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Abstract: In this article, we introduce correlation technologies both at RF/mmWave and baseband
frequencies. At RF and mmWave frequencies, power-spectra and energy-spectra metrics are in-
troduced for measuring the power-density of mobile devices and systems. New ASIC-embedded
smart connectors are developed for bringing correlation-based signal processing close to antenna
modules. At baseband frequencies, DSP-based convolutional accelerators are proposed for fast
and accurate measurement of EVM (error vector magnitude) using correlation technologies. Port-
ing of the DSP-based convolutional accelerators into advanced fully depleted silicon-on-insulator
(FDSOI)-based ASIC platforms for co-integration with adaptive RF/mmWave front-end modules will
enable real-time extraction of auto-correlation and cross-correlation functions of stochastic signals. Per-
spectives for optically synchronized interferometric-correlation technologies are drawn for accurate
measurements in noisy environments of stochastic EM fields using power-spectra and energy-spectra
metrics. Adoption of correlation technologies will foster new paradigms relative to interactions
of humans with smart devices and systems in randomly fluctuating environments. The resulting
new paradigms will open new possibilities in communication theory for properly combining and
reconciling information signal theory (Shannon information-based entropy) and physical information
theory (statistical-physics-based entropy) into a unified framework.

Keywords: correlation technologies; secure quantum sensing; power-density; energy-density; entropy;
interferometric synchronization; OTA-testing; electro-optical probing; EVM

1. Introduction

Field–Field correlation [1–4] functions (FF-CF), in revealing unified information about
the signals to which they refer and the space through which the radiation has propagated,
provide solid foundations for bridging modeling and measurement into a consistently
complementary framework. In a broad range of applications, including ultrasonics [5],
under-water acoustics [6], geophysics [7], it is observed that the Green’s function can be
retrieved by cross-correlating fluctuations recorded at two locations. For structures that
are not invariant under time reversal, it is demonstrated [8] that the fluctuations must
be excited by volume sources in order to satisfy the energy balance (equipartitioning)
that is required to retrieve the Green’s function. The extracted auto-correlation and cross-
correlation functions can be linked to the general theory of coherence [9,10].

In this contribution, we introduce power-density-based metrics using advanced auto
and cross-correlation technologies for OTA testing of wireless mobile devices. The use
of correlation-based energy metrics is foreseen to foster new measurement solutions for
accurately assessing equivalent isotropically radiated power (EIRP) and the total radiated
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power (TRP), which are of relevance to standardization bodies for establishing maxi-
mum permissible transmitted power of wireless mobile devices in the mmWave frequency
range. The requirements and challenges of OTA tests, including the need for unified mea-
surement and modeling platforms, are highlighted in several contributions [2,4]. New
ASIC-embedded smart connectors are developed for bringing correlation-based signal pro-
cessing close to antenna modules. At baseband frequencies, perspectives are drawn for
DSP-based convolutional accelerators toward fast and accurate measurement of EVM using
correlation technologies.

The originality of the proposed technology solutions includes the following attributes:

• Use of correlation functions for energy and power-density-based metrics testing of
wireless devices.

• Minimally invasive electro-optical probes for very near-field sensing of EM fields in
noisy environments.

• Cognition-ready signal processing solutions using SinC [Cardinal-Sine] convolutional
algorithms for OTA testing.

The proposed correlation technologies for overcoming the limitations of classical inter-
ferometers offer new solutions for measuring arbitrary correlations functions of stochastic
fields. Perspectives for optically synchronized interferometric-correlation technologies are
drawn for accurate measurements in noisy environments of stochastic electromagnetic
fields using power-spectra and energy-spectra metrics.

2. Correlation Functions for Stochastic Fields

We introduce correlation technologies implemented using integrated front-end mod-
ules for effective, simple, and robust methods for extracting correlation functions defined in
(1) as Γ(x, x′) where the angle brackets refer to an average over the ensemble of realizations
of the (dimensionless) analytic signal E(x) :

Γ
(

x, x′
)
=
〈

E∗(x)E
(
x′
)〉

(1)

In Figure 1a, an adaptive front-end module (AFEM), implementing a unified RF/mmWave,
and baseband correlation technologies are presented. The front-end module provides an ad-
justable 80 dB dynamic range for efficiently characterizing user-equipment (UE) mobile devices
using power-density and energy-density metrics. The AFEM is combined with Mosaic-based
array technologies built using wafer-level chip-scale-packaging (WLCSP) compliant with
antenna-in-package (AiP) solutions. The resulting AFEM-AiP co-design enables radical vision:
replacing antenna arrays with energy-efficient and affordable ‘Smart Integrated Electromag-
netic Emitting and Receiving surfaces and volumes’, conformal to the shape of the object they
are installed on.

Assuming fully coherent EM distributions, the CF can be factorized to yield the
field amplitude:

|E(x)| =
√

Γ(x, x) (2)

The phase of the field can be extracted relative to a constant phase reference ϕre f :

Arg[E(x)] = tan−1
[

Im(Γ(x, x′))
Re(Γ(x, x′))

]
+ϕre f (3)
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Figure 1. (a) Wireless adaptive front-end modules including advanced auto and cross-correlation
signal processing and multi-beam MIMO antennas. (b) Smart connectors with embedded front-end
modules. (c) Dual-polarization probe-array using Vivaldi antennas.

For random fields, it is required to deal with energy and power spectra [2] through the
extraction of stochastic correlation functions. Born and Wolf [10] have indicated possibilities
to extract correlation functions with the paradigm of two-beam interferometers, Young’s
double slit, by measurement of the fringe visibility and position for a large number of slit
positions and separations. Interferometric techniques have been mainly aimed at a partial
reconstruction of the field based on a priori assumptions such as space-shift invariance of
the correlation functions or complete coherence of the source. Such measurement setup
is thought to be challenging and ill-suited to the measurement of arbitrary correlation
functions. Key coherence related quantities such as the temporal field correlation function
g(τ) referenced as first-order correlation function:

g(1)(τ) =
〈E∗(t)E(t + τ)〉

〈I(t)〉 (4)

With I(t) = 〈E∗(t)|E(t)〉 being the intensity associated with the field E(t). From
the first-order correlation function, coherence-based quantities such as optical spectrum,
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frequency noise power spectral density (PSD) can be measured. Nevertheless, following the
work of Glauber [11], it is established that full characterization of the coherence properties
of a light source requires the measurement of the correlation functions g(k) at all orders
k. Thus, the second-order temporal correlation function, also called temporal intensity
correlation function, can be derived as:

g(2)(τ) =
〈I(t)I(t + τ)〉〈

I(t)2
〉 (5)

For fields that present properties of Gaussian processes, it happens [12,13] that the
correlation functions g(k)(τ) are related to each other. In the case of a spatially-coherent po-
larized chaotic field, the second-order correlation function g(2)(τ) is related to the modulus
of the temporal first-order correlation function g(1)(τ) as follows:

g(2)(τ) = 1 +
∣∣∣g(1)(τ)∣∣∣ 2 (6)

Equation (6) is commonly called the Siegert relation. In [12,13] the challenges of
measuring both field and intensity correlations at the same time are addressed for a direct
assessment of the Siegert relation highlighting the conditions where the relation fails. In
the situations where the Siegert relation fails, measuring g(2)(τ) convey quantum effects
and helps in distinguishing different types of sources in the perspectives of properly
classifying and reconstructing them in practical tomographic and imaging applications. An
implication of Equation (6) is that there is an excess of intensity correlation at zero delays,
g(2)(0) > g(2)(τ→ ∞) = 1 following in reference to “photon bunching” or the “Hanbury Brown
and Twiss” effect.

For deterministic noise power density distribution, the challenge of energy detection
of unknown signals in the presence of noise is discussed in [12]. For stochastic signals,
it is established that numerical values of noise amplitudes cannot be specified. Thus, for
modeling and measuring stochastic signals, it is required to deal with energy and power
spectra through the extraction of correlation functions. The energy density can be written
as the sum of electric and magnetic energy densities [14]:

W(ρ) = WE(ρ) + WH(ρ) (7)

WE(ρ) =
ε

2
|E(ρ)|2 and WH(ρ) =

µ

2
|H(ρ)|2 (8)

The correlation function of the electric or magnetic field is defined as:

CFF
X ≡

X(ρ1)·X∗(ρ2)√
〈|X(ρ1)|2〉〈|X(ρ2)|2〉

(9)

where 〈X〉 refers to ensemble average (expectation) applied to stochastic variable X and *
stands for complex conjugate. In (9) the square-root in the denominator is introduced for
normalization purposes without loss of generality.

The correlation function of the electric and magnetic energies can be deduced as:

CFF
WE
≡ 〈[WE(ρ1)− 〈WE(ρ1)〉] [WE(ρ2)− 〈WE(ρ2)〉]〉√

〈[WE(ρ1)− 〈WE(ρ1)〉]2〉〈[WE(ρ2)− 〈WE(ρ2)〉]2〉
(10)

CFF
WH
≡ 〈[WH(ρ1)− 〈WH(ρ1) 〉][WH(ρ2)− 〈WH(ρ2)〉]〉√〈

[WH(ρ1)− 〈WH(ρ1)〉]2〉〈[WH(ρ2)− 〈WH(ρ2)〉]2〉
(11)
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For stationary stochastic signals, the spatial correlation functions for the total field Xt
exhibit a SinC(kρ) law.

CFF
Xt
(ρ) =∝ SinC(kρ) (12)

The spatial correlation functions of the transverse components Xt can be expressed as:

CFF
Xt
(ρ) =

3
2

{
SinC(kρ)− 1

(kρ)2

[
SinC(kρ)− κSinC

(
kρ

2

)]}
(13)

where it can be established that κ = cos
(

kρ
2

)
.

The SinC(kρ) law can be implemented using advanced signal processing convolutional
accelerators based on broadband expansions:

SinC(kρ) =
Sin(kρ)

kρ
=

n=∞

∑
n=1

(−1)n (kρ)2n

(2n + 1)!
(14)

SinC(kρ) =
∞

∏
k=1

cos
(

kρ

2k

)
(15)

The proposed SinC-based convolutional signal processing enables effective unifica-
tion [4] of modeling and measurement techniques into a coherent framework. The benefits
of unifying and aligning measurement (instrumentation) and modeling (EDA tooling)
platforms go beyond the simple need for productivity enhancement, and they open new
perspectives for transforming apparent antagonisms between theory and experiment into
necessary complementarities [2,15]. Such complementarities will render possible introduc-
ing in the universe of simulations the notions of uncertainties usually considered as specific
to the world of measurement. Although significant research efforts have been directed
towards building accurate numerical algorithms dealing with modeling of uncertainties
with controlled numerical errors, lack of knowledge in exact numerical values to assign to
input parameters (design parameters, boundary and environmental conditions, etc.) has
put constraints in their effective usage. The uncertainties are not only the results of our
partial or insufficient knowledge of the mechanisms underlying the true physics; they also
reflect various types of errors. In order to adopt variation-aware modeling methodologies,
it is essential to include uncertainty analysis in simulations from the beginning and not in a
posttreatment procedure. This requires stochastic computations either at the level of the
handled operators or through techniques such as Monte Carlo and sampling methods or
even by means of perturbation techniques, moment equations, etc. Among advantages
of stochastic methods, over classical deterministic and sensitivity approaches that focus
their analysis on the variability of individual parameters, are their abilities to consider the
sets of observable parameters as main objects of investigation. The stochastic approach is
built on the hypothesis of randomly distributed input parameters which imposes, from
a theoretical point of view, using σ-algebra and associated measure to build a probability
space. Numerical methods for stochastic [4] computations offer interesting possibilities for
sensitivity and variability analysis. With sensitive or ill-conditioned problems, uncertainty
in the input parameters can result in uncontrolled variations of the operators describing
the governing equations. The powerful concept of stochastic Green’s operators [2] provides
solid foundations for bridging modeling and measurement into a unified framework.

3. Correlation-Based Power and Energy-Density Metrics for OTA-Testing of
Mobile Devices

An antenna array module for mobile phones compliant with the 5G NR FR2 band
in Europe is used as DUT. The unitary antenna element composing the array is based on
the aperture-coupled structure introduced in [16]. A 4 × 4 mm2 patch is placed 2 mm
above the upper slot introducing an additional resonance, which allows the single-element
bandwidth and gains to be increased. The antenna module is connectorized (see Figure 2a)
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for a 4-Port measurement configuration using both frequency and time-domain instruments
with and without down-conversion to sub-6 GHz frequency bands. Figure 2d depicts the
area of the DUT used for near-field scanning of magnetic (H) and electric (E) fields with the
associated power-density as a function of power levels.
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In Figure 4, the longitudinal, transverse, and total correlation functions are shown
as a function of the SinC(kρ) law approximation order. It is observed that only a few
numbers of terms are required to reach very accurate estimations (below 1% uncertainties
for near-field OTA sensing).
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Figure 5 shows the simulated (using 3D EM solvers: IMST-EMPIRE, HFSS, CST) three
components of the magnetic and electric fields at 2 mm from the DUT for 15 dBm input
power. The power density measured using EO probing is presented in Figure 6a at 10mm
from the DUT. Ten millimeters is about a wavelength (λ), which corresponds to a distance
where the extracted wave-impedance is very close (~99%) to 120 Ω (Figure 6b).
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With Ei(θ,ϕ) and Ej(θ,ϕ) being the radiation patterns of antennas 1 and 2, respec-
tively, the envelope cross-correlation between the two antennas i and j expressed in the
frequency-domain is given by the following equation:

ρE(ω) =

∣∣∣∫4π dΩ Ei(θ,ϕ)· E∗j (θ,ϕ)
∣∣∣√∫

4π dΩ|Ei(θ,ϕ)|2
√∫

4π dΩ
∣∣Ej(θ,ϕ)

∣∣2 (16)

When using the S-parameters, the envelope cross-correlation [17–19] can be expressed as:

ρS(ω) =

∣∣∣S∗ii(ω)Sij(ω) + S∗ji(ω)Sjj(ω)
∣∣∣√

1− |Sii(ω)|2 −
∣∣Sji(ω)

∣∣2√1−
∣∣Sjj(ω)

∣∣2 − ∣∣Sij(ω)
∣∣2 (17)

The normalizing loss-factor in Equation (18) is linked to radiation patterns information:
when η1 and η2 denote the radiation efficiencies of antennas 1 and 2, S-parameters based
envelope correlation can be cast in the following form:

ρ
ηi−ηj
S (ω) =

ρS(ω)√
(1− ηi)

√(
1− ηj

) (18)

Relation (17) results in inequality as a consequence of uncertainties related to the
actual value of the correlation of losses. Through the power conservation principle, the pat-
tern orthogonality coefficient can be estimated from the scattering parameters for lossless
antenna arrays. For lossy antenna arrays, because of losses in a decoupling network, the
scattering parameters are incomplete [17–19] to calculate pattern orthogonality. In Figure 7,
S-parameters-based cross-correlation and field–field-based cross-correlation functions ex-
tracted between antenna i and antenna j are presented, showing very good agreement over a
broad frequency band. When the correlations between antenna i and antenna j are extracted,
all other antenna elements are loaded by 50 Ω condition. Observed differences between
S-parameters port-to-port-based cross-correlation and field–field-based cross-correlation
functions in the band 20–30 GHz are attributed to imperfect load matching conditions and
radiation losses [18,19] not easy to capture in S-parameters based definitions.
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Measured power-density (Figure 8) in the near-field (10 mm) using EO [20] probing
(with different antenna-factor (AF) values) with variable sensitivity from the DUT at 26 GHz
with 23 dBm input power are compared to 3D full-wave EM simulations (CST, EMPIRE,
HFSS) in time and frequency domains. Integral representation is used to derive spatial
correlation functions for the complex electric and magnetic field components and total
energy densities. The propagation of correlation [21] functions discriminating longitudinal
and transverse directions of electric and magnetic field components in the near- and far-
field lead to new algorithmic solutions (correlation ready convolutional signal-processing at
FPGA level) for proper extraction of power-density and energy-density of wireless devices
accounting for DUT to probing system interactions. Figure 9a,b represent the power-density
as a function of distance from the DUT.
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In the time domain, the auto-correlation (AC) of signal ISi (antenna i) and cross-
correlation (CC) functions of signals ISi and ISj (antenna j) can be extracted using the
following expressions [21]:

ACISi
ISi
(τ) = lim

T→∞

1
2T

+T/2∫
−T/2

ISi (t)ISi (t + τ)dt (19)

CCISi
ISj
(τ) = lim

T→∞

1
2T

+T/2∫
−T/2

ISi (t)ISj(t + τ)dt (20)

The extraction of the auto-correlation and cross-correlation functions can be automated
using eV-Technologies RF and mmWave correlator modules (Figure 10a) with embedded
FPGA processing capabilities. The combination of eV-Technologies RF and mmWave corre-
lator modules with optically synchronized dual-port instruments (Figure 10b) opens new
possibilities for OTA-based interferometric [22,23] measurement (including correlation-
based EVM testing [24]) of MIMO applications using minimally invasive probing solu-
tions [20].

Electronics 2022, 11, x FOR PEER REVIEW 11 of 18 
 

 

  

(a) (b) 

Figure 9. Extracted power-density (a), (b) as function of probing distance. 

In the time domain, the auto-correlation (AC) of signal 𝐼𝑆𝑖
(antenna i) and cross-corre-

lation (CC) functions of signals 𝐼𝑆𝑖
 and 𝐼𝑆𝑗

(antenna j) can be extracted using the following 

expressions [21]:  

𝐴𝐶𝐼𝑆𝑖
𝐼𝑆𝑖

(𝜏) = lim
𝑇→∞

 
1

2𝑇
 ∫ 𝐼𝑆𝑖

(𝑡)

+𝑇 2⁄

−𝑇 2⁄

𝐼𝑆𝑖
(𝑡 + 𝜏)𝑑𝑡  (19) 

𝐶𝐶𝐼𝑆𝑖
𝐼𝑆𝑗

(𝜏) = lim
𝑇→∞

 
1

2𝑇
 ∫ 𝐼𝑆𝑖

(𝑡)

+𝑇 2⁄

−𝑇 2⁄

𝐼𝑆𝑗
(𝑡 + 𝜏)𝑑𝑡   (20) 

The extraction of the auto-correlation and cross-correlation functions can be auto-

mated using eV-Technologies RF and mmWave correlator modules (Figure 10a) with em-

bedded FPGA processing capabilities. The combination of eV-Technologies RF and 

mmWave correlator modules with optically synchronized dual-port instruments (Figure 

10b) opens new possibilities for OTA-based interferometric [22,23] measurement (includ-

ing correlation-based EVM testing [24]) of MIMO applications using minimally invasive 

probing solutions [20]. 

 

 

(a) (b) 

Figure 10. 64-Channels correlator (a) module combined with 64 broadband sensor-array elements. 

Optically synchronized VNA modules for broadband extraction of correlation functions (b). 
Figure 10. 64-Channels correlator (a) module combined with 64 broadband sensor-array elements.
Optically synchronized VNA modules for broadband extraction of correlation functions (b).



Electronics 2022, 11, 1134 12 of 18

4. Perspectives for Unified Information Signal Theory (IT) and Physical Information
Theory (PT) Using Correlation Technologies

Stochastic noise-aware [25–32] approaches create natural bridges between correlation
formalisms and convolutional techniques. Linking correlation to convolution will enable
combining information signal theory (IT) and physical information theory (PT) into a
unified approach. Such a unified approach can be established in the general scope of the
fluctuation–dissipation theorem (FDT) [25] envisaged as a cornerstone for bridging noise
mechanisms with the retrieval of Green’s functions through the formalism of auto and
cross-correlation operators.

The cross-correlation function CAB(τ) of stationary stochastic signals SA(t) and SB(t)
is defined by the following equation, where the brackets denote the ensemble average:

CAB(τ) = SA(t)|SB(t + τ)

= lim
T→∞

1
2T

+T/2∫
−T/2

SA(t)SB(t + τ)dt (21)

The correlation matrix in the frequency domain can be expressed as a function of the
time-windowed signal ST(t):

C(ω) = F{〈ST(t)
∣∣∣S†

T(t + τ) 〉} (22)

The superscript † refers to the Hermitian conjugate operation.
For a given frame, the power spectra of the signals can be deduced from the correlation

matrix C(t):

C(t) =


C11(t) C12(t) . . . C1N(t)
C21(t) C22(t) . . . C2N(t)

...
... . . .

...
CN1(t) CN2(t) . . . CNN(t)

 (23)

Assuming signals and noise contributions are uncorrelated, by applying the Expecta-
tion operator E[.], the following relations can be derived:

E
[
(SA + NA)(SA + NB)

]
= E

[
|SA|2

]
+ E

[
SANB

]
+ E

[
NASA

]
+ E

[
NANB

]
= PSA + PNoise

(24)

where is the PSA and PNoise are respectively the signal (channel A) and noise powers.
In (24) SA and SB refer to the signals at access terminals (or channels) A and B, and

NA and NB are the noise contributions on channels A and B. This equation clearly shows
that uncorrelated noise contributions are totally eliminated.

Thus, the uncorrelated noise power is removed based on the cross-correlation, however
the signal power and the correlated noise power are not removed. As a result, the removal
of the uncorrelated noise power improves the SNR, and therefore renders possible detecting
signals with lower energy levels.

The use of microscopic correlations to obtain the macroscopic entropy for an equilib-
rium system was studied by Lindgren in [29]. The conventional definition of the physical
entropy S of a system with a particular microstate—e.g., energy, composition, volume,
(U,N,V)—in statistical physics and that of information H(z), can be linked by the following
equation adopting the notation in [30]:

H(z) = S(U, N, V)/kln(2) = −∑
s

Pz(s) log2 Pz(s) (25)

The Shannon–McMillan–Breiman theorem provides a formal bridge [31] between the
Boltzmann entropy and the Shannon entropy. In (25), the average information in a set
of messages associated with probabilities Pz(s) map onto the ensemble of the microstates
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of the physical system. The variable z is a label for the set of possible messages, and the
probability over this set, s is a particular value from the set. Equation (25) being valid in the
case of non-equilibrium systems, for a well-defined ensemble probability distribution, Pz(s),
several conceptual difficulties arise from the physical interpretation of system complexity
in link with equilibrium entropy. These conceptual difficulties reveal the dependence of
entropy on the scale [30] of analysis. The concept of a scale-dependent entropy dates
back to the ε-entropy of Kolmogorov [32], which can be linked to Shannon noisy-channel
information theory [33]. Multi-scale analysis of the structure of the state space relates the
energy, entropy, and geometry at different levels of resolution for both equilibrium and
non-equilibrium conditions. For dynamic systems in non-equilibrium conditions, the use
of entropy-based [34] metrics for evaluating the attributes of chaotic regimes will open new
possibilities. In [35], it is suggested that for any bounded system with entropy SEntropy and
rest energy ERest, there exists a universal upper limit on the entropy-to-energy ratio, which
leads to the following inequality:

SEntropy/ERest ≤ 2πR (26)

where R represents the radius of the sphere circumscribing the system. For topologically
compact systems, R is to be defined in terms of the system’s volume. In the derivation of
(26) we have assumed h/2π = k = G = 1 without loss of generality.

In [36], the implications of the entropy-to-energy ratio on an upper bound of the
entropy-to-surface-area ratio are discussed. The resulting entropy-to-surface-area ratio is
expressed in the form:

SEntropy/ASurface ≤
1
4

(27)

The limit of (26) leads to the equality SEntropy = ASurface/4, which is consistent with
the expression for black holes.

The derived entropy-to-energy and entropy-to-surface-area bounds open new possi-
bilities in communication theory for properly coupling IT and PT into a unified approach.

In reference to computational energy dissipation, Landauer, in 1961, has stated the
principle that erasing one bit of information entails an energy loss of kTln(2) (the ther-
modynamic threshold), where k is the Boltzmann constant and T is the temperature in
Kelvin. This principle has generated rich comments [37] and motivated new directions of
ambitious research solutions (e.g., applied superconductivity [38]) with less dissipation
than the Landauer limit.

Figure 11a shows technology trends [39] expressed in terms of dissipated energy per
operation in reference to the Landauer limit. Figure 3a presents the power consumption
as a function of bit rates and computing power versus dissipated energy in J/bit. Follow-
ing Moore’s exponential trend, the energy efficiency of a transistor and a logic gate has
improved by a factor of one hundred in ten years, corresponding to a factor of two every
18 months. The trends of Moore’s prediction are starting to show some saturation as the
exponential decrease in the physical size of the transistor is constrained by the physical
limits. At the lower scales, the switching energy is approaching the thermal noise spectral
density. In addition, the cooling capacity in terms of energy per unit time for a given area
will lead to a bottleneck imposing energy–geometry–entropy trade-offs [39].

Energy–Geometry–Entropy trade-offs will foster new signal processing solutions
taking advantage of the stochastic resonance (SR) concept for low-power operating commu-
nication systems. Although noise is generally considered a nuisance, in certain conditions,
by exploiting the concept of stochastic resonance [40–42], noise can enhance the detection
of weak signals. The attribute of stochastic resonance is that the signal-to-noise ratio (SNR),
following the general formula [40] in Equation (28), is zero for zero added noise (that is,
D→0: no noise implies no switching or threshold crossings, thus no output), increases
sharply to a maximum at some optimal noise intensity.
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In Equation (28), ε is the input signal strength, D is the input noise intensity, and ∆U
is a constant related to the barrier height or the threshold.

SNR ∝
(
ε∆U

D

)2
Exp

(
∆U
D

)
(28)

The idea of using a narrow-band random noise as a carrier for information transmis-
sion was proposed by Rowe in his papers [43,44] published in 1964. With stochastic carriers,
a high SNR can be obtained when the modulation bandwidth is relatively limited.

The optimization of SNR for stochastic signals requires proper extraction of spectral
power density. Since the power spectral density and autocorrelation are a Fourier transform
pair, there is a strong link between correlations and SNR.

Although Fourier transforms cannot be established rigorously for random processes
(infinite energy), they can nevertheless be derived for the autocorrelation and cross-
correlation functions which are non-periodic energy signals. The Fourier transforms of the
correlation is called power spectrum or spectral density function (SDF).

In the practical case of the 3-Port power-splitter structure in Figure 12a, the temporal
power of the combined signal S3(t) in Figure 12a can be cast in the following form assuming
a time delay of τD in the presence of noise:

PS3 = lim
t→∞

1
2T
∫ T
−T
(
S2

3(t)
)
dt = 1

2 lim
t→∞

1
2T
∫ T
−T [(S1(t)) + S1(t− τD) + n1(t) + n2(t)]

2dt

= 1
2 lim

t→∞
1

2T
∫ T
−T{[S1(t) + S1(t− τD)]

2+

2[(S1(t)) + S1(t− τD)][n1(t) + n2(t)]+
[n1(t) + n2(t)]

2}dt

(29)

n1(t) and n2(t) represent the noise in the two channels. The accuracy of the broadband
power power-splitters is essential for the avoidance of squint and impairments in phased-
array systems. Integration of the binomial for the signal and noise contributions leads to
the following expressions:

[S1 + S1(t− τD)]
2 = S2

1(t) + 2S1(t)S2(t) + S2
1(t− τD) (30)

[n1(t) + n1(t)]
2 = n2

1(t) + n2
2(t) + 2n1(t)n2(t) (31)



Electronics 2022, 11, 1134 15 of 18

The resulting power of the combined signal is twice the power of the reference signal
S1(t) plus twice its autocorrelation power:

PS3(τD) = α2( 2PS1 + 2RAutocorr(τD)
)

(32)

where α is relative to the power splitting factor.
Assuming a band-limited filtering f1 − f2 the autocorrelation function takes the fol-

lowing simplified form:

RAutocorr(τD) = PS1 cos(π( f1 + f2)τD)
sin(π( f1 − f2)τD)

π( f1 − f2)τD
(33)

In the case of complex I-Q correlators, the real and imaginary parts can be obtained
from the following equations based on the synoptic bloc diagram shown in Figure 12 with
DC offset compensation [45]:

R = R0sinc
[
B
(
τg − τi

)]
cos
{

2π
⌈
ωLOτg −ωIF

(
τg − τi

)
e+ ϕLO

}
(34)

I = R0sinc
[
B
(
τg − τi

)]
sin
{

2π
⌈
ωLOτg −ωIF

(
τg − τi

)⌉
+ ϕLO

}
(35)

τg and τi are the time delay presented at RF and IF between the two receivers.
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5. Conclusions

In this paper, we have presented correlation technologies for measuring the power
density of mobile devices using OTA testing. Measurements obtained using minimally
invasive electro-optical (EO) probes are compared to full-wave 3D EM solvers (EMPIRE,
HFSS, CST), demonstrating excellent agreement for applications at mmWave frequencies.

New ASIC-embedded smart connectors are developed for bringing correlation-based
signal processing close to antenna modules. The influence of separation distance between
the device under test (DUT) and the probing system (PS) is studied using spatial correlation
functions and their propagation attributes implemented through FPGA programming
based on convolutional algorithms (cognition ready array-processing). Proposed correlation-
based energy-density and power-density metrics in providing stronger robustness to noise
represent valuable insights to mobile equipment manufacturers, network operators, and
standardization bodies. Perspectives for optically synchronized interferometric correlation
technologies are drawn for accurate measurements in noisy environments of stochastic EM
fields using power-spectra, energy-spectra, and entropy metrics. At baseband frequencies,
ongoing work is relative to new DSP-based convolutional accelerators compliant with IEEE
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P1765 standard for pushing EVM [24] measurement solutions to industrial testing both
in connectorized and OTA configurations using correlation technologies. Implementation
of DSP-based convolutional accelerators into advanced FD-SOI-ASIC platforms for co-
integration with adaptive RF/mmWave front-end modules will enable real-time extraction
of auto-correlation and cross-correlation functions of stochastic signals for mobile devices
and systems.

The proposed correlation technologies will enable an efficient combination of infor-
mation signal theory (IT) and physical information theory (PT) into a unified approach:
Shannon’s entropy can be directly related to Boltzmann’s entropy. The Shannon–McMillan–
Breiman theorem [31] provides a formal basis for such a unified approach where Shannon’s
entropy can be directly related to Boltzmann’s entropy for accurate extraction of key pa-
rameters characterizing the quality of RF wireless systems such as signal-to-noise ratio
(SNR), Error Vector Magnitude (EVM), channel capacity (CA), data rate (DR) and antennas
tuning in MIMO applications.

Beyond classical RF applications, proposed correlation technologies will foster new
perspectives in creating natural bridges between “Correlation” and “Intrication”, in the
quantum-physics sense, that can be leveraged for future Qubit-based coding, encryption,
and signal-processing. Quantum computing and quantum radar [46–58] sensing-related
applications will benefit from such holistic correlation technologies [59–61]. Spintronics-
based sensing solutions introduced in [61] will enable new correlation-aware wireless
communication systems.
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