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Abstract

Background: Patients hospitalized for a given condition may be receiving other treatments for other contemporary conditions
or comorbidities. The use of such observational clinical data for pharmacological hypothesis generation is appealing in the context
of an emerging disease but particularly challenging due to the presence of drug indication bias.

Objective: With this study, our main objective was the development and validation of a fully data-driven pipeline that would
address this challenge. Our secondary objective was to generate pharmacological hypotheses in patients with COVID-19 and
demonstrate the clinical relevance of the pipeline.

Methods: We developed a pharmacopeia-wide association study (PharmWAS) pipeline inspired from the PheWAS methodology,
which systematically screens for associations between the whole pharmacopeia and a clinical phenotype. First, a fully data-driven
procedure based on adaptive least absolute shrinkage and selection operator (LASSO) determined drug-specific adjustment sets.
Second, we computed several measures of association, including robust methods based on propensity scores (PSs) to control
indication bias. Finally, we applied the Benjamini and Hochberg procedure of the false discovery rate (FDR). We applied this
method in a multicenter retrospective cohort study using electronic medical records from 16 university hospitals of the Greater
Paris area. We included all adult patients between 18 and 95 years old hospitalized in conventional wards for COVID-19 between
February 1, 2020, and June 15, 2021. We investigated the association between drug prescription within 48 hours from admission
and 28-day mortality. We validated our data-driven pipeline against a knowledge-based pipeline on 3 treatments of reference,
for which experts agreed on the expected association with mortality. We then demonstrated its clinical relevance by screening
all drugs prescribed in more than 100 patients to generate pharmacological hypotheses.

Results: A total of 5783 patients were included in the analysis. The median age at admission was 69.2 (IQR 56.7-81.1) years,
and 3390 (58.62%) of the patients were male. The performance of our automated pipeline was comparable or better for controlling
bias than the knowledge-based adjustment set for 3 reference drugs: dexamethasone, phloroglucinol, and paracetamol. After
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correction for multiple testing, 4 drugs were associated with increased in-hospital mortality. Among these, diazepam and tramadol
were the only ones not discarded by automated diagnostics, with adjusted odds ratios of 2.51 (95% CI 1.52-4.16, Q=.01) and
1.94 (95% CI 1.32-2.85, Q=.02), respectively.

Conclusions: Our innovative approach proved useful in generating pharmacological hypotheses in an outbreak setting, without
requiring a priori knowledge of the disease. Our systematic analysis of early prescribed treatments from patients hospitalized for
COVID-19 showed that diazepam and tramadol are associated with increased 28-day mortality. Whether these drugs could worsen
COVID-19 needs to be further assessed.

(JMIR Med Inform 2022;10(3):e35190) doi: 10.2196/35190
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Introduction

COVID-19 has been a global threat for public health since its
emergence in China in December 2019. On July 1, 2021, more
than 182 million cases of COVID-19 were reported worldwide,
including more than 3.9 million deaths [1].

Multiple scientific questions have emerged over the course of
the pandemic. Tremendous efforts toward finding adequate
treatment options have been taken to the point that as of August
18, 2021, 2658 clinical trials were listed by the French Cochrane
Centre [2]. To date, the most notable finding was that in the
inflammatory phase of the disease, dexamethasone, a systemic
glucocorticoid, showed a reduction in 28-day mortality among
critical patients receiving respiratory support [3]. In addition,
questions regularly arise regarding the safety profiles of known
drugs (eg, nonsteroidal anti-inflammatory drugs [NSAIDs],
angiotensin-converting enzyme [ACE] inhibitors) [4-6] or
potential drug repurposing (eg, ivermectin, fluvoxamine) [7,8].
These clinical trials are motivated by in vitro efficacy of
molecules [8,9], by epidemiological observations, or by both
[7,10]. Furthermore, the understanding of COVID-19’s
physiopathology has rapidly evolved. Hence, having understood
the inflammatory component of severe cases and proven the
benefit of dexamethasone in patients with severe COVID-19,
dozens of immunosuppressant molecules are being tested in
clinical trials [2]. At the same time, high rates of venous
thromboembolism in hospitalized patients have been reported,
14.1% (95% CI 11.6-16.9) compared to 2.8%-5.6% before the
pandemic [11-13], which led to multiple investigations on
anticoagulant treatments.

However, 2 questions can be raised in the context of an emergent
disease: (1) Are there pharmacological hypotheses that were
not explored due to an incomplete physiological understanding
of the disease, and (2) how can we better prioritize hypotheses
to improve clinical research efficiency?

This context motivated the development of a systematic and
data-driven approach that could guide clinical and
epidemiological research by mining routinely collected data
from electronic health records (EHRs) without the necessity of
a priori knowledge. For that purpose, we took inspiration from
the phenome-wide association study (PheWAS) model [14-17]
to derive its drug counterpart, the pharmacopeia-wide
association study (PharmWAS). This methodology analyzes in

a hypothesis-free approach the association of the whole set of
drug exposure with the phenotypes of a given population,
similarly to a PheWAS, which analyzes the association of the
whole set of phenotypes with genetic variants. The idea of
PharmWAS has gained popularity in recent years under different
names and has been implemented under different designs
[17-20]. The PharmWAS methodology was first described by
Ryan et al [17] in 2013 using a self-controlled case approach
to detect adverse events. A methodology based on Cox survival
models was applied by Patel et al [18] to discover drugs
associated with cancer risk.

The principal challenge of a PharmWAS is to control the
treatment-specific indication bias for multiple treatments. For
that purpose, we developed a 2-step pipeline motivated by the
literature on causal variable selection [21-23] that we
empirically validated using reference drugs. This pipeline had
to be fully data driven in order to scale to a large number of
drugs. Our implementation combined a multivariate regression
adjustment model and 2 PS-based methods: PS weighting and
matching [24-27]. Each method represented different trade-offs
between precision of the estimation and robustness to
confounding. The rationale was not to report exact treatment
effects, which would require domain expert knowledge
supporting strong assumptions for a large set of drugs, and
necessitate the strict respect of causal inference assumptions:
no unmeasured confounders (exchangeability), every patient
having a nonzero probability of being treated or not (positivity),
and well specified models [26]. Instead, our goal was to generate
pharmacological hypotheses, and we assumed that the
combination of these models would reduce false-positive
findings caused by indication bias.

Our main objective was to develop and validate a fully
data-driven pipeline addressing these challenges. Our secondary
objective was to generate pharmacological hypotheses, whether
to highlight potential candidates for COVID-19 treatment or
prevention or to highlight drugs worsening the condition of
patients with COVID-19. To that end, we screened for
associations between all drugs prescribed in the first 48 hours
after admission and 28-day mortality in adults hospitalized for
COVID-19 in a conventional ward.
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Methods

Study Design and Data Sources
We performed a multicentric retrospective study using the
Entrepôt de Données de Santé (EDS)-COVID database,
developed upon the Assistance Publique - Hôpitaux de Paris
(AP-HP) clinical data warehouse (CDW), regrouping data from
39 different sites in the Greater Paris area [28]. We used 4 types
of data in this study: (1) medicoadministrative data, including
diagnosis codes recorded using the International Classification
of Diseases, 10th edition (ICD-10); (2) laboratory results from
admission; (3) physiological measurements (eg, blood pressure)

at admission; and (4) all medical text reports associated with
inpatient stays.

Population
Selection of the study population was performed according to
the following criteria: (1) first admission with an ICD-10 code
of U07.1 (COVID-19), (2) age at admission between 18 and 95
years, (3) hospitalization in a conventional ward for at least 48
hours, (4) hospitalization in an AP-HP site uploading drug
information to the CDW, and (5) exclusion of patients who
initiated palliative therapy within 48 hours (Figure 1). The study
time frame spanned from February 1, 2020, to June 15, 2021.

Figure 1. Flowchart and the PharmWAS pipeline. CDW: clinical data warehouse; ICD-10: International Classification of Diseases, 10th edition;
LASSO: least absolute shrinkage and selection operator; PharmWAS: pharmacopeia-wide association study; PS: propensity score.

Drug Exposure and Clinical Endpoint Definition
We extracted each patient's drug exposure status from the CDW
corresponding to the first 48 hours after the patient was admitted
for COVID-19. A code from the anatomical therapeutic chemical
(ATC) classification [29] was assigned to patients with at least
1 corresponding drug regardless of the dose. We restricted the
analysis to ATC level 5 codes that were present for a minimum
of 100 patients. In the following sections, we use the term drugs
to refer to these codes. The outcome was defined as all-cause
28-day mortality, with patients discharged alive before 28 days
assumed to be alive at 28 days.

Adjustment Covariate Definition
First, we included the ICD-10 codes from the current inpatient
stay, restricted to chronic diseases. These codes were then
grouped into broader categories using the first 3 characters and
the first 2 characters of the ICD-10 system [16]. Second, we
considered all laboratory results and physiological
measurements. For covariates measured in at least 10% of
patients, we kept only the first observation within 48 hours after
admission. For covariates measured in at least 5% of patients,
we kept indicator variables of the measure (1 if measured, 0 if
not measured). The BMI was extracted from clinical reports
using regular expressions. Finally, we added some feature
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engineered variables, accounting for the study period by using
quintiles of the time since study initiation and quintiles of the
number of measurements by source (eg, number of lab results).
All continuous variables were winsorized at 2nd and 98th
percentiles to account for outliers.

Pharmacopeia-wide Association Study Pipeline
The core principle is to test for the association between each
drug exposure and the outcome, controlling for covariates, given
an adjustment set. This analysis is repeated n times per outcome,
with n being the number of drug exposures. The results of the
n tests (P values) obtained from this process are subsequently
corrected to consider the multiple testing.

In the first step of the pipeline, we determined adjustment sets
for every drug exposure, given the set of all possible
pretreatment covariates. Using an adaptive LASSO procedure
[30], we kept covariates associated with each drug from the
subset of covariates associated with the outcome, after
cross-validation of the model’s deviance. We included for each
continuous covariate 3 possible forms: square root
transformation, log transformation, and discretization in
quintiles.

In the second step, we computed the conditional odds ratio (OR)
between the drug and the outcome in a multivariate logistic
regression model, given the selected covariates. In addition, we
produced 2 supplementary measures of association based on
PSs as secondary analyses, namely the marginal OR on the
matched population and the marginal OR on the population
after inverse probability weighting (IPW), restricted to the
“empirical equipoise region” (EER, ie, after trimming) [27].
The EER is defined to approximate the region of clinical
equipoise, among which uncertainty among treatment options
is strong enough, so that prescribers’ preference drives the
prescription instead of only patients’ characteristics [27]. PS
models were fitted using multivariate logistic regression. The
matching procedure was implemented with a case-control ratio
of 1:4 and a caliper of 0.2 SD of the logit of the PS [31]. With
IPW, the cohort was resampled by weighting each individual
“i” with a weight that was based on its estimated stabilized PS
πi (preference score) [27]. Stabilized PS or preference scores
were PS-corrected for prevalence (logit of the preference score
= logit of the PS –logit of drug prevalence). Treated individuals
were then weighted by 1/πi, and controls were weighted by 1/(1
– πi). Patients with stabilized PS outside the EER (ie, the
stabilized PS interval of 0.3-0.7) were discarded [27]. Finally,
both PS-based methods allowed the generation of automated
diagnostics to assess the validity of the estimates: first, the
residual imbalance in covariates, which we reported as the
fraction of balanced covariates (FBC; ie, covariates with
absolute standardized mean difference [ASMD] between
treatment groups<0.1) [32], and second, the fraction of exposed
population (FEP) remaining after applying the caliper in the
matched subset or within the EER in the trimmed subset. Alpha
risk inflation caused by multiple testing was addressed following
the Benjamini and Hochberg procedure of the FDR (Q=.05),
and P values for the OR were corrected accordingly [33].

Validation With Treatments of Reference
We compared the data-driven determination of adjustment sets
with a knowledge-based approach on 3 treatments of reference:
first, dexamethasone, for which we expected a beneficial effect
on 28-day mortality and which we assumed is subject to strong
indication bias, and second and third, drugs of reference with
an expected null effect, with high prevalence (paracetamol) and
low prevalence (phloroglucinol). We studied the association of
these treatments of reference with 28-day mortality on the
overall population and in age-based subgroups (patients <70 or
≥70 years old). Indeed, age is the most important prognosis
factor in COVID-19, and dexamethasone’s beneficial effect is
heterogeneous across age subgroups [3].

We compared the association after adjusting on the data-driven
adjustment set. For the knowledge-based approach, we used a
set of known prognosis factors extracted from Medline articles,
including age, gender, number of comorbidities, platelet count,
prothrombin ratio, creatinine, blood urea nitrogen, C-reactive
protein (CRP), mean arterial pressure, systolic arterial pressure,
and peripheral capillary oxygen saturation [34-37].

Missing Data Management Strategy
Missing data management followed a 2-step strategy targeting
2 different missing data mechanisms. In the first step, we
excluded patients with a number of observations lower than the
2nd percentile for drugs, laboratory tests, or physiological
measurements. A comparison of baseline characteristics between
patients included in the analysis and patients excluded for
missing data was performed to detect a possible selection bias.
In the second step, we performed multiple imputation with
chained equations (MICE) [38]. MICE was performed using 5
imputed data sets, and the predictive mean matching strategy
was chosen, using all adjustment covariates (ie, not including
drugs). The adjustment set selection was adapted to the setting
of multiple imputed data sets by selecting variables that appeared
in at least half of the imputed data sets. ORs were pooled
according to the Rubin rule after log transformation.

In addition to these missing data–handling strategies, we also
reported a measure of data missingness specific to each model,
the fraction of missing information (FMI), which is considered
moderately large above 0.3 and high above 0.5 [39].

Implementation
Analyses were performed using R statistical software version
3.5.1 (R Core Team) [40]. The following packages were
combined in custom functions to provide a reproducible and
configurable pipeline: MICE [41], glmnet [42], MatchIt [43],
and PSWeight [44]. The code is available online for
transparency [45].

Ethics
This study was approved by the Institutional Review Board of
the AP-HP CDW (reference CSE-20-18-COVID19). All patients
admitted to the AP-HP were informed of the possible reuse of
their EHRs for research purposes according to the European
General Data Protection Regulation and had the right to opt out
of participating, in agreement with the Commission Nationale
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de l'Informatique et des Libertés (regulatory decision
DE-2018-155).

Results

Population Characteristics
Of 39 different hospitals, 16 (41%) were retained for the study
based on the availability of drug exposure information from
computerized physician order entries. In these 16 hospitals, we
found a total of 8922 eligible patients, of which 3139 (35.18%)
were excluded because of insufficient information regarding
drug exposure, lab tests, or physiological measurements (see
Figure 1). Included and excluded patients were comparable for
age (median age 69.2 [IQR 56.7-81.1] vs 70.9 [IQR 55.8-83.8]

years) and number of comorbidities (2731/5783 [47.22%] vs
1591/3139 [50.68%] patients with at least 3 comorbidities) but
were more often male (3390/5783 [58.62%] vs 1599/3139
[50.94%]); see Table S1 in Multimedia Appendix 1.

A total of 5783 patients were included in the analysis with a
median age at admission of 69.2 (IQR 56.7-81.1) years, and
3390 (58.62%) of them were male (Table 1). Patients were
admitted from 16 hospitals, with 3 (19%) hospitals representing
2758 (47.69%) of patients. Frequent comorbidities included
hypertension (n=2065, 35.71%), chronic kidney disease (n=554,
9.58%), atrial fibrillation or flutter (n=458, 7.92%), dyslipidemia
(n=357, 6.17%), and ischemic chronic heart disease (n=356,
6.16%); see Table 1.
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Table 1. Baseline characteristics of the population (N=5783).

ValueCharacteristics

69.2 (56.7, 81.1)Age at diagnostic (years), median (Q1, Q3)

Age group at diagnostic (years), n (%)

322 (5.57)18-39

538 (9.30)40-49

948 (16.39)50-59

1184 (20.47)60-69

1241 (21.46)70-79

1550 (26.80)80+

3390 (58.62)Gender (male), n (%)

933 (16.13)Deaths, n (%)

8.8 (5.2, 14.9)Follow-up (days), median (Q1, Q3)

635 (10.98)28-day Mortality, n (%)

Center, n (%)

965 (16.69)GH A Chenevier-H Mondor

887 (15.34)Hôpital Saint Antoine

849 (14.68)Hôpital Tenon

3082 (53.29)Other

Time period, n (%)

2187 (37.82)February-July 2020

1197 (20.70)August-November 2020

2399 (41.48)December 2020-June 2021

Comorbidities, n (%)

2065 (35.71)Hypertension

655 (11.33)Severe protein energy malnutrition

554 (9.58)Chronic kidney disease

509 (8.80)Light or moderate protein energy malnutrition

458 (7.92)Atrial fibrillation and flutter

357 (6.17)Dyslipidemia

356 (6.16)Ischemic chronic heart disease

339 (5.86)Deficiency in vitamin D

306 (5.29)Presence of cardiac and vascular implants and grafts

288 (4.98)Hypothyroidism, unspecified

Other parameters, median (Q1, Q3)

26.5 (23.4, 30.3)BMI

89 (78, 102)Pulsations (/min)

76 (66, 85)Diastolic arterial pressure (mmHg)

131 (117, 146)Systolic arterial pressure (mmHg)

24 (20, 28)Respiratory rate (/min)

95 (92, 97)Peripheral capillary oxygen saturation (%)

37.4 (36.8, 38.2)Body temperature (°C)

13.10 (11.80, 14.30)Hemoglobin (g/dL)

6.38 (4.79, 8.51)White blood cell count (109/L)
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ValueCharacteristics

80 (65.00, 105.50)Creatinine (µmol/L)

6.40 (4.60, 9.50)Blood urea nitrogen (mmol/L)

69.80 (32.50, 122.20)CRPa (mg/L)

95 (92.70, 97.00)Oxygen blood saturation (%)

5.80 (4.85, 6.82)Fibrinogen (g/L)

25 (22.00, 27.60)Bicarbonate (mmol/L)

aCRP: C-reactive protein.

Validation With Treatment of References
Without adjustment, dexamethasone was associated with
decreased 28-day mortality in patients under 70 years old (OR
0.40, 95% CI 0.26-0.62, P<.001) and with increased 28-day
mortality in patients over 70 years old (OR 1.40, 95% CI
1.14-1.71, P<.001).

Adjusting using the “known PF” and “data driven” adjustments
sets yielded close results, except for dexamethasone in patients
over 70 years old. In the latter subgroup, only the “data driven”
adjustment set yielded no association of dexamethasone with
increased 28-day mortality (Figure 2).

On the matched subset for dexamethasone in patients under 70
years old, 3158 (54.61%) of 5783 exposed patients found
matches, the association with mortality was strong (OR 0.41,
95% CI 0.21-0.79, P=.01), but the FBC was only 35%. On the
“weighted and trimmed” subset, the FEP that fell in the EER
was only 23.1%, the association with mortality was no longer
significant (OR 0.46, 95% CI 0.18-1.18, P=.1), but 100% of
covariates were balanced.

The fraction of missing information was low and never exceeded
0.2. The FEP was lower than 50% for dexamethasone in all
subgroups.

Figure 2. Treatment of references for validating data-driven adjustment set selection. The association between 28-day mortality and early exposure to
treatment was measured as the ORs for 3 treatments of reference: (1) dexamethasone with expected beneficial effect on 28-day mortality and (2)
treatments with an expected null effect, with high prevalence (paracetamol) or low prevalence (phloroglucinol). We compared 2 pretreatment covariate
sets: "known PF" using PFs from the literature (blue) and "data driven" for a model selection procedure based on adaptive LASSO (green) targeting
confusion factors. ORs were computed by logistic regression on the overall data set (red), matched or weighted and trimmed subpopulations based on
PSs. LASSO: least absolute shrinkage and selection operator; OR: odds ratio; PF: prognostic factor; PS: propensity score. *P<.05; **P<.01; ***P<.001.
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Pharmacopeia-wide Association With 28-day Mortality

Primary Analysis
We identified a total of 87 different drugs (ATC level 5codes,
eg, B01AF01 rivaroxaban) administered within the first 48
hours and present in at least 100 patient records (Figure 3).
Detailed results are given in Figure 4 for drugs with P<.15.
After correction for multiple hypothesis testing, none were
associated with reduced in-hospital mortality, and 4 (5%)

remained associated with increased in-hospital mortality on the
ove r a l l  p o p u l a t i o n  a f t e r  a d j u s t m e n t :
sulfamethoxazole-trimethoprim, valaciclovir, tramadol, and
diazepam (Table 2). Analyses of matched subpopulations found
consistent results, with a good fraction of covariate balance
(between 98% and 100% of covariates with ASMD<0.1), except
for diazepam (89%). Analyses of weighted subpopulations were
not consistent and found a small FEP for
sulfamethoxazole-trimethoprim and valaciclovir.

Figure 3. Pharmacopeia-wide association with 28-day mortality. Each dot represents the FDR-corrected P value (Q value), on a negative log scale (y
axis) of a drug (ATC code), on the x axis. An ATC code is attributed if the drug is prescribed in the first 48 hours of COVID-19 admission in conventional
wards. The color indicates the pharmacological subgroup (ATC level 2). The top panel reports Q values from the primary analysis, using a multivariate
logistic regression model, and the dotted line indicates a 5% FDR. The middle and bottom panels report secondary analyses using matching and inverse
probability weighting methods, respectively. Dot sizes are inversely proportional to Q values. ATC: anatomical therapeutic chemical; FDR: false
discovery rate.
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Figure 4. Increased and decreased mortality for the top drugs. Association is reported as the OR between treatment exposition and 28-day mortality
in different settings: without adjustment, after adjusting, and on matched and weighted subpopulations based on treatment-specific PSs. p-values are
indicated without multiple hypothesis testing correction. Treatments are ordered from top to bottom by decreasing adjusted OR. Drugs at the top tend
to be associated with increased mortality, while drugs at the bottom tend to be associated with decreased mortality. Colors correspond to ATC level 2.
Only drugs with P<.15 are reported. ATC: anatomical therapeutic chemical; OR: odds ratio; PS: propensity score. *P<.05; **P<.01; ***P<.001.
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Table 2. Treatment associated with 28-day mortality after regression adjustment at 5% FDRa.

FMIfFEPe (%)FBCd (%)Q valuecORb (95% CI)Treated vs controls (events/exposed), n/nTests

Sulfamethoxazole and trimethoprim

<0.01100N/Ag.032.22 (1.36-3.64)31/161 vs 604/5622Regression adjustment

0.0399.399N/A1.65 (0.98-2.78)31/160 vs 63/518Matching

0.0232.191N/A1.86 (0.74-4.68)8/51 vs 172/1790Weighting and trimming

Valaciclovir

0.01100N/A.0023.21 (1.88-5.48)24/107 vs 611/5676Regression adjustment

0.0899.498N/A2.54 (1.38-4.67)24/107 vs 41/404Matching

0.1632.571N/A1.64 (0.49-5.51)6/35 vs 210/2136Weighting and trimming

Tramadol

<0.01100N/A.021.94 (1.32-2.85)40/302 vs 595/5481Regression adjustment

0.0899.7100N/A1.55 (1.03-2.34)40/301 vs 108/1191Matching

0.0274100N/A1.85 (1.22-2.79)31/223 vs 362/4002Weighting and trimming

Diazepam

<0.01100N/A.012.51 (1.52-4.16)24/120 vs 611/5663Regression adjustment

0.0696.789N/A2.09 (1.19-3.66)23/116 vs 47/448Matching

0.0174.3100N/A1.92 (1.08-3.41)15/89 vs 483/4925Weighting and trimming

aFDR: false discovery rate.
bOR: odds ratio
cQ value: FDR-corrected P value.
dFBC: fraction of balanced covariates.
eFEP: fraction of exposed population.
fFMI: fraction of missing information.
gN/A: not applicable.

Secondary Analysis
We highlight here the results of the weighted and trimmed
population where patients were more comparable (Figure 4).
Interestingly, 2 angiotensin receptor blockers (ARBs) came up
as the top 5 treatments with OR<1, with treatments ordered by
P values (Table 3). We further explored this hypothesis and

found that in weighted and trimmed analysis, ARBs with a high
affinity for angiotensin receptor 1 (dissociation constant Kd≥6:
telmisartan, valsartan, losartan) tended to be associated with
decreased 28-day mortality compared to ARBs with a lower
affinity (Kd<6: irbesartan, candesartan, olmesartan)—OR 0.56
(95% CI 0.34-0.91).

Table 3. Top 5 treatments with ORa<1 in the weighted and trimmed population, ordered by P value. None were significantly associated with mortality

after FDRb correction in the primary analysis.

FMIeFEPd (%)FBCc (%)OR (95% CI)Treated vs controls (events/exposed), n/nTreatment

0.0171.71000.61 (0.27-1.39)7/100 vs 426/4023Sitagliptin

0.0187.11000.57 (0.30-1.06)11/132 vs 562/4567Valsartan

0.0191.41000.77 (0.52-1.13)32/277 vs 538/4527Irbesartan

0.01601000.64 (0.35-1.19)12/131 vs 399/3214Rosuvastatin

0.0339.31000.34 (0.13-0.84)6/100 vs 182/1875Alfuzosin

aOR: odds ratio
bFDR: false discovery rate.
cFBC: fraction of balanced covariates.
dFEP: fraction of exposed population.
eFMI: fraction of missing information.
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Discussion

Principal Findings
We systematically assessed the association of early in-hospital
treatments with 28-day mortality in a large, multicenter
retrospective case study of 5783 patients with COVID-19, using
an innovative PheWAS-like approach. We showed empirical
evidence that our fully data-driven pipeline is comparable to or
better than a knowledge-based approach to adjust for
confounding on 3 drugs of reference. We showed in this
practical implementation for COVID-19 how such a pipeline
can be used to mine EHR pharmacopoeia and generate
pharmacological hypotheses in an exploratory fashion. Indeed,
of 87 treatments prescribed in the first 48 hours, 4 (5%) were
associated with increased 28-day mortality after adjustment of
confounding factors and multiple testing correction, and none
were associated with decreased mortality. Among those 4, only
diazepam and tramadol had consistent results in secondary
analyses more robust to confounding. In addition, secondary
analyses suggested that high-affinity ARBs are associated with
reduced COVID-19 28-day mortality, suggesting they may be
beneficial for patients with COVID-19.

Validation With Drugs of Reference
We tested our adjustment methods on treatments for which the
effect on 28-day mortality is documented (protective effect for
dexamethasone) or unlikely to be different from null (absence
of an effect for paracetamol and phloroglucinol). Subgroup
analysis of the Randomised Evaluation of Covid-19 Therapy
(RECOVERY) trial suggests that patients under 70 years old
only benefit from dexamethasone, with OR 0.64 (95% CI
0.53−0.78) versus OR 1.03 (95% CI 0.84−1.25) between 70
and 80 years old and OR 0.89 (95% CI 0.75−1.05) above 80
years old [3]. Our automated pipeline finds overall consistent
results between the “data driven” and the “known PF”
adjustment set for the 3 drugs of reference. The differences
observed for the dexamethasone effect on the >70-year age
group could be explained by missing or misspecified
confounding factors in the “known PF” adjustment set compared
to the “data driven” adjustment set (see Table S2 in Multimedia
Appendix 1). Overall, these results provide empirical evidence
that the automated determination of adjustment sets on these 3
drugs yields valid adjustment sets, sufficient for controlling
indication biases.

Pharmacopeia-wide Association With 28-day Mortality
Interestingly, diazepam, an anxiolytic benzodiazepine, was
found to be associated with a detrimental effect on in-hospital
mortality in our study. This result might not be COVID-19
specific, as benzodiazepines have shown a dose-response
association with mortality in patients with severe chronic
obstructive pulmonary disease [46]. We also found that
tramadol, a weak opioid, is associated with increased 28-day
mortality. Noteworthy, both benzodiazepines and tramadol may
have adverse respiratory effects, such as respiratory depression,
which, although not specific to COVID-19, could be detrimental
in patients with severe COVID-19 pneumonitis [47]. In addition,
our automated pipeline allowed us to generate a pharmacological
hypothesis consistent with results from a clinical trial. Indeed,

an open randomized controlled trial showed that death by day
30 was reduced in patients undergoing telmisartan therapy
(control: 16/71 [23%]; telmisartan: 3/70 [4%] participants;
P=0.002) hospitalized for COVID-19 [48]. However, other
studies did not find an association between ARBs and
COVID-19 mortality, and further studies are needed to assess
this finding and investigate potential mechanisms [49].

Limits and Strengths
This retrospective study methodology was based on reusing
routinely collected clinical data across 16 hospitals of the
Greater Paris area. Unexpectedly, from an initial set of 8922
COVID-19 patient records, only 5783 (64.82%) patient records
ended up meeting all inclusion criteria. However, this is not
intrinsically linked to our method but rather to the relative lack
of maturity of the hospitals’ information systems, particularly
concerning drug prescription. Indeed, at the beginning of the
pandemic, computerized physician order entry was not available
in all hospitals and units or not linked to the CDW. Although
this study followed most of the guidelines provided by Kohane
et al [50], such as a multidisciplinary approach, code
transparency, and robustness against variability across hospitals,
this result stresses that data completeness in EHRs remains an
open question. We can hypothesize that the pandemic will have
a boosting effect on the maturation of the information system
of hospitals. Regarding confusion adjustment, we could have
used more flexible models to fit PSs, such as random forests,
and used double robust estimators, which are less sensible to
model misspecification [26]. However, we found that the most
important factors for accurate measures of treatment association
with mortality were the choice of adjustment sets and the use
of trimming. Moreover, we decided to restrict to methods that
would easily scale to large sets of exposures. Globally, our
results are dependent, as in all complex analysis of real-life
data, on choices in the preprocessing and modelling of the data.
These dependencies can be subtle and lead to changes in
amplitude or direction of the measured associations, sometimes
framed as “vibration of effect” [51]. Our rationale was to decide
these questions based on theoretical grounds (or simulation
studies) to leverage treatment of references if not possible (eg,
data driven vs knowledge based) and finally to report multiple
analyses if uncertainty remains about which method is more
relevant (eg, matching or inverse probability weighting).

Large-scale association studies such as this work are known to
require a large amount of data to reveal significant associations.
Therefore, it may be difficult to obtain sufficient statistical
power. To get around this difficulty, it is possible to run the
association test using aggregated data to an upper level in the
ATC.

Regarding clinical significance, COVID-19 is a biphasic disease,
with a viral replication period and then an inflammatory state,
and patients may not be hospitalized at the same time of the
disease. This may have led to heterogeneity in the condition of
the patients and complicated the interpretation of the results.
Furthermore, there is a potential risk of selection bias since we
dropped 35% of COVID-19 admissions due to data missingness.
However, excluded patients were comparable in terms of age
and number of comorbidities to the patients included in this
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study (Table S1 in Multimedia Appendix 1), which is in favor
of the generalizability of the obtained results. In addition, we
cannot rule out that some confounding factors remain
unobserved. Secondary analyses based on EER allowed us to
partially address this issue, since the sample size remained large
enough in this setting to include a broad amount of potential
confounding, and we analyzed a rather homogeneous population
by excluding patients admitted to intensive care units (ICUs)
in the first 48 hours.

The main strength of our study lies in its external validity: it
used data collected across 16 different hospitals of the Greater
Paris area and included a large number of patients with
COVID-19. These characteristics make it likely to capture the
variability of populations and disease management in real-life
settings. Similarly, we addressed treatment-specific indication
biases in a fully data-driven fashion, which we validated
empirically on drugs of reference. This methodology based on
a hypothesis-free exploration of COVID-19-related EHRs is
easily exportable to other settings. Population trimming based
on stabilized PSs allowed us to restrict the analysis to
comparable patients, which cannot be done by a simple
outcome-oriented regression adjustment. Finally, it allowed us

to generate a measure of covariate balancing, which turns out
to be a critical diagnostic for studying a large array of
drug-outcome associations.

Our systematic hypothesis-free approach constitutes a promising
tool that can be rapidly used in the setting of emergent diseases
to generate potential drug candidates. Still, these drug candidates
need to be further assessed from a pharmacological point of
view before being tested in clinical trials. Further developments
will include time dependency of treatments, covariates, and
outcomes in a more flexible way, not restricted to landmark
analysis (28-day mortality) and window-type restriction of
exposition. In addition, including information from the natural
language processing (NLP) extraction workflow would largely
enrich such a pipeline [50,52].

Conclusion
Our innovative approach proved useful in rapidly generating
pharmacological hypotheses in an outbreak setting, without
requiring a priori knowledge of the disease. Our systematic
analysis of early prescribed treatments from patients hospitalized
for COVID-19 showed that diazepam and tramadol are
associated with increased 28-day mortality. Whether these drugs
could worsen COVID-19 needs to be further assessed.
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