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Passive vibration mitigation of offshore wind turbines using nonlinear absorber or nonlinear energy

sink has started to receive attention in the literature. In most case, little attention had been made on

the possibility of detached resonance occurring when nonlinear energy sink is attached to the linear

system describing the wind turbine. Sea movements that alter the initial conditions of the floating offshore

wind turbine can lead to the nonlinear energy sink operating on one or more detached resonances that

completely negate its ability to control turbine vibration. In this paper, we are interested in optimizing the

parameters of a nonlinear energy sink with nonlinear stiffness and nonlinear viscous damping for the

vibration control of a toy model (say a linear mass-stiffener-damper system) of a floating offshore wind

turbine over its entire operating range. The mechanism of cancellation of the detached resonance is

studied analytically under 1:1 resonance. It is shown that the nonlinear energy sink with a properly tuned

nonlinear viscous damping allow the complete elimination of undesired regimes and completely restores

the absorber ability to strongly limit floating offshore wind turbine vibration over its whole forcing range.

The results obtained over a large domain of parameters suggest that both nonlinear energy sink optimal

parameter (linear and nonlinear stiffness and nonlinear damping) and attenuation of floating offshore wind

turbine vibratory motion depend upon simple power laws of nonlinear energy sink mass and linear

damping.

Keywords Passive vibration reduction, nonlinear energy sink, geometrically nonlinear damping, floating offshore

wind turbine.

1 Introduction
Wind renewable energy is rapidly developing nowadays. Offshore wind turbines are particularly

adapted to generate high power in various environmental condition. They are, in fact, subject to

more regular wind conditions than in the middle of the land and to the possibility of developing

large wind turbines which are more efficient from the energy point of view, by using slender

towers and extremely long blades, and less disturbing for the local residents and the fauna.

Among these, floating offshore wind turbines (FOWTs) are easy to implement in deep water

farms and are likely to develop strongly in the coming years. This type of wind turbine is gigantic

in size (with height of almost 100 m and 150 m with the blades), very heavy (with a mass of

almost 1000 tons) and has dynamic characteristics that are difficult to control. Most wind turbine

primary resonances are below 1 Hz (typically 0.3 Hz to 0.5 Hz) and possess very small intrinsic

damping. FOWTs are subjected to different types of dynamic loads such as environmental loads

(wave and wind), aero-structure interaction loads and mechanical loads (inertial and controller

effects). These loads induce vibrations in the wind turbine mast that are transmitted in the

floating foundation and mooring lines, increasing the overall ultimate loads and fatigue cycling.

Mitigating the vibration of wind turbines (WTs) under dynamic loading such as wind, sea

waves, earthquakes has been addressed by many researchers (see Zuo, Bi, et al. 2020). As no

external energy is needed, most studies had been conducted on passive linear device, such as

single (TMDs) or multiple tuned mass dampers (MTMDs) or tuned liquid dampers (TLDs) thanks

to their ability to enhance the damping of the whole system. Classically, a TMD is optimized in

the vicinity of a particular frequency of the WT to be controlled and is effective in a narrow

frequency band. Slight frequency detuning between the TMD and structure to be controlled
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may significantly alter the efficiency of the TMD. FOWTs are often located in harsh marine

environments and their natural resonances are altered not only by discrepancies between design

and construction but also by operational conditions, material property degradation or structural

damage.

Since the first seminal work by Gendelman, Manevitch, et al. (2001) twenty years ago, the

nonlinear passive dynamical absorber (also known as the nonlinear energy sink - NES), that can

be viewed as an extension of the Den Hartog’s TMD correcting its lack of robustness to a variation

of the primary system, has received an increasing attention by the community and industrial

(Ding et al. 2020). NES is usually made of a small mass, a viscous damper and a pure nonlinear

stiffness element. The essentially nonlinear stiffness enables a system dynamics without a fixed

frequency, leading to a large frequency band ability in dissipating energy from the host structure.

Therefore, NESs are robust against any structural frequency changes. As shown by Gendelman,

Manevitch, et al. (2001), a restoring force of a third-order power of deformation results in a

vibrational energy of the controlled structure to be transferred to cubic NES irreversibly. Since

then, many kind of NESs had been designed, such as serial cubic NESs (Gendelman, Sapsis, et al.

2011), bi-stable NESs (AL-Shudeifat 2014), magnet-based NESs (Chen et al. 2020), vibro-impact

NESs (Gourc et al. 2015) or track-NESs providing non-linear restoring force similar to that of a

cubic-like NES (Wang et al. 2015) in order to improve their efficiency. A particular Track-NESs,

providing a non-linear restoring force similar to that of a bistable-like NES has been recently

used by Zuo and Zhu (2022) to control earthquake-induced vibration in OWTs.

One of the main difficulty occurring when a NES is used to mitigate vibration motion is that,

under periodic forcing, there exists high amplitude detached resonance solution in frequency

responses curves of oscillating systems with non linearity, that which must absolutely be avoided.

The occurrence of such detached resonances in nonlinear oscillators is known since a long time

ago (Rauscher 1938; Abramson 1955). The non linearity could be that of the elastic restoring force

as shown, for example, by Alexander et al. (2009) or that of the damping force as shown by Habib,

Cyrillo, et al. (2018). To overcome this difficulty, the parameters of the NES must be limited

in a particular region of space parameter as shown in Gourc et al. (2014). While efficient, this

procedure limits the possibility of maximize the attenuation obtained by the NES.

The most interesting way to overcome such detached resonance is the use of tuned nonlinear

damping. As shown by Starosvetsky et al. (2009) who use a quadratic damping which char-

acteristics are composed of two parts: a low and a high amplitude quadratic dampings that

differ only by their coefficient: the damping force 𝑓 = 𝜆1 ¤𝑥 | ¤𝑥 |, 𝑥 < 𝑥𝑐𝑟 and 𝑓 = 𝜆2 ¤𝑥 | ¤𝑥 |, 𝑥 > 𝑥𝑐𝑟 . By

using the Manevitch’s complexification-averaging under 1:1 resonance, the authors compute

the slow invariant manifold (SIM) of the system that allows to analyze the strongly modulated

response (SMR), which is the best way yo dissipated energy in such system; they observe that the

destruction of the detached resonance is achieved when the high amplitude quadratic damping

coefficient 𝜆2 is sufficiently greater than 𝜆1, they gave a ratio of 12 in their example. The problem

indicated by the authors is that the optimization procedure fails when the upper detached

resonance merge with the lower branch main resonance curve. It is worth noting that the main

resonance curve can be viewed as the frequency response curve (FRF) of the usual linear system.

In a similar manner, viscous nonlinear damping had been studied by Andersen et al. (2012) who

define a NES constituted by of a mass attached to two additional elements composed of inclined

parallel linear spring–damper pairs. The transverse motion of the mass induces not only linear

and cubic stiffness (that is the usual way to construct nonlinear spring and NES) but also linear

and cubic viscous damping. In their work, the authors had found that, because of the presence of

nonlinear damping, the structure can exhibit dynamical instabilities.

This kind of nonlinear damping is analogous as that observed by Bellet et al. (2010) when

applying the concept of targeted energy transfer to the field of acoustics using high-amplitude

vibrating membrane acting as NES. It was also used by Liu et al. (2019) that generalize the NES by

allowing the inclined parallel linear spring–damper pairs to form an initial angle 𝜙0 at rest. This

allows not only high amplitude transverse motion but also, depending on the initial angle of

inclination, the dynamic of the system can be either hardening or softening at different phases

of the motion. In this work the authors observed that using appropriate values for the NES

parameter, unwanted detached resonances can be completely eliminated.
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The NES model proposed by Andersen et al. (2012) constitutes the basis of the work presented

hereafter.

In this paper, only aero-structure interaction loads are considered. FOWTs operate over a

wide wind speed range (typically between 5 and 40 knots) and their operating principle is that

the blade rotation speed is essentially constant. Practically, as shown by Pahn et al. (2012) in

real cases, the mast of a wind turbine is subjected to a thrust forcing composed of an almost

constant term and a periodic forcing: 𝐹 (𝑡) = 𝐴0 + 𝐴 cos(𝜔𝑡), with 𝜔 = 2𝜋 𝑓 , where 𝑓 is the

forcing frequency which mainly depends on the wind speed fluctuations, rotation speed of the

FOWT and of blade number. In the various cases considered by the authors, most of the dynamic

components is located below 1 Hz with a maximum amplitude of about 10 kN.

To simplify the calculations, the wind turbine is described as a linear mass-spring-damper

system coupled to an NES with linear and cubic characteristics for stiffness and damping.

In this paper, we are interested in optimizing the parameters (linear and nonlinear stiffness

and nonlinear damping) of the NES for the vibration control of this toy model over its entire

operating range under periodic forcing.

To do so, a two passes procedure is proposed. During the first pass, by imposing zero initial

condition, one limits the appearance of detached resonance and for a series of fixed NES mass and

linear damping, NES linear and nonlinear stiffness are optimized to reduce FOWT vibration over

its whole forcing range. Once optimal parameters determined, non-zero initial conditions are

imposed to put in evidence detached resonances and nonlinear damping is adjusted to cancel it.

Results obtained over a large domain of parameters suggest that both NES optimal parameter

(linear and nonlinear stiffness and nonlinear damping) and attenuation of FOWT vibratory

motion depend upon simple power laws of NES mass and linear damping.

This paper is organized as follows. The second section is devoted to the description of the

problem. Section three is devoted to the presentation of numeric method that solve the exact

equations and to introducing optimization under two aspects, the first by using literature results

that avoid detached resonance problem and the second one, by showing how the very good

optimization obtained by using brute force without accounting detached resonance is completely

wiped out when they appear. The fourth section is devoted to an analytical study of the non

linear damping to show that when it is used to control detached resonance, is does not modify

the underlying mechanism of energy transfer. Cancellation of detached resonance is studied

analytically under 1:1 resonance. It is shown that the NES with a properly tuned nonlinear

viscous damping allow the complete elimination of undesired regimes and completely restores

the absorber ability to strongly limit floating offshore wind turbine vibration over its whole

forcing range. To be sure that this nonlinear damping does not modify too much the dynamic of

the system, the slow flow of the system is studied by computing its slow invariant manifold. It

is showed that, while not perfectly describe all the feature of the exact solution, most of the

characteristics of the slow flow are conserved when nonlinear damping is accounted for. The fifth

section is devoted to a synthetic presentation of optimization results obtained by using brute

force and detached resonance cancellation. The sixth section is devoted to the conclusion.

2 Equations of the problem
The wind turbine considered in the present article has a resonance frequency of 0.50 Hz and a

damping 𝜁0 of 0.05%. The forcing frequency 𝑓 considered in this paper varies over a third of an

octave around 0.50 Hz (in the vicinity of the resonance of the wind turbine) and the force applied

to the wind turbine mast 𝐴 varies between 0 and 10 kN. In the following, the constant term 𝐴0 is

neglected.

Let us denote 𝑥 (𝑡) the displacement of the wind turbine and 𝑞(𝑡) that of the NES with

𝑤 (𝑡) = 𝑥 (𝑡) − 𝑞(𝑡). With the classical convention ¤𝑥 (𝑡) = d𝑥 (𝑡)/d𝑡 , the 2 degrees of freedom (2

d-o-f) system is written as

𝑚0 ¥𝑥 (𝑡) + 𝑐0 ¤𝑥 (𝑡) + 𝑘0𝑥 (𝑡) + 𝑐𝑁 (1 + 2𝜈𝑁𝑤
2(𝑡)) ¤𝑤 (𝑡) + 𝑘1𝑁𝑤 (𝑡) + 𝑘3𝑁𝑤 (𝑡)3 = 𝐴 cos(𝜔𝑡) (1)

𝑚𝑁 ¥𝑞(𝑡) − 𝑐𝑁 (1 + 2𝜈𝑁𝑤
2(𝑡)) ¤𝑤 (𝑡) − 𝑘1𝑁𝑤 (𝑡) − 𝑘3𝑁𝑤 (𝑡)3 = 0, (2)
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where𝑚0 = 10
6
kg is the FOWT weight and 𝑘0 ≈ 10

7
N/m its stiffness which leads to a

pulsation 𝜔0 =
√
10 ≈ 𝜋 . A damping coefficient 𝜁0 = 0.05% leads to a viscosity 𝑐0 = 2𝜁0𝑚0𝜔0 ≈

3200 N.s/m.𝑚𝑁 is the NES mass, 𝑘1𝑁 is the linear stiffness of the NES and 𝑘3𝑁 its cubic stiffness

coefficient. 𝑐𝑁 is the coefficient of the linear viscosity of the NES. The nonlinear viscous damping

(1 + 2𝜈𝑁𝑤
2(𝑡)) ¤𝑤 (𝑡) which is used is derived from the work of Andersen et al. (2012); 𝑐𝑁𝜈𝑁 is

the nonlinear viscous damping coefficient.

To these differential equations initial conditions must be imposed: 𝑥 (0) = 𝑥0, ¤𝑥 (0) = ¤𝑥0,
𝑞(0) = 𝑞0, ¤𝑞(0) = ¤𝑞0.

Let us define non-dimensional parameters Ω = 𝜔/𝜔0, 𝜏 = 𝜔0𝑡 , 𝜖 =𝑚𝑁 /𝑚0, 𝜆0 = 𝑐0/(𝑚𝑁𝜔0),
𝜆𝑁 = 𝑐𝑁 /(𝑚𝑁𝜔0) = 𝜇𝑁𝜆0, 𝛿𝑁 = 𝑘1𝑁 /(𝑚𝑁𝜔

2

0
), 𝐾𝑁 = 𝑘3𝑁 /(𝑚𝑁𝜔

2

0
) and 𝐹 = 𝐴/(𝑚𝑁𝜔

2

0
). The

previous system is then written as

¥𝑥 (𝑡) + 𝜖𝜆0 ¤𝑥 (𝑡) + 𝑥 (𝑡) + 𝜖𝜇𝑁𝜆0(1 + 2𝜈𝑁𝑤
2(𝑡)) ¤𝑤 (𝑡) + 𝜖𝛿𝑁𝑤 (𝑡) + 𝜖𝐾𝑁𝑤 (𝑡)3 = 𝜖𝐹 cos(Ω𝑡) (3)

𝜖 ¥𝑞(𝑡) − 𝜖𝜇𝑁𝜆0(1 + 2𝜈𝑁𝑤
2(𝑡)) ¤𝑤 (𝑡) − 𝜖𝛿𝑁𝑤 (𝑡) − 𝜖𝐾𝑁𝑤 (𝑡)3 = 0 (4)

The solution of this system can be calculated numerically without difficulty. For example, under

a laptop workstation, the numerical solution using the NSolve Wolfram Research, Inc. (2021)

function takes a fraction of a second for each amplitude-frequency pair for a calculation carried

out over a forcing duration of more than an hour.

3 Optimization of the exact equations
3.1 Optimization using rules of the literature
A first optimization, which only takes into account the linear component of the damping, has been

carried out using rules from the literature, such as the one proposed for 𝐾𝑁 by Starosvetsky et al.

(2008). The chosen parameters that avoid the problem of detached resonance by the procedure

described in Gourc et al. (2014) have been set as: 𝜖 = 0.01, 𝜆0 = 0.1, 𝜇𝑁 = 2, 𝛿𝑁 = 0.03 and

𝐾𝑁 = 28. The amplitude-frequency response surface which covers 1/6 of an octave on either side

of the resonance of the wind turbine is presented in Figure 1. In this figure 𝐿(𝐴, 𝑓 ) = 𝑥𝑟𝑚𝑠 (𝐴, 𝑓 )/𝐴,
where 𝑥𝑟𝑚𝑠 (𝐴, 𝑓 ) is the root mean square value of the steady state FOWT amplitude for a given

amplitude 𝐴 and forcing frequency 𝑓 and 𝑥𝑟𝑚𝑠 (𝐴, 𝑓 ) is estimated by averaging the value of

𝑥 (𝑡) over the last 1/2h of motion. All calculations made in this study to solve the initial system

composed of equations (1) and (2) consider 101 points in frequency and 16 points in amplitude

and each of it requires about one minute of total time using parallel computation on 16 cores of a

workstation Dell Poweredge R640.

In Figure 1 and all figures herein, all the results about level are given in decibel, calculated as

20 log( |𝐿 |/𝐿𝑟 ), where 𝐿𝑟 = 1 is the reference level. The left sub-figure in Figure 1 corresponds to

the surface response over the whole amplitude and frequency range and the right sub-figure

correspond to the ridge curve with free and blocked NES (to see its efficiency). The ridge curve is

obtained by taking, for each amplitude, over the frequency range considered, the maximum

frequency response; this is mandatory as for such nonlinear system, the frequency of the

maximum of the frequency response varies with forcing amplitude; obviously when the NES is

blocked, the maximum amplitude is constant. The ridge curve shows a quasi linear decrease in

amplitude, this is the usual effect of the NES that acts a amplitude limiter over its efficiency range.

These results are compared with those from an optimized linear absorber (Tuned Mass

Damper - TMD), with a mass identical as that of the NES, to control the resonance at 0.5 Hz.

Many expressions are available for the parameters (𝛿𝑇𝑀𝐷 characterizes the linear stiffness and

𝜇𝑇𝑀𝐷 the linear damping) in the literature since the pioneering work by Den Hartog (1947).

We have used those, valid for undamped system as it is almost the case for the FOWT under

consideration, proposed by Bakre et al. (2007):

𝛿𝑇𝑀𝐷 =
2 + 𝜖

2(1 + 𝜖)2 , 𝜇𝑇𝑀𝐷 =
1

𝜆0

√︄
𝜖 (3𝜖 + 4)

8(1 + 𝜖) (2 + 𝜖) . (5)
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Ridge curve

Figure 1: Frequency response of the wind turbine with 𝑓 𝑟
0
= 0.5 Hz with NES. Left: 3D surface response.

Right: ridge curve.

The comparison is given in Figure 2. In this figure and the followings, the attenuation is

represented as the inverse of the gain 𝐺 (𝐴) provided by the NES and by a TMD: a negative value

of the gain indicates a decrease in vibration level and then an attenuation, while a positive value

indicates an increase in vibration level. The various gain curves are simply the ridge curves of

the FOWT normalized by its amplitude, in decibels, at its main resonance without accounting

for nonlinear components for the NES (i.e. a 2 d-o-f linear damped linear system). The TMD

characteristics given by equations (5) are, for the FOWT under consideration with 𝜖 = 0.01,

𝛿𝑇𝑀𝐷 = 0.985 and 𝜇𝑇𝑀𝐷 = 0.498. For each amplitude 𝐴, the level 𝐺 (𝐴) of the normalized

ridge curve is defined by 𝐺 (𝐴) = max𝑓 𝐿(𝐴, 𝑓 )/
(
𝐴max𝑓 𝐿lin(𝑓 )

)
, where max𝑓 𝐿lin(𝑓 ) is the

maximum amplitude of the corresponding linear system, obtained by canceling the non linear

part of the NES characteristics in equations (1) and (2). The attenuation allowed by the TMD is

calculated in a similar way and remains constant all over the amplitude range.

In the example illustrated in Figure 2, the maximum amplitude of the 2 d-o-f system is reached

at the resonance frequency of the FOWT without NES, near 0.5 Hz. However, the resonance

frequency of the NES in linear regime is much smaller and lies outside of the plotted range. This

resonance frequency is around 0.09 Hz because 𝛿𝑁 = 0.03 implies a linear resonance frequency of

0.5 ×
√
𝛿𝑁 ≈ 0.09 Hz for the NES and lies outside the plotted range.

Primary system + NES

Primary system + TMD (0.5 Hz) 

Gain

Figure 2: Attenuation (i.e. inverse of gain) for NES and TMD optimized for 0.5 Hz resonance

These results are satisfactory, with a maximum reduction in vibration level 20 log |𝐺 | of -14
dB and a mean average of -5.3 dB. The objective of the optimization in the next sections is to

achieve a higher attenuation. As for the present configuration, the TMD allows a much better

reduction of 23.3 dB, we wanted to get as close as possible of the TMD result.
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3.2 Optimization using brute force: problem of detached resonances
Among the possible choices of functional, we chose to minimize the ridge curve 𝐺 (𝐴) mean

average in order to obtain the highest mean average attenuation. It corresponds to the shaded

area presented in Figure 2. At this stage, in order to avoid, if possible, detached resonances, for

each calculation the initial conditions are set to zero: 𝑥0 = 0, ¤𝑥0 = 0, 𝑞0 = 0 and ¤𝑞0 = 0.

Minimizing only for the highest forcing excitation, 𝐴𝑚𝑎𝑥 = 10000 N in the present study,

would have been too irrelevant since, in many cases, detached resonances appear around 𝐴𝑚𝑎𝑥
even for zero initial conditions and transform the minimization process into a non-convergent

process.

Then the functional 𝐽 to be minimized is defined as

𝐽 =
1

𝐴𝑚𝑎𝑥

∫ 𝐴𝑚𝑎𝑥

0

𝐺 (𝐴)d𝐴 (6)

Without constraints on the parameters (𝜖 , 𝜇𝑁 , 𝛿𝑁 , 𝐾𝑁 ) all optimizations led to systematically

increase the mass of the NES 𝜖 and to reduce its damping 𝜇𝑁 . The solution is to fix the pair

of parameters 𝜖 and 𝜇𝑁 and to optimize for each pair 𝛿𝑛 and 𝐾𝑁 . The optimization, for two

parameters, under Mathematica (Wolfram Research, Inc. 2021) uses a Nelder-Mead type algorithm

and requires between 2 and 3 days of parallel computation using 16 cores on a workstation Dell

Poweredge R640.

For example, let us take 𝜖 = 0.02 and 𝜇𝑁 = 0.2, we obtained the optimal parameters 𝛿𝑛 = 0.5

and 𝐾𝑁 = 43 with an average attenuation 20 log |𝐽 | of -16.1 dB and a maximum attenuation

achieved at𝐴 = 𝐴𝑚𝑎𝑥 𝐺 (𝐴𝑚𝑎𝑥 ) = −28.1 dB, to be compared with the -31 dB attenuation provided

by the TMD observed in the Figure 3, the TMD characteristics given by equations (5) are for this

case 𝛿𝑇𝑀𝐷 = 0.97 and 𝜇𝑇𝑀𝐷 = 1.4. We note that we recover a classic result from the literature

(Habib and Romeo 2020) for which, albeit resorting to different mechanical properties, the TMD

and the NES have similar performance when the NES is optimized for a given forcing.

Primary system + NES

Primary system + TMD (0.5 Hz) 

Gain

Figure 3: Optimal attenuation for 𝜖 = 0.02 and 𝜇𝑁 = 0.2

Naturally, when the possibility of one or more detached resonances is taken into account by

imposing non zero initial conditions: 𝑥0 = 0.1, ¤𝑥0 = 0.1, 𝑞0 = 0 and ¤𝑞0 = 0, the results change

completely as shown in Figure 4. These are completely degraded and the NES no longer has any

vibration reduction action.

4 Nonlinear damping as a controller of detached resonance:
analytical study

Before optimize the non-linear damping parameter 𝜈𝑁 , we have to check that this type of damping

does not modify the nature of the solution. To do so, we compute, under the assumption that the

motion is under 1 : 1 resonance, the fixed points and the Slow Invariant Manifold (SIM) of the

system.
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Primary system + NES

Primary system + TMD (0.5 Hz) 

Gain

Figure 4: Attenuation for 𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑛 = 0.5 and 𝐾𝑁 = 43 with detached resonance

4.1 Fixed points
Under 1 : 1 resonance, we apply the Manevitch complexification-averaging (CX-A) method. We

start from the initial system formed by the equations (3) and (4) in which we perform the change

of variable 𝑣 = 𝑥 + 𝜖𝑞, this leads to

¥𝑣 + 𝑣 + 𝜖𝑤
1 + 𝜖 + 𝜖𝜆0

¤𝑣 + 𝜖 ¤𝑤
1 + 𝜖 = 𝜖𝐹 cos(Ω𝑡) (7)

¥𝑤 + 𝑣 + 𝜖𝑤
1 + 𝜖 + 𝜖𝜆0

¤𝑣 + 𝜖 ¤𝑤
1 + 𝜖 + 𝛿𝑁 (1 + 𝜖)𝑤+

𝜇𝑁𝜆0(1 + 𝜖) (1 + 2𝜈𝑁𝑤
2) ¤𝑤 + 𝐾𝑁 (1 + 𝜖)𝑤3 = 𝜖𝐹 cos(Ω𝑡) (8)

By CX-A, we introduce new variables Φ1 exp(𝚤Ω𝑡) = ¤𝑣 + 𝚤Ω𝑣 and Φ2 exp(𝚤Ω𝑡) = ¤𝑤 + 𝚤Ω𝑤 in the

preceding system then by averaging over the frequency Ω and we obtain the system of equations

¤Φ1 + 𝚤
Ω

2

Φ1 +
1

2(1 + 𝜖)

(
𝜖𝜆0 −

𝚤

Ω

)
(Φ1 + 𝜖Φ2) = 𝜖

𝐹

2

(9)

¤Φ2 + 𝚤
Ω

2

Φ2 +
1

2(1 + 𝜖)

(
𝜖𝜆0 −

𝚤

Ω

)
(Φ1 + 𝜖Φ2) − 𝚤𝛿𝑁

(1 + 𝜖)
2Ω

Φ2+

𝜇𝑁𝜆0
(1 + 𝜖)

2

Φ2 −
3𝚤𝐾 ′

𝑁

8Ω3
(1 + 𝜖) |Φ2 |2Φ2 = 𝜖

𝐹

2

(10)

with 𝐾 ′
𝑁

= 𝐾𝑁

(
1 − 𝜈𝑁 𝜇𝑁𝜆0 2Ω

3𝚤𝐾𝑁

)
. It is easy to see that taking into account the non-linear

damping leads to a simple modification of the non-linear stiffness term. It is worth noting that this

system represents the slow flow of the steady-state dynamics under condition of 1:1 resonance.

The fixed points Φ0

1,2
are solutions of the slow flow for ¤Φ1,2 = 0. They are given by:

Φ0

1
=
𝚤𝜖Φ0

2
+ 𝜖𝐹 (1 + 𝜖)Ω − 𝜖2𝜆0Φ0

2
Ω

𝚤 (Ω2 − 1) + 𝜖Ω(𝚤Ω + 𝜆0)
, (11)

Φ0

2
solution of equation 1 + 𝑐1 Φ0

2
+ 𝑐2 Φ0

2
|Φ0

2
|2 = 0, (12)

where the coefficient 𝐴 and 𝐵 are given by

𝑐1 =
1

𝐹𝜖Ω3

(
−𝚤𝛿𝑁 + 𝜆0Ω (𝜇𝑁 + 𝜖𝛿𝑁 ) + 𝚤Ω2

(
1 + (1 + 𝜖)𝛿𝑁 − 𝜖𝜆2

0
𝜇𝑁

)
−𝜆0Ω3 (𝜖 + (1 + 𝜖)𝜇𝑁 ) − 𝚤Ω4

)
, (13)

𝑐2 =
3𝐾 ′

𝑁

(
−𝚤 + 𝜖𝜆0Ω + 𝚤 (1 + 𝜖)Ω2

)
4𝜖𝐹Ω5

. (14)

To be solved, Equation (12) is transformed into a polynomial in |Φ0

2
| as

1 + 𝑎1 |Φ0

2
|2 + 𝑎2 |Φ0

2
|4 + 𝑎3 |Φ0

2
|6 = 0, (15)

7
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where the real coefficients of this polynomial are given by

𝑎1 = −|𝑐1 |2, (16)

𝑎2 = −|𝑐1 + 𝑐2 |2 + |𝑐1 |2 + |𝑐2 |2, (17)

𝑎3 = −|𝑐2 |2. (18)

The polynomial of degree 3 in |Φ0

2
|2 given in Equation (12) possesses one or three real roots that

depend on the system parameters. Stability of these roots is obtained by an usual linearisation of

a complex perturbation around the fixed points. Roughly, it consists in adding small perturbation

around fixed points

Φ1 = Φ0

1
+ 𝜌1, (19)

Φ2 = Φ0

2
+ 𝜌2. (20)

The change of variables given in Equations (19) and (20) is introduced in the averaged system

composed by Equations (9) and (10). After linearisation, one is left with the following system

©­­­­­«
¤𝜌1
¤𝜌2
¤𝜌★
1

¤𝜌★
2

ª®®®®®¬
=

©­­­­­«
𝐴11 𝐴12 0 0

𝐴21 𝐴22 0 𝐴24

0 0 𝐴★
11

𝐴★
12

0 𝐴★
24

𝐴★
21

𝐴★
22

ª®®®®®¬
©­­­­­«
𝜌1

𝜌2

𝜌★
1

𝜌★
2

ª®®®®®¬
(21)

where the 𝑧★ denotes the complex conjugate of 𝑧. The coefficients of the matrix are given by:

𝐴11 = −𝚤Ω
2

− 1

2(1 + 𝜖)

(
𝜖𝜆0 −

𝚤

Ω

)
(22)

𝐴12 = 𝜖𝐴21 (23)

𝐴21 = − 1

2(1 + 𝜖)

(
𝜖𝜆0 −

𝚤

Ω

)
(24)

𝐴22 = −𝚤Ω
2

− 𝜖

2(1 + 𝜖)

(
𝜖𝜆0 −

𝚤

Ω

)
+ 𝚤𝛿𝑁

(1 + 𝜖)
2Ω

− 𝜇𝑁𝜆0
(1 + 𝜖)

2

+
3𝚤𝐾 ′

𝑁

4Ω3
(1 + 𝜖) |Φ2 |2 (25)

𝐴24 = +
3𝚤𝐾 ′

𝑁

8Ω3
(1 + 𝜖)Φ2

2
(26)

Stability of the fixed points is determined for calculating roots of the characteristic polynomial of

the matrix of the system given in Equation (21). If all the roots possess a negative real part,

then the fixed point is stable. If a real root crosses the half complex plane, the fixed point is

saddle-node. If a pair of complex roots leaves the left part of the complex plane, there is a slow

flow Hopf bifurcation.

Once amplitude |Φ0

2
| calculated, by writing Φ0

2
= |Φ0

2
| exp(𝚤𝜃 ), it is easy to show that the

phase 𝜃 is given by 𝜃 = 𝜋 − 𝚤 ln(𝑐1 |Φ0

2
| + 𝑐2 |Φ0

2
|3). Then Φ0

1
is calculated by solving Equation (11)

for each value of Φ0

2
.

By introducing a detuning parameter𝜎 such asΩ = 1+𝜖𝜎 , we obtain for𝐴 = 10 000 N, 𝜖 = 0.02,

𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5 and 𝐾𝑁 = 43 the stable fixed points of the primary system displacement nor-

malized by the forcing |𝑥0 |/𝐹 , where it is recalled that 𝐹 = 𝐴/(𝑚𝑁𝜔
2

0
), with and without nonlinear

damping which are presented in Figure 5: |𝑥0 |/𝐹 =
��(Φ0

1
+ 𝜖Φ0

2
)/(1 + 𝜖)2

�� /𝐹 . In this figure, the

center frequency, obtained for 𝜎 = 0 is 𝑓0 =
𝜔0

2𝜋

√︂(
1 + 𝛿𝑁 (1 + 𝜖) +

√︁
1 + 𝛿𝑁 (1 + 𝜖) − 4𝛿𝑁

)
/2 ≈

0.51 Hz corresponds to the highest frequency of the 2 d-o-f linear system without damping. The

minimum frequency corresponding to 𝜎 ≈ −16 is 𝑓𝑚𝑖𝑛 ≈ 0.34 Hz and the maximum frequency

corresponding to 𝜎 ≈ +18 is 𝑓𝑚𝑎𝑥 ≈ 0.68 Hz. In this figure, the gray curve corresponds to

the primary system with NES without any nonlinear element, the blue curve is obtained for

a nonlinear damping 𝜈𝑁 = 0, showing a high amplitude spurious resonance below natural

resonance of the primary system and a small detached resonance curve above natural resonance

8
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of the primary system. For intermediate values of the nonlinear damping, the continuous

secondary low frequency high amplitude resonance curve splits into two stable branches, one at

low frequency with low amplitude and one with high frequency and amplitude, this last one is

that to be avoided. The green curve, obtained for a nonlinear damping 𝜈𝑁 = 800 is an example of

this splitting of detached resonance. In this case, a small detached resonance zone subsists around

𝜎 = −1 and the chosen nonlinear damping does not suffices to ensure a full control of the high

amplitude detached resonance. The red curve is obtained for a nonlinear damping 𝜈𝑁 = 922, the

smallest value that cancels the high amplitude detached resonance curve.

Primary system + NES linear

Primary system + NES, = 0

Primary system + NES, = 800

Primary system + NES, = 922

-15 -10 -5 0 5 10 15

0

10

20

30

40

50

L
(d
B
)

Primary system stable fixed points

Figure 5: Stable fixed points for 𝐴 = 10 000 N, 𝜖 = 0.02, 𝜇𝑁 = 0..2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43, when varying 𝜈𝑁 .

It is worth noting that in this example the frequency range around main resonance of the

primary system is twice-wider than that used in the optimization process to show influence of

the resonance of the NES at low frequency and high frequency detached resonance. From a

practical point of view, it suffices to consider a 1/3 octave total frequency range to estimate the

nonlinear damping necessary to cancel the detached resonance.

The fixed points on the main curve (here in red) around the main resonance of the primary

system are identical whether linear damping is taken into account or not (the main resonance

curves are merged). On the other hand, introducing the non-linear damping prevents the detached

resonance without modifying the solution around the resonance of the linear system to be

controlled; in the present example, and also in all the examples tested, there is only a very slight

difference in the calculated level (less than 1 dB) with anD without nonlinear damping at the

boundaries of the stable zone near the main resonance of the primary system, around 𝜎 = 0 and

𝜎 = 2 in Figure 5.

4.2 Slow invariant manifold
A very efficient way to attenuate the vibration is observed under Strongly Modulated Response

(SMR) in the vicinity of the 1 : 1 resonance. Two time scales 𝜏0 = 𝑡 and 𝜏1 = 𝜖𝑡 appear naturally in

this type of motion and a multi-scale asymptotic development to order 0 in 𝜖 allows us to obtain

this manifold. Let us state Φ𝑖 = 𝜙
0

𝑖 + 𝜖𝜙1

𝑖 + O(𝜖2), we obtain to the order 0 in 𝜖 the following set

of differential equations:

¤𝜙0

1
= 0 (27)

¤𝜙0

2
+ 𝚤

2

(
𝜙0

2
− 𝜙0

1

)
− 𝜇𝑁𝜆0

2

𝜙0

2
−
3𝚤 ˜𝐾 ′

𝑁

8

|𝜙2 |2𝜙2 − 𝚤
𝛿𝑁

2

𝜙0

2
= 0, (28)

with
˜𝐾 ′
𝑁
= 𝐾𝑁

(
1 − 𝜈𝑁 𝜇𝑁𝜆0 2

3𝚤𝐾𝑁

)
. Equation (27) gives 𝜙0

1
= 𝜙0

1
(𝑡1, 𝑡2, · · · ) = 𝜙1. The fixed point

𝜙0

2
= 𝜙2 of Equation (28) is solution of

𝚤 (𝜙2 − 𝜙1) + 𝜇𝑁𝜆0𝜙2 −
3𝚤𝐾̃ ′

𝑁

4

|𝜙2 |2𝜙2 − 𝚤𝛿𝑁𝜙2 = 0. (29)

Let us write the fixed points under polar form 𝜙1 =
√
𝑍1 exp(𝚤𝜃1) and 𝜙2 =

√
𝑍2 exp(𝚤𝜃2). A

9
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few algebraic manipulations give the Slow Invariant Manifold (SIM) for 1 : 1 resonance capture:

𝑍1 = 𝛼1𝑍2 + 2𝛼2𝑍
2

2
+ 3𝛼3𝑍

3

2
, (30)

where the real coefficients 𝛼𝑖 , 𝑖 = 1, 2, 3 are given by:

𝛼1 = (𝛿𝑁 − 1)2 + 𝜆2
0
𝜇2𝑁 , (31)

𝛼2 =
3

2

𝐾𝑁 (𝛿𝑁 − 1) + 𝜈𝑁𝜆20𝜇2𝑁 , (32)

𝛼3 =
1

16

(
9𝐾2

𝑁 + 4𝜈2𝑁𝜆
2

0
𝜇2𝑁

)
. (33)

This SIM has one or three solutions. The bifurcation points are obtained by canceling the

derivative of the second member of the equation (30) with respect to 𝑍2: 𝛼1 + 2𝛼2𝑍2 + 3𝛼3𝑍
2

2
= 0.

The two roots of this equation are :

𝑍
(1,2)
2

=
−𝛼2 ±

√
Δ

𝛼1
, (34)

with Δ = 𝛼2
2
− 3𝛼1𝛼3, one obtains:

Δ =
1

4

[ (
3𝐾𝑁 (𝛿𝑁 − 1) − 2𝜈𝑁𝜆

2

0
𝜇2𝑁

)
2 − 3

4

(1 + 𝜆2
0
𝜇2𝑁 − 2𝛿𝑁 + 𝛿2𝑁 ) (9𝐾2

𝑁 + 4𝜈2𝑁𝜆
2

0
𝜇2𝑁 )

]
. (35)

For 𝑍
(1,2)
2

to exist, Δ must be positive. It is easy to see form Equation (35) that Δ is a polynomial

of degree 2 in 𝛿𝑁 . Let us calculate the values 𝛿
(1,2)
𝑁

that cancel Δ. One obtains:

𝛿
(1)
𝑁

= 1 +
√
3𝜆0𝜇𝑁

(
1

3

− 4

3 + 2

√
3𝜈𝑁𝜆0𝜇𝑁 /𝐾𝑁

)
(36)

𝛿
(2)
𝑁

= 1 −
√
3𝜆0𝜇𝑁

(
1

3

− 4

3 − 2

√
3𝜈𝑁𝜆0𝜇𝑁 /𝐾𝑁

)
(37)

Depending on the value of 𝜈𝑁 , two cases can be considered.

1. if 𝜈𝑁 = 0 and

√
3𝜆0𝜇𝑁 < 1,

𝛿
(1)
𝑁

= 1 −
√
3𝜆0𝜇𝑁 (38)

𝛿
(2)
𝑁

= 1 +
√
3𝜆0𝜇𝑁 (39)

one can show that Δ ≤ 0 for 𝛿𝑁 ∈ [𝛿 (1)
𝑁
, 𝛿

(2)
𝑁

]. Then, for Δ to be positive, one must impose

𝛿𝑁 ≤ 𝛿 (1)
𝑁

or 𝛿𝑁 ≥ 𝛿 (2)
𝑁

. To ensure that 𝑍
(1,2)
2

≥ 0, it is easy to see from Equation (34), that

𝛼2 must be negative and then, from Equation (32), 𝛿𝑁 can not be greater than 1. Then,

one obtains the classical condition (Wu et al. 2021) that when the NES possesses a linear

stiffness 𝛿𝑁 , it must satisfy 𝛿𝑁 < 1 −
√
3𝜆0𝜇𝑁 .

2. if 𝜈𝑁 ≠ 0, the procedure differs a little. It is worth noting that, depending on the parameters,

𝛿
(1)
𝑁

is not always smaller than 𝛿
(2)
𝑁

. Let us denote 𝜈𝛿
𝑁

=
√
3𝐾𝑁

2𝜆0𝜇𝑁
, the value of nonlinear

damping that makes 𝛿
(2)
𝑁

singular. Different sub-cases are to be considered.

(a) If 𝜈𝑁 < 𝜈𝛿
𝑁
, one can show that Δ ≤ 0 for 𝛿𝑁 lying in the interval limited by 𝛿

(1)
𝑁

and

𝛿
(2)
𝑁

. In the vicinity of 𝜈𝛿
𝑁
, let us consider 𝜈𝑁 = 𝜈𝛿

𝑁
(1 − 𝜂), 𝜂 ≪ 1, one has

𝛿
(1)
𝑁

≈ 1 − 1

√
3

𝜆0𝜇𝑁 (1 + 𝜂) → 1 − 1

√
3

𝜆0𝜇𝑁 for 𝜂 → 0, (40)

𝛿
(2)
𝑁

≈ 1 + 4

√
3𝜂
𝜆0𝜇𝑁 → ∞ for 𝜂 → 0. (41)

Then, if 𝜆0𝜇𝑁 /
√
3 < 1, we must impose that 𝛿𝑁 < 𝛿

(1)
𝑁

and with Δ > 0 close to

zero, to ensure that 𝛼2 must be negative, from Equation (32) one has to impose

10
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3

2
𝐾𝑁 (𝛿𝑁 −1) +𝜈𝛿

𝑁
(1−𝜂)𝜆2

0
𝜇2
𝑁
+O(𝜂2) < 0, then one obtains 𝛿𝑁 < 1+ 1√

3

𝜆0𝜇𝑁 +O(𝜂).
This condition, together with 𝛿𝑁 < 𝛿

(1)
𝑁

, gives that 𝛿𝑁 must satisfies 𝛿𝑁 < 1− 1√
3

𝜆0𝜇𝑁 .

Care must be taken when 𝜈𝑁 < 𝜈𝛿
𝑁
because when 𝜈𝑁 → 0, condition reads 𝛿𝑁 <

1 −
√
3𝜆0𝜇𝑁 which can significantly differs from the condition 𝛿𝑁 < 1 − 1√

3

𝜆0𝜇𝑁 if

𝜇𝑁𝜆0 is not small.

(b) if 𝜈𝑁 > 𝜈𝛿
𝑁
, one can show that Δ ≥ 0 for 𝛿𝑁 lying in the interval limited by 𝛿

(1)
𝑁

and

𝛿
(2)
𝑁

. In the vicinity of 𝜈𝛿
𝑁
, let us consider 𝜈𝑁 = 𝜈𝛿

𝑁
(1 + 𝜂), 𝜂 ≪ 1, one has

𝛿
(1)
𝑁

≈ 1 − 1

√
3

𝜆0𝜇𝑁 (1 − 𝜂) → 1 − 1

√
3

𝜆0𝜇𝑁 for 𝜂 → 0, (42)

𝛿
(2)
𝑁

≈ 1 − 4

√
3𝜂
𝜆0𝜇𝑁 → −∞ for 𝜂 → 0. (43)

Here again, if 𝜆0𝜇𝑁 /
√
3 < 1, we must impose that 𝛿𝑁 < 𝛿

(1)
𝑁

and with Δ > 0 close

to zero, to ensure that 𝛼2 must be negative, from Equation (32) one has to impose

3

2
𝐾𝑁 (𝛿𝑁 −1) +𝜈𝛿

𝑁
(1−𝜂)𝜆2

0
𝜇2
𝑁
+O(𝜂) < 0, then one obtains 𝛿𝑁 < 1+ 1√

3

𝜆0𝜇𝑁 +O(𝜂).
One finally obtains that 𝛿𝑁 must satisfies 𝛿𝑁 < 1 − 1√

3

𝜆0𝜇𝑁 . For the general case

𝜈𝑁 > 𝜈𝛿
𝑁
, no simple rule is available. As a simple rule of the thumb, for 𝜈𝑁 not too

large, choose at first approach 𝛿𝑁 < 1 − 1√
3

𝜆0𝜇𝑁 , then the criteria detailed above

allow us to specify the theoretical limits, keeping in mind that this is an approximate

resolution and therefore the effective solutions may differ, especially near the limiting

cases 𝜈𝑁 ≪ 𝜈𝛿
𝑁
or 𝜈𝑁 ≫ 𝜈𝛿

𝑁
.

The stability of the SIM is obtained by an usual linearisation of a complex perturbation

around the fixed points of the system composed by Equation (27) and Equation (28). Without

giving too much details, this leads to compute the roots of a third order characteristic polynomial

given in Equation (44)

𝑝 (𝑋 ) = 𝑋 3 + 𝜇𝑁𝜆0𝑋 2(1 − 𝑍 2

2
𝛿𝑁 ) (44)

−𝑋
64

(((−4 + 3𝑍 2

2
𝐾𝑁 + 4𝛿𝑁 ) (−4 + 9𝑍 2

2
𝐾𝑁 + 4𝛿𝑁 ) + 4𝜇2𝑁𝜆

2

0
(4 + 𝑍 2

2
𝜈𝑁 (−8 + 3𝑍 2

2
𝜈𝑁 ))).

If all roots have a real part less or equal to zero, the SIM is stable. The three roots of this

polynomials are given by

𝑋1 = 0 (45)

𝑋2 =
1

8

(
4𝜇𝑁𝜆0(−1 + 𝜈𝑁𝑍2) +

√︁
Δ𝑋

)
(46)

𝑋3 =
1

8

(
4𝜇𝑁𝜆0(−1 + 𝜈𝑁𝑍2) −

√︁
Δ𝑋

)
(47)

with Δ𝑋 = 48𝑍2𝐾𝑁 (1 − 𝛿𝑁 ) − 16(1 − 𝛿𝑁 )2 + 𝑍 2

2
(−27𝐾2

𝑁
+ 4𝜇2

𝑁
𝜆2
0
𝜈2
𝑁
). For 𝑍2 ∈]𝑍 (2)

2
, 𝑍

(1)
2

[, the
SIM is always unstable. For 𝜈𝑁 ≫ 1, as in the general case 𝑍2 ≪ 1, one has Δ𝑋 < 0 and one

can approximate the real part of the roots 𝑋2 and 𝑋3 by 𝜇𝑁𝜆0(−1 + 𝜈𝑁𝑍2)/2. Then, the SIM is

unstable for 𝑍2 > 𝑍
𝜈
2
= 1/𝜈𝑁 .

An interesting feature of the dependence of the SIM with respect to the nonlinear damping is

that it can be shown that 𝛼1𝑍
(1)
2

+ 2𝛼2

(
𝑍

(1)
2

)
2

+ 3𝛼3

(
𝑍

(1)
2

)
3

= 0 for 𝜈0
𝑁
= 3/2𝐾𝑁 /(1 − 𝛿𝑁 ). For

example, let us consider 𝛿𝑁 = 0.5 and 𝐾𝑁 = 43. One obtains 𝜈0𝑛 = 129. The SIM is plotted in

Figure 6 for the parameters 𝜖 = 0.02, 𝜇𝑁 = 4, 𝛿𝑁 = 0.5 and 𝐾𝑁 = 43 for 𝜈𝑁 = 0 and 𝜈𝑁 = 𝜈0
𝑁
. In

this figure, the black dots correspond to the bifurcation points 𝑍
(1,2)
2

; the red dot correspond to

𝑍 𝜈
2
.

This feature of non-linear damping change dramatically the efficiency of the NES. As it

is classical that too much damping can destroy SMR, the chosen value 𝜇𝑁 = 4 in Figure 6,

corresponding to a NES linear damping four times greater than linear system damping (even with

11
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= 0)

Z
2

(1)

Z
2

(1)

Z
2

(2)

Z
2

(2)
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Figure 6: SIM for 𝜖 = 0.02, 𝜇𝑁 = 4, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43, 𝜈𝑁 = 0 and 𝜈𝑁 = 129.

such a high value, as 𝜆0 = 0.1, the strongest condition
√
3𝜆0𝜇𝑁 < 1 is satisfied), allows a very

short range of possible SMR when 𝜈𝑁 = 0 while remaining maximum for 𝜈𝑁 = 𝜈0
𝑁
. As 𝜈0

𝑁
does

not depends on 𝜖 nor 𝜈𝑁 , it can not be used as a guide to choose the nonlinear damping that

cancels detached resonance for a given 𝜖 and 𝜈𝑁 .

For the parameters 𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5 and 𝐾𝑁 = 43, the value of nonlinear damping

that destroy detached resonance for the maximum system forcing amplitude 𝐴 = 10000 N is

𝜈𝑁 = 922. It is worth noting that it suffices to cancel the detached resonance for the highest

amplitude to ensure that it is canceled for all lesser amplitudes. We plotted the SIM for 𝜈𝑁 = 0

and 𝜈𝑁 = 922 in Figure 7. In this figure, whatever the value of the non-linear damping, relaxation

oscillations (indicated by green arrows) are observed for which there is a possibility of SMR. We

obtain the limiting values of 𝑍1 and 𝑍2 by 𝑍
∗
1
≈ 0.0058 et 𝑍 ∗

2
≈ 0.02.

Unstable SIM (n
N 

= 922)

Stable SIM (n
N 

= 922)

Unstable SIM (n
N 

= 0)

Stable SIM (n
N 

= 0)

Z
1

*

Z
2

(2)

Z
2

(1)

Z
2

*
Z

2

n

Figure 7: SIM for 𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43, 𝜈𝑁 = 0 or 922

It is worth noting that in Figure 7, the significant nonlinear damping has modified the shape

of the SIM in two ways: first, the bifurcation point 𝑍
(1)
2

moves away from the abcissa axis, as it

is classical for a damped system, for that case 𝜈0
𝑁
= 129 is far from the necessary nonlinear

damping that cancels detached resonance; secondly, and more important, the SIM is stable only

for 𝑍2 ∈ [0, 1/𝜈𝑁 ], which correspond only to a small part of of the SIM. In Figure 7, the black

dots correspond to the bifurcation points 𝑍
(1,2)
2

and 𝑍 𝜈
2
is indicated as a red dot.

4.3 Numeric simulations compared to the analytical results
The motion resulting from the numerical solution of the problem equations for the parameters :

𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43, 𝜈𝑁 = 822 and for a forcing 𝐴 = 9800 N, 𝑓 = 0.51 Hz had

been plotted in Figure 8. It is worth noting that, in the present case and for all calculations,

slightly different values of the nonlinear damping 𝜈𝑁 had been necessary to cancel detached

resonance for numerical and analytical results.
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Figure 8: Example of time series 𝑥 (𝑡) on the left and 𝑞(𝑡) on the right under SMR for 𝐴 = 9800 N,

𝑓 = 0.51 Hz, 𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈𝑁 = 822

.

We observe that the amplitude maxima correspond to those predicted by the SIM

max𝑥 (𝑡) ≈ 0.023 ⇒ (max𝑥 (𝑡))2 ≈ 0.0053 ≈ 𝑍 ∗
1

(48)

max𝑞(𝑡) ≈ 0.135 ⇒ (max𝑞(𝑡))2 ≈ 0.018 ≈ 𝑍 ∗
2
, (49)

and that a small plateau for both the primary system 𝑥 (𝑡), around 𝑥 (𝑡) ≈ 0.011, that is

𝑍1 ≈ 0.00014, and the NES 𝑞(𝑡), around 𝑞(𝑡) ≈ 0.065, that is 𝑍2 ≈ 0.0053, in the SMR. This

correspond to the small plateau observed in Figure 9 roughly around the unstable point in the

SIM given by 𝑍 𝜈
2
.

Unstable SIM (n
N 

= 922)

Stable SIM (n
N 

= 922)

Unstable SIM (n
N 

= 0)

Stable SIM (n
N 

= 0)

Time Series (n
N 

= 822)

Z
2

(2)

Z
2

(1)

Z
2

n

Figure 9: Projection of the time series onto the SIM for 𝐴 = 9800 N, 𝑓 = 0.51 Hz, 𝜖 = 0.02, 𝜇𝑁 = 0.2,

𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈𝑁 = 922 for analytical calculation or 𝜈𝑁 = 822 for numerical calculation.

While these results seem to be convincing, they must be pondered by the fact that for different

forcing conditions, the predictions allowed by SIM under 1:1 resonance are less pertinent. For

example, the motion resulting from the numerical solution of the problem equations for the

parameters : 𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43, 𝜈𝑁 = 822 and for a forcing 𝐴 = 9000 N,

𝑓 = 0.507 Hz are plotted in Figure 10.

In the example given in Figure 10, the SMR shows two different shapes. The times series is

projected onto the SIM as shown in Figure 11. In this example, the system partially follows the

SIM under 1:1 resonance, and it is clear that it jumps regularly onto a different branch of periodic

solution.

To have a better understanding of the nature of the transitions that occur, an Hilbert-Huang

analysis (see Huang et al. 1998) is conduced on the time series. Without giving too much detail

about the Hilbert-Huang transform (HHT), the core of this method is to decompose the signal

into what’s named empirical modes (so the name empirical mode decomposition - EMD). These
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Figure 10: Example of time series 𝑥 (𝑡) on the left and 𝑞(𝑡) on the right under SMR for 𝐴 = 9000 N,

𝑓 = 0.507 Hz, 𝜖 = 0.02, 𝜇𝑁 = 0.2, 𝛿𝑁 =, 𝐾𝑁 = 43 and 𝜈𝑁 = 922 for analytical calculation or 𝜈𝑁 = 822 for

numerical calculation.
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Figure 11: Projection of the time series onto the SIM for 𝐴 = 9000 N, 𝑓 = 0.507 Hz, 𝜖 = 0.02, 𝜇𝑁 = 0.2,

𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈𝑁 = 922 for analytical calculation or 𝜈𝑁 = 822 for numerical calculation.

based signal modes (the so called intrinsic mode function - IMF) split the signal into decreasing

frequency component, each of it possessing by construction only one frequency component at a

each time; then a Hilbert spectral analysis - HSA is conduced allowing to compute each IMF’s

instantaneous frequency. Generally a signal possesses less than 10 IMFs but 20 IMFs is possible

on particularly rich signals.

One of the main difficulty of this method is the extraction of the IMFs and the program (a

simple executable code working under Windows) proposed by Loudet (2009) allows fast and

efficient EMD. For the times series given in Figure 8 and in Figure 10, less than 6 IMFs were

necessary to analyze the signals and only the first three contain significant data. The results of

HHT analysis of times series presented in Figure 8 is given in Figure 12 for the linear system

displacement and in Figure 13 for the NES displacement. The results of HHT analysis of times

series presented in Figure 10 is given in Figure 14 for the linear system displacement and Figure 15

for the NES displacement. In each of these figures, three sub-figures are given, the top is the

corresponding IMF, the center colored figure is the wavelet analysis of the IMF and the bottom

one is the instantaneous frequency obtained by HSA. It is worth noting that the instantaneous

frequency curves have been plotted with the convention that the higher the IMF amplitude the

darker the curve.

For the regular SMR, corresponding to the time series given in Figure 8, the HHT of the linear

system given in Figure 8 reveals that the motion during SMR occurs at the forcing frequency

and no significant energy conversion is observed; the first IMF contains most of the energy of

the linear system motion. At the transition between two bursts, the motion occurs at small

amplitude (amplitude of IMF2 is more or less a hundred less than that of IMF) and has a frequency

mainly 𝑓0/3 and with an even smaller component on IMF 3 (one third of IMF 2) with a frequency

14
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𝑓0/5. HHT of the NES Motion given in Figure 10, reveals similar comportment with obviously

a significant frequency variation fo the NES and amplitude of the second IMF only ten times

smaller than the first one with a frequency mainly at 𝑓0/3. This indicate a 1:1 resonance capture
during the SMR and a 1:3 resonance capture during transition between the two bursts.

f0

f0

f0/2

f0/3

f0/3

f0/2 f0/3

f0/7

f0/5

f0/3

f0/7

f0/5

Figure 12: 𝑥 (𝑡) first (left), second (middle) and third (left) IMF. 𝐴 = 9800 N, 𝑓 = 0.51 Hz, 𝜖 = 0.02,

𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈Φ = 822. Top: IMF, center: Wavelet analysis, bottom: instantaneous

frequency.
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Figure 13: 𝑞(𝑡) first (left), second (middle) and third (left) IMF. 𝐴 = 9800 N, 𝑓 = 0.51 Hz, 𝜖 = 0.02,

𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈Φ = 822. Top: IMF, center: Wavelet analysis, bottom: instantaneous

frequency.

For the double SMR, corresponding to the time series given in Figure 10, the HHT of the

linear system given in Figure 10 reveals that the energy during the two kind of SMR is located at

the forcing frequency and no significant energy conversion is observed; the first IMF contains

most linear system motion energy. At the transition between two bursts, the motion arose at

small amplitude (amplitude of IMF2 is more or less a hundred less than that of IMF) and has

a frequency mainly 𝑓0/3 and with an even smaller component on IMF 3 (one third of IMF 2)

with a frequency 𝑓0/5. HHT of the NES motion given in Figure 10, reveals similar comportment

with obviously a significant frequency variation for the NES, an amplitude of the second IMF

only ten times smaller than the first IMF with a frequency mainly at 𝑓0/3. This indicate a 1:1
resonance capture during the SMR and a 1:2 resonance capture for the linear system and a 1:3

resonance capture for the NES during transition between two bursts. This could corresponds to

the transient instability leading to 1:3 resonance capture observed by Andersen et al. (2012)

with impulse with lower amplitude than that ensuring 1:1 resonance capture at high magnitude

impulse. Obviously the systems under study differ by the forcing, impulse for Andersen et al.

(2012) and continuous forcing in the present work. But, as noted by Andersen et al. (2012), this
instability is attributed solely to the passive nonlinear damping. While further analytical studies

would had been useful, this is not the core of this work and they are left to future work.
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Figure 14: 𝑥 (𝑡) first (left), second (middle) and third (left) IMF. 𝐴 = 9000 N, 𝑓 = 0.507 Hz, 𝜖 = 0.02,

𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈Φ = 822. Top: IMF, center: Wavelet analysis, bottom: instantaneous

frequency.
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Figure 15: 𝑞(𝑡) first (left), second (middle) and third (left) IMF. 𝐴 = 9000 N, 𝑓 = 0.507 Hz, 𝜖 = 0.02,

𝜇𝑁 = 0.2, 𝛿𝑁 = 0.5, 𝐾𝑁 = 43 and 𝜈Φ = 822. Top: IMF, center: Wavelet analysis, bottom: instantaneous

frequency.

All these results clearly show that accounting for nonlinear damping, while modifying the

behavior of the system by removing the detached resonances, does not fundamentally alter the

nature of the coupling between primary system and NES.

5 Optimization results
We proceeded to the minimization of function 𝐽 defined in equation (6) of more than a hundred

different configurations obtained by fixing 𝜖 and 𝜇𝑁 for 𝜖 ∈ [0.001, 0.05] and 𝜇𝑁 ∈ [0.1, 1] and
by looking for the values of 𝛿𝑁 and 𝐾𝑁 which allowed the greatest average attenuation over the

whole range of forcing of the wind turbine and finally the smallest value of 𝜈𝑁 which avoided the

phenomenon of detached resonance.

While not all details are reported here, it is to be noticed that, particularly for small values of

𝜖 , multiple combinations (2 or 3) of 𝐾𝑁 and 𝛿𝑁 lead to comparable values for attenuation. As is in

such case it becomes very difficult to estimate an absolute minimum, we decided to choose

identified values that ensure, when possible, a regular evolution with respect to the parameters 𝜖

and 𝜇𝑁 .

An example of multiple minima of 𝐽 , as defined in equation (6), is given in Figure 16. In this

figure, we present a 3D plot and a contour plot of 20 log |𝐽 | versus 𝛿𝑁 ∈ [0; 1] and 𝐾𝑁 ∈ [0; 40]
for 𝜖 = 0.004 and 𝜇𝑁 = 0.3. In this figure only negative values of 𝐽 , corresponding to an reduction

of vibration of primary system, have been plotted. This shows that two separated minima exist,

the first in the vicinity 𝛿𝑁 ≈ 0.5, 𝐾𝑁 ≈ 5 and the second in the vicinity of 𝛿𝑁 ≈ 0.2, 𝐾𝑁 ≈ 8. A

refined study around these two points gives
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Figure 16: Map of J as a function of 𝛿𝑁 and 𝐾𝑁 for 𝜖 = 0.004 and 𝜇𝑁 = 0.3. Left: 3-D plot, right: contour

plot

𝛿𝑁 = 0.48, 𝐾𝑁 = 5.4 ⇒ 𝐽 = −8 dB, (50)

𝛿𝑁 = 0.19, 𝐾𝑁 = 8.1 ⇒ 𝐽 = −7.7 dB, (51)

while comparable, the first minimum given in (50) gives a slightly better attenuation are a more

smooth variation of 𝛿𝑁 nd 𝐾𝑁 when 𝜖 and 𝜇𝑁 vary. It have then be chosen. It is worth noting

that for significant range of 𝛿𝑁 and 𝐾𝑁 , represented in white in Figure 16, the parameter choice

leads to a positive value of 𝐽 meaning a increase in the response of the linear system that must

absolutely avoided. As it has been shown, the linear stiffness must satisfies 𝛿𝑁 < 1 −
√
3𝜆0𝜇𝑁 ,

and in the present case, with 𝜆0 = 0.1, and 𝜇𝑁 = 0.3, one must have 𝛿𝑁 < 0.95. This limit is

observed in the right sub-figure in Figure 16, where whatever 𝐾𝑁 , if 𝛿𝑁 > 0.95 then 𝐽 > 0 and the

chosen parameters lead to a NES unable in reducing the vibration of the primary linear system.

The results are presented in Figure 17 for 𝛿𝑁 (left sub-figure) and 𝐾𝑁 (left sub-figure); in

this figure, we presented the parameters 𝛿𝑁 and 𝐾𝑁 versus 𝜖 which give the best attenuation

imposing zero initial conditions for different NES linear damping 𝜇𝑁 . It is obvious that for small

values of 𝜖 (say less that 0.5%), both 𝛿𝑁 and 𝐾𝑁 show significant variations while becoming more

smooth and regular for 𝜖 > 1%. For sufficiently high values of 𝜖 , both parameters show a power

dependence with respect to 𝜖 and 𝜇𝑁 ; while not completely clear for 𝛿𝑁 , its obvious for 𝐾𝑁 . This

will be precised later on.

Figure 17: Identified optimal parameter values vs 𝜖 for different linear damping 𝜇𝑁 . Left: 𝛿𝑁 , right: 𝐾𝑁 .

To ensure that solutions will bifurcate onto detached resonance, non zero initial conditions

are imposed, and the values of nonlinear damping that cancel it for the highest forcing 𝐴𝑚𝑎𝑥 are

given in Figure 18. In this figure, the results are presented for analytical approximated solution

(left sub-figure) denoted 𝜈𝑎
𝑁
and for numeric simulation of the exact solution (right sub-figure)

denoted 𝜈𝑐
𝑁
. Here again, it is clear that for small values of 𝜖 (say less that 1%), both nonlinear

damping obtained from analytical 𝜈𝑎
𝑁
and numeric 𝜈𝑐

𝑁
estimates show significant variations
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while becoming more smooth and regular for 𝜖 > 1% with comparable numeric values. Without

giving too much details, these variations are observed when the function to minimize 𝐽 possesses

more than one minimum and when one of these vanishes or appears when 𝜖 varies. It is to be

remarked that for very low values of 𝜖 (less that 2%), there is no clear detached resonance and

nonlinear damping is useless; but in that case, the NES does not allow an efficient vibration

control of the primary linear system (only a few dB) and, combined with high variation in the

identification coefficient, the solution with very small 𝜖 must not be considered as efficient.

As observed for 𝛿𝑁 and 𝐾𝑁 , that both parameter 𝜈𝑎
𝑁
and 𝜈𝑐

𝑁
show a power dependence

with respect to 𝜖 and 𝜇𝑁 . For the highest values of 𝜖 , analytical and computed coefficients

of nonlinear damping obtained show significantly high values. However, it must be kept

in mind that the damping of the NES is given by 𝜖𝜇𝑁𝜆0(1 + 2𝜈𝑁𝑤
2(𝑡)) ¤𝑤 (𝑡) with 𝜆0 = 0.1

for 𝜖 = 0.01 and 𝜇𝑁 ∈ [0.1, 1]. In fact, even if the values of 𝜈𝑁 seem high, the values of

𝜖𝜇𝑁𝜆0𝜈𝑁 remain in acceptable orders of magnitude. To confirm this, let us define a NES mass

𝑚𝑁 = 𝜖𝑚0 = 10000 kg and 𝜇𝑁 = 0.5. With 𝜖 = 0.01, one has 𝜆0 = 𝑐0/(𝑚𝑁𝜔0) ≈ 0.1, the optimal

values of 𝜈𝑁 is 68 for the numeric computation of the exact equation and 85 for the analytical

solution, then we take 𝜈𝑁 ≈ 80. For 𝜇𝑁 = 0.5, that is a linear NES damping of half that of

the primary system, one has 𝑐𝑁 = 1600 N.s/m. The non linear damping coefficient is then

2𝜈𝑁𝑐𝑁 ≈ 260 000 N.s/m, corresponding, for a linear frequency of 0.5 Hz, to an approximate linear

damping of 𝜁𝑁 = 2𝜈𝑁𝑐𝑁 /(2𝑚𝑁𝜔0) ≈ 4. .

Figure 18: Identified optimal nonlinear damping versus 𝜖 for different linear damping 𝜇𝑁 . Left: analytical

𝜈𝑎
𝑁
, right: numeric computation 𝜈𝑐

𝑁
.

Finally, we present in Figure 19 the best average gain obtained as a function of the mass 𝜖 and

damping 𝜇𝑁 . In this figure L(dB) represents the mean level of RMS value for the linear system

normalized by the mean level of RMS value for the linear system without nonlinear dependence

in both stiffness and damping, The value is calculated in decibel over the whole amplitude range

𝐴 ∈ [0, 10 000] N. The best attenuation (up to 21 dB mean average attenuation) is obtained for

the NES with highest mass and lowest damping. Here again, the attenuation becomes more

smooth and regular for 𝜖 > 1%

Figure 19: Best average gain obtained for various NES linear damping.

All these regular curves in logarithmic plots results suggest, except for the lowest values of 𝜖 ,

a dependence of the parameters as function of powers of 𝜖 and 𝜇𝑁 . The identification conduced
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on the whole data set leads to the following results:

G
dB

≈ 𝐶𝐺 · 𝜖1/3𝜇−1/6
𝑁

,𝐶𝐺 ≈ −43.1 (52)

𝐾𝑁 ≈ 𝐶𝐾 · 𝜖3/2𝜇1/3
𝑁
,𝐶𝐾 ≈ 35150 (53)

𝜈𝑎𝑁 ≈ 𝜈𝑐𝑁 ≈ 𝐶𝜈 · 𝜖3𝜇−1𝑁 ,𝐶𝜈 ≈ 2.5.107 (54)

𝛿𝑁 ≈ 𝐶𝛿 · (1 + 𝛼1𝜖 + 𝛼2𝜖2) (1 + 𝛽1𝜇 + 𝛽2𝜇2), (55)

with for 0.001 ≤ 𝜖 < 0.009, 𝐶𝛿 ≈ 0.063, 𝛼1 ≈ 3329.5, 𝛼2 ≈ −228301, 𝛽1 ≈ −1.2 and 𝛽2 ≈ 0.47 and

for 0.009 ≤ 𝜖 ≤ 0.05, 𝐶𝛿 ≈ 0.77, 𝛼1 ≈ −11.5, 𝛼2 ≈ −1441.1, 𝛽1 ≈ −1.3 and 𝛽2 ≈ 0.65.

Master Curve

Identified Values

Figure 20: Comparison of a master curve and the identified values for 𝐾𝑁 vs 𝜖 for 𝜇𝑁 = 0.2

An example of comparison of a master curve and the identified values for𝐾𝑁 vs 𝜖 for 𝜇𝑁 = 0.2

is given in Figure 20. Except 𝜖 lowest values, where the strongest fluctuations had been observed,

the results are satisfactory and at least sufficient to give an estimate to more refined calculations.

6 Conclusion
This work was dedicated to the vibration mitigation of a simplified model of a FOWT by a NES

with both linear and nonlinear stiffness and damping. We have shown that tuning NES nonlinear

viscous damping allows to completely eliminate the detached resonances of the system and

to keep absorber capacity to strongly limit the vibrations of the wind turbine over its whole

operating range.

Furthermore, we have shown that classical tools of nonlinear dynamics (fixed points, SIM)

can easily take into account this type of nonlinear damping and conduct fast analytical studies.

We have shown that most of the dynamic of the system is conserved when nonlinear damping is

added to the system. In particular, the fixed points of the principal frequency response curve are

marginally modified when nonlinear damping is added to destroy detached resonances. Most of

the influence of the nonlinear damping was observed on the SIM which shape remains mostly

unaltered when nonlinear damping is accounted for, except its stability and for the particular

values 𝜈0
𝑁
that cancel the SIM at the bifurcation point 𝑍

(1)
2

. But, for the case under consideration

in the present work with very small damping, 𝑍
(1)
2

remains very close to zero and this property is

not of particular interest. Nevertheless, for higher values of primary system damping this could

be a useful feature.

By using a two steps optimization procedure we were able to define parameters that strongly

limit the vibration of the simplified model of FOWT over its whole excitation range and a

significant frequency range. The first step consists in imposing zero initial condition and optimize

linear and cubic stiffness for various NES mass and linear damping by minimizing the FOWT

ridge curve over its whole excitation range. The second step consists in, after computation

of optimal parameter, estimating the nonlinear damping of the NES that cancel the detached

resonance for the maximum amplitude.

The parametric study reveals that the parameter, say linear and nonlinear stiffness, attenuation

and nonlinear damping depend upon simple power laws in NES mass and linear damping. This
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simple result is useful for NES dimensioning.
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