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Abstract
In this paper, we consider the source separation problem through a block algorithm based
on the maximization of contrast functions. We propose a new contrast with parameterized
cross-cumulants. It allows us to put three classical contrast in a common framework. Following
the same spirit of the ICA algorithm, we derive the analytical solution for the case of two
sources. Finally, a computer simulation is performed to illustrate the behaviour of a Jacobi-like

algorithm for the maximization of the new contrast.

!Eric Moreau is the corresponding author.
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I. INTRODUCTION

We consider the source separation problem where several linear spatial mixtures of some inde-
pendent signals called “sources” are observed as ©(n) = Ga(n) where n € Z is the discrete time,
a(n) the (N, 1) vector of N € N*\ {1} inobservable real input sources a;(n), (n) the (N, 1) vec-
tor of observations z;(n) and G the (N, N) square mixing matrix assumed invertible. For clarity,
we restrict our attention to the real case even though the following derivations could easily be
extended to the complex one. The sources a;(n) are assumed zero-mean, unit power, statistically

mutually independent and stationary, i.e. the R-th order cumulant Cum [a;(n),...,a;(n)] is an
——— ——

Rx
independent function of n, denoted by Cg[a;]. Moreover, we assume that at most one of the

cumulants Cg[a;] is zero. The separation problem consists in estimating a matrix H in such
a way that the vector y(n) = Hxz(n) restores one of the different input sources on each of its
components. An interesting way to get a solution in the source separation problem, is to perform
the optimization of so-called “contrast functions” [1],[2]. They have to be maximized to get a
separating solution.

In this paper, we consider a block approach based on high-order (higher than two) statistics. In
this field, the ICA algorithm [1], the STOTD algorithm [3] and the JADE algorithm [4] constitute
three important contributions. These algorithms rely on the optimization of a specific contrast
function. They are Jacobi-like algorithms where, after a whitening of the observations, the final
unitary matrix to estimate is decomposed in a product of Givens (or plane) rotations. Hence
they process all different possible pairs of outputs. For this task, it has required the analytical
derivation of the plane rotation component for the case of two sources.

Our main objective in this paper is to show that the three contrasts optimized by ICA, STOTD
and JADE belong in a same family of contrast where the cross-cumulants are parameterized.
Furthermore we derive the analytical maximization argument of the generalized contrast for
the case of two sources and illustrate the behavior of what we call the “generalized ICA” by a

computer simulation.

II. A GENERALIZED CONTRAST

Let us recall that contrast functions was introduced for the source separation problem in [1] and
recently generalized in [2]. Basically a contrast is a multivariate function defined on a certain

set YV of random vectors y which only depends on the probability density of y and whose global
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maxima only correspond to some separation solutions. Hence the (global) maximization of a
contrast solves the separation problem. In this paper the set ) is the set of white vectors, i.e.
vectors y(n) such that E[yy?] = I. As a consequence [1] the maximization of a given contrast
has to be realized onto the set of unitary matrices.

Let us define the following four functions:

N N
TZy) = Y (Cafwa])®;  Clw) = D (Cumlysy,yis vir, ¥il)? 5
i1=1 i1,ip=1
i
N N
Ca(y) = Y (Cumlyiy, iy, ¥ins¥ia)® 5 Ca(@) = Y (Cumfyiy, Y, Yios ¥is))” -
e pym
13>12
We propose the following result:
Proposition 1. If (a1, as, a3) € (—oo, 12, the function
\7041;042,&3 (y) = I(y) + 2(0[161 (y) + QQCQ(y) + a303(y)) (1)

s a contrast for white vectors y.

Proof. Because ai < 1 for k = 1,2,3, we have Ju;.00,05(y) < J1,1,1(y). Now recalling that
Ji,1,1(y) is a contrast (see e.g. [4] or [5]) then J11,1(y) < Ji,1,1(a). Because the sources are
statistically independent their cross-cumulants are zero and thus Ci(a) = Ca(a) = C3(a) = 0.
Then J11.1(a) = Z(a) = Ja; 9,05 (@) and considering altogether the above results Ty, as.05(Y) <
Jou as,05(@). Then the function Jyu, .05 (y) has to be maximized. Finally, because J1,1,1(y) is
a contrast, it is not difficult to see that the equality holds in Ju, as,05(¥) < Ja1 00,05 (@) only for
separating states. Thus Ju, a0,05(¥) is a contrast. O
Let us make three remarks.

R1: Let us notice that if &1 = ap = a3 = 0 then Jy0,0(y) = Z(y) which is the ICA based contrast.
Also if a1 = ap = a3 = 1 then J1,1,1(y) is the JADE based contrast. Finally if a; = 0.5 and
as = az = 0 then *7%,0,0(?/) is the STOTD based contrast. All other values of oy, k = 1,2, 3,
yields a new contrast.

R2: For simplicity we have only considered fourth-order cumulants. But, using the results in [5],
the proposition 1 can be easily generalized to any order of cumulants if it is greater or equal to
three.

R3: If a given contrast have cross-cumulants then following the same principle of the above proof,
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one can parameterized alike its cross-cumulants. This is done here in Proposition 1 using the

contrast J1,1,1(y)-

ITII. THE CASE OF TWO SOURCES

Let us now consider the specific case of N = 2 for which we would like to determine an argument
of the maximization of Ju, a,,04(y). For this task we follow now the same derivations as in [1].
Using the following notation Y;, i, 5 i = Cum[yi,, Yi,, Yis, ¥iy), the generalized contrast in (1) can

be written as
2 2 2 2 2
Jor,e0(Y) = Y1111+ Ya00 +201(Yi 112+ Yio02) +202Y7 19 (2)

where we have drop the dependency of the contrast w.r.t. as because the term C3(y) does not

exist. Assuming that a first whitening stage have been realized on the observations, we have

10
B\ e 1

then to determine a unitary matrix H which we parameterized as H =

Introducing the notation £ = 6 — %, the contrast Ju, a,(¥) in (2) can be written as Ju,,a,(Y) =
(€2 +4)72 Zi:o bré® where

by = A1 +2a142 + 20943

bs = 4(2-— al)A4 + 4(30[1 — 2052)148

b = 2(2+ al)Al + 4(4 —oa1 + 20(2)142 + 4(9(11 — 2(12)A3 + 4(3 —3a1 + a2)A5 +
by = 8(3-— OlQ)A4 + 8(1 — 201 + ag)AG + 16(3 —3a; + Oé2)Ag

(

(
4(6a1 — 4ag) Ag

(
bo = 2(1+ 20 +ag)A; +16(2+ a1)As + 8(9 + az)As + 8(3 — a2) A5 +
(

4(1 — 207 + CMQ)A7 + 32(2 — al)Ag (3)
where, using X;, i, i5.is = Cum[z;,, Zi,, T4y, iy ), the values of Ay, k=1,...,9, are
w2 2 _
A = Xi111+X3090 Ag = Xq1,1,2X2222 — X1,1,1,1X1,2,2,2
w2 2 _
Az = Xi{112+tX{2909 A7 = Xq1,1,1X2222
w2 _
Az = X122 Ag = Xpi122(X1222 — X1,1,1,2)
Ay = Xi222X992922 —Xi1,1,1X1,1,12 A9 = X1,1,2X1,2,2,2

As = Xii22(X2222 +X1,1,1,1)
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Now the derivative of Jy, a, W.r.t. & is dj‘zl%‘” = (2 +4)73 Zi:o cp&* where
Cq = —bg H C3 = 16[)4 - 2b2 3 Co = 12b3 — 3b1 ; Cc1 = 8b2 - 4b0 ) Cy = 4b1 .

Now one has to calculate the values of ¢ such that Zi:o cxé® = 0. This can be realized in
closed-form since it is the zeros of a polynomial of degree 4. Then we keep the ¢ leading to the
maximal value of the contrast. Finally, the value of 0 is determined from the zeros of % — £0 — 1
in keeping the one in (—1,1]. The Jacobi-like algorithm based on the above developments is
denoted gICA (a1, ag) for “generalized ICA” of parameters (a1, az). The implementation follows

the same lines as the original ICA [1].

IV. COMPUTER SIMULATION

In order to illustrate the behaviour of the gICA algorithm for different values of @1 and as a
computer simulation is presented in the case of five sources. We consider discrete i.i.d. signal
called PS(7) [5] which takes its values in the set {—1 , 0, 7} with the respective probability

{H—% , 77—1 , ﬁ} This gives a simple way to parameterize the fourth-order cumulant of

the source which is C4[a] = 72

— 7 — 2. The first two sources are PS(1.5) (negative fourth-order
cumulant), the following two are PS(2.5) (positive fourth-order cumulant) and the last one is
Gaussian (i.i.d.). We use blocks of Ny = 200 data. The components of the mixing matrix G are
chosen randomly with an uniform law between —1 and +1 and is kept constant. The condition
number of the considered matrix is 5.02. The performances of the algorithm are associated to
a non-negative index ind(-) [5] defined on the global matrix S = HG. A small value of ind(-)
indicates the proximity to one separating solution. The mean and standard deviation (STD) of
the estimated index ind(-) over 100 Monte-Carlo runs are plotted with a solid line for gICA(0, 0),
a dotted line for gICA(0, 1), a dashdot line for gfCA(1,0) and a dashed line for glCA(1,1) as a
function of sweeps?. The figure shows that the performance of the gICA algorithm can depend

on the parameters (a1, asz). In the presented case, gICA(1,0) has the best performances.

V. CONCLUSION AND DISCUSSION

We have proposed a new contrast function in parameterizing some cross-cumulants and derived
the analytical solution in the case of two sources. A computer simulation illustrate the behavior
of the algorithm for four different values of the parameters. Clearly works remain to be done to

2A sweep is one “iteration” consisting in processing the outputs through all the possible pairs.
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validate the usefulness of the proposed “generalized” algorithm. The simulation show (onto one
example) that one could take advantage of the parameters e.g. to derive an optimal contrast.
On the other hand, as exemplified in [6] for the ICA and JADE algorithms, performances of
this kind of approach can significantly differ for sources with different fourth-order cumulant and

with a non-Gaussian background noise. This can be a direction of future works.
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Fig. 1. For N = 5, the mean and STD of the index over 100 independent runs is plotted for gICA(0,0)
(solid line), gICA(0,1) (dotted line), gICA(1,0) (dashdot line) and gICA(1,1) (dashed line) as a

function of sweeps.
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