONS

We performed several numerical simulations which confirm the accuracy of the scheme (3.1). We do not detail this
process here and rather focus on the physical interpretation and the quantitative results obtained in our experiments.
We refer to [4] for a precise discussion on that matter.

In this section, we want to illustrate the quantitative estimates of the solution obtained using the Hermite Spectral
method in velocity and finite volume scheme in space for the one-dimensional Vlasov-Fokker-Planck equation. We
choose 7(g) = 19 €2 with 79 = 5 and consider the Vlasov-Fokker-Planck equation (1.1) with E,, = —0z¢s and

2rx 4Tz
¢oo(x) = 0.1 cos (L) + 0.9 cos < 7 > ,

The stationary state is given by the Maxwell-Boltzmann distribution

foo(x’v) =

ool ))

foodvdx = fodvdz,
TxR TxR

where c¢q is given by mass conservation

where fj is the initial datum.

In our simulation, we take a time step At = 1073, a number of modes Ny = 200 and N, = 64. It is worth to
mention that all the numerical simulations presented in this section are not affected by the numerical parameters,
which allows us to focus our discussion on the quantitative results on the diffusive limit ¢ — 0 and large time behavior.

4.1. Test 1 : centered Maxwellian. For the first test, we choose the following initial condition

1 2w x [v]?
atn) = gz (oo (557 oo (=157).
with § = 0.5 and L = 10.

On the one hand, we present in Figure 1 the time evolution of || f — foo||L2(fo—01) and the relative entropy on f,

1f = p M2y = IDL @[22

The most striking feature in this test consists in the oscillatory behavior of the relative entropy which unfolds in
the relaxation of f towards its equilibrium. These oscillations may be observed in Figure 1-(b) and occur for various
values of € ranging from 1 represented by blue curves to 2.10~! represented by red curves.
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FIGURE 3. Test 1 : centered Maxwellian. time evolution in log scale of || f — f°°HL2(fo_ol) (blue), || f —pM||L2(fo_01) (red),

_ i _ _ _10-1
I|p p"OHLQ(pgol) (pink) and ||pr, pOCHLZ(p;ol) (black) for (a) e =1 and (b) e =10~ .

We also present in Figure 2 the relaxation to equilibrium of macroscopic quantities

”DO - Doo,0|

2= |p— poo||Lz(f;°1)
and the norm of the first moment D;. Time oscillations, observed on the distribution function, seem to affect
macroscopic quantities associated to the solution as moments Dy and D;.

On the other hand, we provide In Figure 3, a detailed description in the case ¢ = 1, where we see that the oscillations
of the spatial density and the ones of the higher modes in velocity are asynchronous, this may be interpreted as a
transfer of information between these two quantities. This phenomenon has already been investigated for non-linear
kinetic models (see [18]) but we show through these experiments that even the simple model at play here captures
this phenomena.

These oscillations stay visible for surprisingly small values of e, up to 10~!. It showcases the robustness of our
scheme, which is still able to capture them at low computational cost. To be noted that our numerical experiments
indicate that a non zero external force field seems to be mandatory to observe this oscillatory behavior. We also
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emphasize that these oscillations seem to be quite sensitive to the choice of the initial data and the external field
(see the second numerical test with a different initial data, where such oscillations disappear for large time).

This leads us to the second feature of this test, which is the asymptotic preserving property of the scheme for
various values of €. The method is accurate on large time intervals in the situation where ¢ = 1 (see Figure 3-(a)),
which corresponds to the long time behavior of the model but it is also accurate when € < 1. Indeed, as it is shown in
Figure 2-(a), the purple error curve of the density p corresponds exactly to the circled error curve of the macroscopic
model p,, when e = 1072 and even smaller (not shown since the curves coincide).

Finally we focus on the intermediate value e = 1071, for which we observe in Figures 1-(a), 2-(a) and 3-(b), a
somehow surprising phenomenon: the kinetic model relaxes faster towards equilibrium than the macroscopic one.
This appears to be a consequence of our choice of initial data which is already at local equilibrium at time ¢ = 0.
This aspect of the experiment justifies our efforts to cover a wide range of values for the scaling parameter €: it
enables to capture intermediate regimes which may display peculiar phenomena. As we will see in the next section,
the reverse situation is possible as well, when the initial condition is far from equilibrium.

We conclude this section by drawing the readers attention towards Figure 4, which features the graph of the
solution f at different times, in the case ¢ = 1 and on which we witness its intricate relaxation towards equilibrium.

4.2. Test 2 : shifted Maxwellian. We now choose the same parameter as before excepted that the initial condition

is a shifted Maxwellian | |2
1 2rx v — U

r,0) = — (1+dcos| — | |exp | ————— ],

o) = o (1 0on (7))o (51

with ug = 1, which is far from equilibrium.

First, we focus on the case ¢ = 1 displayed in Figure 5, where we observe that unlike in the previous test, the
oscillatory relaxation stops after a short time and is replaced by a slower but straight relaxation towards equilibrium.
Another interesting comment on Figure 5 is that all the curves associated to value of £ below 5.1072 (red, beige, pink
and purple) are parallel. These two features might be explained by a fine spectral analysis of the model at play.
We now zoom in to focus on smaller time intervals and propose a detailed description of these dynamics in Figure
6, where we distinguish three phases constituting a great illustration for the result presented in item (i) of Theorem
3.2:

(1) the first phase is the initial time layer, it occurs on negligible time intervals compared to the time scale chosen
in Figure 6 but it is still visible if we focus on the red curves, representing the norm of D, in plots (a) to
(d). As predicted by the first result in (¢) of Theorem 3.2, higher Hermite modes gathered in the quantity
D, undergo a steep exponential descent with theoretical rate of order (¢275)~!, until they reach a critical
level of order ¢;

(2) the second phase corresponds to the diffusive regime where f is close to p;, M. Indeed we see that for times
ranging from ~ 0 up to ¢ = 1 in the case ¢ = 1072 and increasing up to ¢t = 3 in the case ¢ = 107°, the red
curve, which represents the norm of D, is parallel to the pink line corresponding to the norm of p — p,
which itself coincides with the black curve representing the norm of p,, — poo. It indicates that, for a finite
amount of time which increases as € goes to zero, the kinetic model behaves like the macroscopic one;

(3) the last phase is the long time behavior, it starts as the error between p,, and p is of the same order as
the error between p and po.. In Figure 6 (a)-(d), it corresponds to the intersection between circled blue
and black lines. As predicted by the second result in (i) of Theorem 3.2, this circled curve, representing the
error ||p — pr, ||, starts with an ordinate of order ¢ at time ¢t = 0, then it decays with a rate proportional
to 79 but smaller than the relaxation rate of the macroscopic model. This constitutes a striking illustration
of "hypocoercivity” phenomenon induced by the transport term proper to kinetic equations. During this
final phase, the solution f to (1.2) slowly relaxes towards equilibrium. A surprising and unexpected fact
is that the transition from diffusive regime to long time behavior occurs in a synchronized fashion for the
spatial density and higher modes in velocity. Indeed, as it can be observed in plots (a) to (¢) of Figure 6,
the inflections points of the red and the pink curves are almost aligned.

5. CONCLUSION AND PERSPECTIVES

In the present article, we design a numerical method capable to capture a rich variety of regimes for a Vlasov-
Fokker-Planck equation with external force field. We prove quantitative estimates for all the regimes of interest, and
do this uniformly with respect to all parameter at play. We illustrate the robustness of our scheme by proposing sev-
eral numerical tests in which we capture a wide variety of situations (exponential decay with oscillations, transition
phase between diffusive regime an long time behavior, initial time layer, etc ...). Furthermore, we built the method
such that it should be easily adaptable in any dimension, at least for cartesian mesh.

Two questions arise naturally from this work. The first one is to build on the groundwork laid in this article
in order to design a scheme which takes into account non-linear coupling with Poisson for the electric force field.
This challenging perspective would be a great improvement since even for the continuous model, there exists to our
knowledge very few results which treat the longtime behavior and the diffusive regime with the accuracy proposed in
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FIGURE 4. Test 1 : centered Maxwellian. snapshots of the distribution function for e = 1 at time t = 0, 0.5, 1.5, 3, 5 and
20.

this article. Up to our knowledge, all the works on this subject have restrictions on the dimension of the phase-space
and therefore, it would naturally be interesting to propose a method which applies in the physical case d = 3.

Another interesting question arose from our numerical tests, in which we witnessed oscillating behaviors in the
solution’s relaxation towards equilibrium as well as transition phase between diffusive regime and longtime behavior.
It would be of great interest to carry out a fine spectral analysis of the model both at the continuous and the discrete
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level in order to provide a quantitative description of these phenomena: we may hope for precise and enlightening
results due to the simplicity of our model.
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