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ABSTRACT

We consider the source separation problem based on
the maximization of contrast functions. A general it-
erative procedure for the optimization of any contrasts
working on white vectors is proposed. It does not re-
quire any parametrization of the separating matrix.
Comparisons with the ICA and JADE algorithms by
computer simulations illustrate the good performances
of this new algorithm and the potential interest of such
an approach.

1. INTRODUCTION

We consider the source separation problem [5] which
can be simply formulated as follows. Several inobserv-
able linear spatial mixtures of some independent sig-
nals called “sources” are observed. The purpose is to
recover the original sources assuming that the mixing
system is unknown.

In the past ten years, numerous solutions to this
problem have been proposed. In this paper we are con-
cerned with block (off-line) algorithms based on high-
order (higher than two) statistics. Related algorithms
are JADE [1] and ICA [3]. The JADE algorithm is
based on an algebrical diagonalization of a fourth-order
cumulant matrix. The ICA algorithm is based on the
optimization of a specific contrast function which is the
sum of the squares of outputs auto-cumulants. More-
over this contrast requires white vectors, i.e. vectors
whose covariance matrix is equal to the identity.

Since [3], numerous contrasts working on white vec-
tors have been proposed, e.g. [6]-[9]. Our main inter-
est in this paper is to propose a general simple iterative
procedure for the optimization of any contrasts working
on white vectors. Unlike ICA, the proposed algorithm
does not require a parametrization of the separating
matrix thanks to Givens (planar) rotations. Thus this
leads to a “simplified” optimization procedure. The ba-
sic idea is to take into account the whitening constraint
using a kind of “projected gradient” procedure.
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2. PROBLEM FORMULATION

We consider the classical linear memoryless mixture
model

z(n) = Ga(n) (1)

where n € Z is the discrete time, a(n) the (N, 1) vec-
tor of N € N* \ {1} inobservable real input signals
a;(n), i € {1,...,N}, called sources, x(n) the (N, 1)
vector of observed signals z;(n), i € {1,...,N}, and G
the (N, N) square mixing matrix, assumed invertible.
For clarity, in this article we restrict our attention to
the real case although the following derivations may be
easily extended to the complex one.

The sources are assumed to satisfy the following
three assumptions

Ala. “Independence” The sourcesa;(n),i € {1,...,N},
are zero-mean, unit power and statistically mutually
independent;

A1b. “Stationarity” a(n) is a random vector stationary
up to order under consideration, i.e. Vi € {1,...,N},
the cumulant Cum [a;(n), ..., a;(n)] is an independent

pX

function of n, denoted by Cpla;];
Ac. “At most one null cumulant” Given the order
p € N*, the cumulants of sources are assumed to satisfy
one of the two following conditions:

cl. [Gplar]] = --- 2 [Cplan]| > 0;

e2. |Colar]] > -+ > [Colan—1]| > Cylan]] = 0.
In particular this means that at most one of the cumu-
lants Cplai], i € {1,..., N}, is null.

Notice that the unit power assumption and Alc can
be satisfied without loss of generality because sources
are inobservable and the mixture is unknown.

The separation task is realized by computing a vec-
tor

y(n) = Hz(n) (2)



in such a way that the different components of the
(N, 1) vector y(n) restore the different sources. Hence
the separation problem is solved if the global matrix
defined by

s HG (3)

reads
S=DP 4)

where D is an invertible diagonal matrix corresponding
to arbitrary attenuations for restored sources and P
a permutation matrix corresponding to an arbitrary
order of restitution. According to (2), (1) and (3) the
output vector reads

y(n) = Sa(n) . (5)

3. ABOUT CONTRAST FUNCTIONS

In the following the explicit dependence of sources, ob-
servations and outputs vectors with the discrete time
n will be omitted whenever no confusion is possible.

Before recalling the definition of a contrast, it is
useful to define some notations. Let A denotes the set
of random vectors satisfying assumptions Ala, A1b and
Alc. Let S denotes the set of invertible matrices. The
subset of S of matrices S of the form (4) is denoted by
‘P and the subset of P of invertible diagonal matrices
is denoted by D. The set of random vectors y(n) built
from (5) where a(n) € A and S € S is denoted by ).

As initially defined [3] a contrast has to be a sym-
metrical and scale invariant function which must be
maximized to get separation. Examples of such con-
trasts can be found e.g. in [3],[6]-[9].

In [9] it is shown that the symmetrical property
of contrast is rather restrictive and not really of prime
necessity. It is the reason why the following generalized
definition of contrast was proposed.

Definition. “Non symmetrical contrast” A contrast
on Y is a multivariate mapping Z(-) from the set Y to
R which satisfies the following three requirements:

Ri. Yy € Y, VD € D, I(Dy) = I(y);

R2. Va € A, VS € S, Z(Sa) <Z(a);

R3. AP, C P, Py #0 /Va € A VS €S, Z(Sa) =
I(a) & S eP,.

According to this definition, the maximization of a
contrast is a sufficient condition for source separation.
That is, if Z(-) is such a contrast, then a sufficient con-
dition of separation is Z(y) = Z(a).

Classical contrasts rely on the important notion of
white vectors, i.e. vectors y such that their covariance

matrix R, def E[yyT] equals the identity. Because of

assumption Ala on sources then R, = I. Hence Ry =
I is equivalent to SST = I, i.e. S is an unitary matrix.
Hence from now, we only consider such vectors. For
this let & denotes the set of unitary matrices and ),
the set of random vectors y(n) built from (5) where
a(n) e Aand S € U.

Among the new contrasts (on ), ) proposed in [9],
three of them will be of particular interest in the fol-
lowing. The first one is

N
Ti(y) = Y %lCpluill (6)
i=1
where the real numbers v;, i € {1,..., N}, are assumed
to satisfy
Mmz2---29v>0. (7)

The second contrast
N
Ix(y) =¢p Z YiCplyi] (8)
i=1

requires an additional assumption on sources, that is

A1d. “Identical sign” When cumulants of sources sat-
isfy condition c1 of Alc, we assume that Vi € {1,...,N},
sign(Cpla;]) = €, while when they satisfy condition c2
of Alc, we assume that Vi € {1,..., N—1}, sign(Cp[a;]) =
ep while by convention sign(Cplan]) = &p.

The third contrast which is perhaps the simplest
one, is

I3(y) = ¢4 Z viEly;] - 9)

It also requires assumption Ald.

Finally it has to be noticed that if source a is such
that C,lan] = 0 then in the three hereabove contrasts
one can take vy = 0 while the NV — 1 other ones satisfy
M2 2 N-1>0.

4. OPTIMIZATION OF A CONSTRAINED
CONTRAST

Contrasts on Y,, say Z(-) for generality (e.g. Zi(-),
T>(-) and Z3(-) hereabove defined), assume that vectors
y are white. Two strategies can be considered for the
derivation of a practical maximization algorithm.

The first (classical) one consists in a two stages sep-
aration:

s1. Realize a whitening of the observations: , = Bx
such that R,, = I.



s2. find a matrix H maximizing Z(Hzp) under the
contraint HH” = I.

The second strategy consists in a one stage separation:

pl. find a matrix H maximizing Z(Hz) under the
contraint R, = HR,H" = 1.

Some algorithms have already been designed to re-
alize the first strategy [3][7]. However, it seems that the
second strategy have not yet been considered. Hence
following the ideas of [7], we derive hereafter an algo-
rithm corresponding to this second strategy.

A classical way in order to obtain a (local) maxi-
mum of a contrast is to use a gradient based algorithm
leading to the following recursive scheme

H=H+\T (10)

where H = (H; ;) and H' are respectively the separat-
ing matrices before and after the iteration, A a positive
constant and Z = 0Z/0H the matrix whose (£,m) com-
ponent is 0Z/0H, . This is refered to as a classical
gradient approach.

However, and because parameters we are looking for
are matrices, one can also consider a relative or natu-
ral gradient approach [2]. This leads to the following
recursive scheme

H':(I+AiHT)H. (11)

Clearly if H is an unitary matrix (as in the first strat-
egy), (10) and (11) are identical. However if not (as in
the second strategy) this leads to a different algorithm.
In the following, we only consider the estimation in
(11).

Let us now consider specifically contrasts Z; (-), Z»(+)
and Z3(-). Differentiating 71 (-) and Zy(-) with respect
to Hy m leads to

0 8C, [y:] _
O, _;%ﬁk,, oy k=1,2 (12)

where 31; = sgn(Cp[y;]) is assumed constant and (a,; =
€p. According to (2), we have

A

= ) ir---3 i, Im 1
s cumlys ] (19

(p—1)x

where §[i,£] = 1 if £ = i and 0 otherwise. Using (13) in
(12), we finally have

0TIy,
OHy,m

=P YeBr,eCumlye, ..., ye, 2] . (14)
————r

(p—1)x

Now differentiating Z5(-) with respect to Hy,,, one has

073

o, = der BT - (15)

Recalling that H has to respect certain constraints
throughout the iterations (HR,H” = I for the second
strategy considered), it is easily seen that the iterative
procedures in (10) (or (11) in other respects) do not
keep these constraints, i.e. H' R,H'" # 1.

That is why a second step of “projection” is needed
in the algorithm. It corresponds to a normalization
of H' in order to maintain the constraint throughout
the iterations. This normalization will be denoted by
N(H') in the following.

Because H' R, H'T # I, the reconstructed signals
y' = H'z built from H' does not have a covariance
matrix equal to the identity. Thus one would like to
find a vector y which is the closest to y' while having an
identity covariance matrix. For this task let us define
an error vector as

e=y -y=H-H)z. (16)

Our objective is now to determine a matrix H satis-
fying HR,H” = I and such that the energy of e is
minimum. We have the following result

Proposition 1. A matriz H satisfying HR,H" =1
which minimizes the error energy E. = E[ele] where
e = (H'— H)z for a given matriz H', is given by
H = U,thTMf1 where M is a square root of R, and
U; and V¢ are the unitary matrices derived from the
SVD of HM as HM = U,D;V}. .

Proof. We have from (16)

E. = Elc"(H' -H)" (H - H)z]
= E[Te{(H' - H)zz" (H' — H)"}]
- T{(H'-H)R, (H' - H)")
= T{H'R,H" + HR,H' - H'R,H' -
HR . H"}
= C-E. (17)
where C = Tr{H'R,H"'} + Tt{HR,H"} (which is

also equal to Tr{H'R,H'"} + Tr{I}) is a constant
term since it does not depend on H and where

E! = T{H'R,H' + HR,H'"}

T
T{H'R,H" + (H’REHT) }
2 Te{H'R,H"} . (18)



Because C is constant, the minimization of E. is equiv-
alent to the maximization of E. in (18). Let us now
reformulate the problem. Let M be a square root of
R, then we have to find a maximum of

E =2Tr{HHMM"H"} =2 Tv{BA"}

where B = H'M and A = HM has to satisfy AAT =
I, i.e. A is unitary.

This latter problem is a classical algebrical one [4].
Let us briefly recall the solution according to our no-
tation. If B = UtDtVtT is a singular value decompo-
sition of B, then

Tt{BA"} = Tv{U,D, V] A"} = Tt{D,V] A"U,} .

Thus Tr{ BA”} = Zil 0;(B)T;,; where 0;(B) are the
singular values of B and T = (T;;) = Vi AU, is a
unitary matrix. This sum is clearly maximized when
T;: = 1 for all 4, that is, when A = U,V{. Finally,
because H = AM ', the matrix H maximizing E! is
thus H=U,V{ M. .

Hence according to the hereabove Proposition, if we
consider the following decomposition of the covariance
matrix R, = MM then the contraint can be written
as UdU:‘ir = I where U; = HM. Further, let us
consider the SVD of H'M as H'M = U;D,V} where
matrices U; and V' are unitary and D, is diagonal,
then we can impose

NHY=UVIM™ (19)

which corresponds to the best (in the mean square error
sense) choice of a matrix leading an output vector y
with the required constraint.

Let us now summarize the One Stage Iterative Block
Separation algorithm (OSIBS):

OSIBS algorithm

1. Estimaﬁe the covariance matrix of the observa-
tions: R,.

2. Compute the SVD of R,: R, = U,D,U~.

3. Compute a square root of ﬁm: for example M =
U,D?UT.

4. Depending on a priori information about sources,
choose a contrast: Z; (), Z(-) or Zs(-), say Z(-).

5. Choose an initial value for H (e.g. H = I) and
choose a real constant . Initialize the outputs:
y = Hz and then iterate (a)-(d) until conver-
gence:

(a) Estimate the derivative of a contrast 7.
(b) Compute H' = (I—i—/\ 7 HT) H.

(c) Compute H = N(H') as defined in (19).
)

(d) Compute the estimated source signals y =
Hz.

5. COMPUTER SIMULATIONS

In order to illustrate the performances of the OSIBS
algorithm, some computer simulations are now pre-
sented. Contrast Z3(-) is used. We consider the case
of two sources (N = 2) and the two following mixing
matrices

1 05 1 09
Gl_(0.4 1 ) Gz‘(o.g 1 )'(20)

A noisy model is considered where the additive noise
on each channel is assummed to be a zero-mean, i.i.d.
Gaussian random signal with equal power.

The performances of the algorithms are associated
to an index/measure defined on the global matrix S =
(Si,;) according to

. 1 1,51
ind(S) = 3 Z Zmax|5”|2_1
(2 Vi ! )
+> Ziw"’jp —-1]] . @
7\ 5 max| Sl

Indeed, this non-negative index is zero if S satisfies (4)
and a small value indicates the proximity to the desired
solutions.

For the input sources, two cases are considered:

i) the two sources are 2-PAM signals (taking their val-
ues in {—1,+1} with equal probability)

i1) the two sources are 4-PAM signals (taking their val-
ues in {—3/v/5,—1/v/5,1/4/5,3/+/5} with equal prob-
ability).

Concerning the algorithms, we compare 1) the JADE
algorithm (Version 1.5 Dec. 1997. for the real case)
represented by a dashdot line with plus points; 2) the
ICA algorithm represented by a dotted line with x-
mark points and 8) the OSIBS algorithm represented
by a solid line with circle points.

Case 1: Indez versus data number

First we plot the mean and the standard deviation
(STD) of the estimated index over 500 independent
runs as a function of the data number. In Fig.1 for
case i) of sources and Fig.2 for case i) (resp. Fig.3



and Fig.4 for the same respective case of sources) the
mixture Gy (resp. G2) is used and the noise power is
kept constant to 0dB (resp. —20dB). The figures show
that performances of the OSIBS algorithm are a bit
better in the presented cases.

Case 2: Index versus noise power

Now the data number is held constant to Nz = 500
and we plot the mean and STD of the estimated index
over 500 independent runs as a function of the noise
power. In Fig.5 for case ) of sources and Fig.6 for case
i1) (resp. Fig.7 and Fig.8 for the same respective case
of sources) the mixture G (resp. G2) is used. The
figures show that the three algorithms have relatively
similar performances with a little advantage in favour

of OSIBS.

6. CONCLUSION

We have proposed an iterative procedure for the max-
imization of any kind of contrasts involving white vec-
tors. It does not require a parametrization of the sep-
arating matrix which thus leads to a “simplest” algo-
rithm. A comparison based on computer simulations
illustrates the potential interest of such an approach at
least in using the contrast Zs(-).
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Figure 1: For case i) of sources and matrix Gy, com-
parison of the experimental index w.r.t. data number.
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Figure 2: For case ii) of sources and matrix G, com-
parison of the experimental index w.r.t. data number.
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Figure 3: For case i) of sources and matrix G2, com- Figure 6: For case #) of sources and matrix G, com-
parison of the experimental index w.r.t. data number. parison of the experimental index w.r.t. noise power.
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Figure 7: For case 1) of sources and matrix G2, com-

Figure 4: For case 4i) of sources and matrix G, com- . _ - "
parison of the experimental index w.r.t. noise power.

parison of the experimental index w.r.t. data number.
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Figure 5: For case 4) of sources and matrix G, com- Figure 8: For case ii) of sources and matrix G, com-
parison of the experimental index w.r.t. noise power. parison of the experimental index w.r.t. noise power.



