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Abstract—Energy forecasting models deployed in industrial ap-
plications face uncertainty w.r.t. data availability, due to network
latency, equipment malfunctions or data-integrity attacks. In
particular, the case when a subset of features that has been used
for model training becomes unavailable when the model is used
operationally poses a major challenge to forecasting performance.
Ad-hoc solutions, e.g., retraining without the missing features,
may work for a small number of features, but they soon become
impractical, as the number of models grows exponentially with
the number of features. In this work, we present a principled
approach to introducing resilience against missing features in en-
ergy forecasting applications via robust optimization. Specifically,
we formulate a robust regression model that is optimally resilient
against missing features at test time, considering both point
and probabilistic forecasting. We develop three solution methods
for the proposed robust formulation, all leading to Linear
Programming problems, with varying degrees of tractability and
conservativeness. We provide an extensive empirical validation
of the proposed methods in prevalent applications, namely,
electricity price, load, wind production, and solar production,
forecasting, and we further compare against well-established
benchmark models and methods of dealing with missing fea-
tures, i.e., imputation and retraining. Our results demonstrate
that the proposed robust optimization approach outperforms
imputation-based models and exhibits similar performance to
retraining without the missing features, while also maintaining
computational practicality. To the best of our knowledge, this is
the first work that introduces resilience against missing features
into energy forecasting.

Index Terms—resilient energy forecasting, missing data, miss-
ing features, robust optimization, robust regression.

I. INTRODUCTION

SHORT-TERM forecasting, ranging from a few minutes
to a few days ahead, is key to ensure the safe, reliable,

and economic operation of modern power systems. It pertains
to several applications, such as load [1], electricity price [2],
wind production [3], and solar production [4], forecasting,
which, throughout this paper, will be referred to as energy
forecasting [5]. The overarching goal in all applications is to
estimate some characteristics of a target variable at a future
time interval, such as the mean or a set of quantiles, as a
function of associated features. For example, wind production
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is associated with wind speed, load is associated with temper-
ature, etc.

A. Background and Motivation

Arguably, most research on energy forecasting focuses on
improving predictive performance, which largely depends on
data quality and availability. During the development of the
forecasting model, i.e., at training time, potential missing
data are usually treated in a preprocessing step. The implicit
assumption is that input data would be complete and always
available during the forecasting model deployment, i.e., at test
time. However, real-world industrial applications may face
several operational data management challenges that would
emerge only after the model is deployed [6]. Undoubtedly,
missing features in an operational setting, i.e., when a subset
of features used for model training becomes unavailable at
test time, may severely affect forecasting performance. Ideally,
models deployed in industrial applications should be resilient
[7], i.e., they should maintain consistent performance, without
requiring excessive manual tuning or relying on empirical
solutions, in case that data are not available when needed.

There are several reasons that could lead to missing features
(or feature deletion), e.g., malicious data-integrity attacks,
network latency, and sensor failures. In Europe, e.g., system
operators must publish, at specific times of day, various day-
ahead predictions and system data, which are subsequently
used by stakeholders as input to, e.g., electricity price fore-
casting models. However, an EC survey [8] that assesses the
timeliness of data published on the ENTSO-E transparency
platform finds that “for every data domain, fewer than 40%
of users reported that data were always there when needed.”
Similarly, an ECMWF survey [9] identifies user dissatisfaction
regarding data turnaround of numerical weather predictions
(NWPs) that are used as input to short-term renewable pro-
duction forecasting. But even if data are typically provided in
a timely fashion, data availability is not 100% guaranteed, and
a robust fallback solution is always desirable if not necessary.
Notably, however, uncertainty w.r.t. data availability is largely
overlooked in the energy forecasting literature.

B. Literature Review

Missing features at test time is a subject that receives scarce
attention, contrary to missing data during training, which can
be addressed with techniques such as Multiple Imputation [10]
or can be directly embedded within the learning model [11],
[12]. In wind power forecasting, [13] examines two methods to
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handle missing features, namely retraining without the missing
features and imputation. Retraining consistently outperforms
imputation and the difference is more pronounced when data
are missing in batches. However, the number of additional
models required is the combination of all features, which
renders retraining impractical. Similarly, [14] develops several
models to forecast electricity demand at a household level;
given data availability at test time, the appropriate model is
selected from a decision tree. The same approach, i.e., training
several models to deal with uncertain data availability, is also
considered in [15] to directly forecast the trading decisions
of a renewable producer participating in a day-ahead market.
An integrated imputation procedure to replace missing features
within a long short-term memory network for solar production
forecasting is presented in [16]; the performance, however,
deteriorates as the percentage of missing values increases, and
no comparison against retraining is provided.

A related stream of research examines energy forecasting
under data-integrity attacks, mostly dealing with uncertainty
in the target variable and focusing on training data. Several
load forecasting models are evaluated in [17] against attacks
that affect the training process by permutating historical ob-
servations; none of the models considered provides adequate
performance under large-scale attacks. A subsequent work [18]
leverages robust statistics and shows that selecting the ℓ1 norm
as the loss function proves resilient even under large-scale
attacks. Similarly, [19] studies the robustness of short-term
wind production forecasting models under false-data injection
attacks, considering both point and probabilistic forecasts.
Conversely, [20] formulates a poison attack methodology to
exploit load forecasting models. Tangentially related to data-
integrity attacks on load forecasting are works on outlier
detection [21], [22], [23], which focus on identifying attacks
that have occurred and replacing any corrupt data. On the
other hand, [24] and [25] consider adversarial attacks at test
time applied to load forecasting. Specifically, [24] shows
that manipulating temperature values at test time leads to
a significant decrease in accuracy and increased operational
costs, whereas [25] employs Bayesian learning to enhance
the robustness of deep-learning-based models under several
adversarial attacks.

One way to view data-integrity attacks is as processes that
introduce feature uncertainty; the same also applies to the
case of missing features. Indeed, advanced forecasting models
are typically cognizant of some form of feature uncertainty,
even if this is unknown to the forecaster, and address it
with regularization, e.g., ℓ1-regularized (Lasso) regression
[26] or ℓ2-regularized (ridge) regression. Introducing random-
ness during training also enhances model robustness; popular
methods include bagging and sampling a subset of features,
as in randomized ensembles such as Random Forests [27],
using dropout layers in deep learning models, and genera-
tive adversarial networks, among others. In fact, [25] shows
that regularization and treating model parameters as random
variables increase robustness in load forecasting applications.
Interestingly, a big part of the success of regularization meth-
ods is their “hidden” robustness. For example, both the ℓ1-
regularized [28] and the ℓ2-regularized [29] regressions are

equivalent to the solution of robust optimization problems
[30]. Beyond regularized regression, several applications of
robust optimization in different machine learning areas exist
[31], such as classification [32] and deep learning [33]. We
highlight [34], which describes a robust learning support
vector machine algorithm for classification where a different
set of features might be missing at each observation, as a
core foundation of our current work. Uniform feature deletion,
i.e., the same features missing across all observations, is
considered as an alternate setting in [34], which is deemed as
not efficiently solvable, except for a small number of features
through enumeration. Notably, the connection between feature
uncertainty, robust optimization, and regularization is rarely
discussed in the context of energy forecasting.

C. Aim and Contribution

In this work, we present a robust optimization approach to
design energy forecasting models that are optimally resilient
when a subset of features used for model training becomes
unavailable at test time. We formulate a robust regression
model, readily applicable to point and probabilistic forecast-
ing, which minimizes the worst-case loss when a subset of
features is missing. We present three solution methods for
the resulting robust optimization formulation considering the
quantile loss, all leading to Linear Programming (LP) prob-
lems: (i) a method based on enumeration, which is practical
for a small number of features; (ii) a deterministic reformula-
tion, which, although tractable, provides conservative results
thus being more suitable for the main setting of [34] with
different features missing across observations, and (iii) an
affinely adjustable reformulation [35], which offers an efficient
solution method to the uniform feature deletion setting of [34],
remains tractable, and is less conservative than the previous
method. We further consider extensions to piecewise linear
loss functions, which can be used to approximate quadratic,
and in general convex, loss functions, whereas [34] only
considers the hinge loss. We evaluate the proposed methods
in prevalent applications, namely electricity price, load, wind
production, and solar production, forecasting, considering a
day-ahead horizon. We further compare the proposed approach
against established benchmark models, including regulariza-
tion and randomization-based training, coupled with different
methods of handling missing data, i.e., imputation and retrain-
ing. We demonstrate that the proposed approach outperforms
imputation-based models and exhibits similar performance
to retraining without the missing features, while preserving
practicality. Notably, by evenly distributing coefficient weights
across features during training, it hedges against missing the
most important feature at test time. Preliminary results of this
work were presented at [36].

Our main contribution is two-fold. Firstly, we propose a
robust regression model that is, by design, resilient against
missing features at test time, with the following key advan-
tages: (i) consistent performance and lower model degradation
when features are missing, including the worst-case scenario
of missing the most important feature, and (ii) computational
tractability through LP reformulations, which can also be
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applied to approximations of quadratic, and in general convex,
loss functions. Secondly, we benchmark against current state-
of-the-art forecasting models and methods to handle feature
uncertainty for both point and probabilistic forecasting, and
quantify the aforementioned advantages in several prevalent
energy forecasting applications. To the best of our knowledge,
this is the first work that introduces resilient energy forecast-
ing and benchmarks against missing features at test time, a
situation that may emerge in industrial applications after the
forecasting model is deployed.

D. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II presents the mathematical background and the proposed
model. Section III develops the solution methodology. Sec-
tion IV presents the experimental setup and the input data,
and Section V discusses the numerical results. Section VI
concludes and provides directions for future work.

II. PRELIMINARIES AND PROPOSED MODEL

In this section, we present preliminaries on linear regression
(in Subsection II-A), describe the process of modeling feature
uncertainty (in Subsection II-B), and present the proposed
robust formulation (in Subsection II-C).

A. Preliminaries

Let yi ∈ R be the target variable (e.g., electricity prices,
load, wind/solar production) and xi ∈ Rp be a p-size vector
of associated features from a set P = {1, . . . , p} (e.g., weather
data, historical data), with subscript i denoting an observation
from a training data set {(yi,xi)}ni=1 of n observations.
Throughout, the term [n] is used as shorthand for {1, . . . , n}.
A regression model is defined as a mapping function f ∈ F :
x ∈ Rp −→ y ∈ R, where F is a hypothesis space. Here, we
focus exclusively on linear models parameterized by a set of
coefficients w ∈ Rp. To ease the notation, we assume that the
bias term is modeled by appending a constant vector of ones
to x. The problem of estimating the parameters of a linear
regression model is given by:

min
w

∑
i∈[n]

l(yi −w⊺xi), (1)

where l is the selected loss function to be minimized 1. Typical
choices are the quadratic loss l(·) = (·)2 (least squares or LS)
and the ℓ1 norm l(·) = | · | (least absolute deviations or LAD).

Both the LS and the LAD models are employed to derive
point estimates of the target variable. Dealing, however, with
uncertainty necessitates the usage of probabilistic forecasts as
an input in many decision-making processes. Quantile regres-
sion (QR) [37] is a general approach to derive probabilistic
forecasts in the form of predictive quantiles. A QR model

1Note that the linear regression model can straightforwardly accommodate
nonlinear dependencies by considering polynomial terms, local weights, etc.

minimizes the quantile (pinball) loss for a specific quantile τ ,
defined as:

l(yi −w⊺xi; τ) = τ(yi −w⊺xi)
+ + (1− τ)(w⊺xi − yi)

+

= max (τ(yi −w⊺xi), (τ − 1)(yi −w⊺xi)) , (2)

where (t)+ = max(0, t). In fact, the ℓ1 loss can be viewed as
a special case of the quantile loss estimating the 50th quantile
(median). This is straightforward to show considering that
|x| = max(x,−x), τ = 0.5, and that scaling the objective
does not affect the solution.

B. Modeling Feature Uncertainty

Our goal is to formulate a robust regression model, which
accounts for missing features after model deployment (i.e., at
test time) and maintains consistent performance. To this end,
we introduce binary variables α ∈ {0,1}p and model the
availability of the i-th feature observation as xi ⊙ (1 − α),
where ⊙ is the element-wise multiplication, and αj equals 1
if the j-th feature is missing (i.e., missing features are set to
zero).

At this point, there are two issues that relate to energy
forecasting applications that warrant a discussion.

First, in practice, some features cannot be deleted at test
time. It makes little sense to delete, e.g., calendar variables,
which are regularly employed in energy forecasting. Let J ⊆
P denote the subset of features that can be deleted at test
time, and C = P−J denote the set of features that cannot be
deleted. It is straightforward to account for this case by setting
αj = 0 ∀j ∈ C, therefore features in C cannot go missing.

Second, a standard technique to model nonlinear relation-
ships within a linear regression is to include polynomial and
interaction terms of associated features. A classic example
in energy forecasting is to add quadratic and cubic terms of
temperature in load forecasting models [38]. It follows that all
features derived from the same variable should be treated as
a group of features (i.e., if missing, they are all missing).

We address both the aforementioned issues by enforcing a
set of equality constraints, Mα = 0, where M ∈ Rm×p.
Namely, if the first feature cannot be deleted (i.e., α1 = 0),
then the row vector [1,0] is appended to M . Similarly, if α1 =
α2, i.e., they represent a group of features, then [−1, 1,0] is
appended to M .

Following the above, we consider the discrete uncertainty
set:

U = {α
∣∣ α ∈ {0,1}p,

∑
j∈[p]

αj = Γ,Ma = 0}, (3)

that models the representation of feature availability, where Γ
(integer) is the budget of robustness (for Γ = 0, all features
are present, whereas for Γ = p all features are missing).

C. Proposed Robust Formulation

The proposed robust formulation employs the representation
of the availability of the i-th feature observation xi⊙ (1−α),
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and builds a robust regression model using the uncertainty set
(3), as follows:

min
w

max
α∈U

∑
i∈[n]

l
(
yi −w⊺(xi ⊙ (1−α))

)
. (4)

Inspired by [34], we refer to model (4) as feature-deletion ro-
bust regression (FDRR). The problem objective is to minimize
the worst-case loss when Γ features are missing, assuming
that the same features are missing across all observations2,
while also respecting additional constraints arising from the
fact that a subset of features could not be deleted or that
different features might be grouped. In the latter case, Γ is
selected appropriately to account for feature groups.

Interestingly, minimizing the worst-case loss when a subset
of features is missing (4) shares many similarities with feature
selection and feature importance. On one hand, feature se-
lection concerns methods to improve out-of-sample predictive
accuracy by optimally selecting a feature vector. Usually, this
involves gradually adding features to the model. Intuitively, a
feature that improves performance will also have significant
impact when deleted; however, the problems are not equiv-
alent. Feature importance, on the other hand, concerns post-
hoc methods to assess the individual feature contribution to
model performance, with the goal to improve explainability
— see, e.g., the permutation importance metric proposed in
[27]. Notably, our proposal effectively optimizes the model
based on feature importance by design.

Next, we consider (4), using the quantile loss, which, along
with its special case — the ℓ1 loss — are of particular interest
in energy forecasting applications. Hence, using the quantile
loss representation (2) in (4), we obtain the following robust
optimization problem:

min
w

max
α∈U

∑
i∈[n]

max
(
τ(yi −w⊺(xi ⊙ (1−α))),

(τ − 1)(yi −w⊺(xi ⊙ (1−α)))
)
.

(5)

Note that setting τ = 0.5 and scaling the objective would yield
the robust formulation for the ℓ1 regression:

min
w

max
α∈U

∑
i∈[n]

∣∣yi −w⊺(xi ⊙ (1−α))
∣∣.

For practical reasons, we can recast (5) using a robust
constraint, introducing auxiliary t ∈ R, as follows:

min
w,t

t, (6a)

s.t.
∑
i∈[n]

max
(
τ(yi −w⊺(xi ⊙ (1−α))),

(τ − 1)(yi −w⊺(xi ⊙ (1−α)))
)
≤ t, ∀α ∈ U , (6b)

which involves an inequality that contains the sum of maxima
of linear functions. Indeed, in a deterministic setting, i.e., in the
absence of ∀α ∈ U , constraint (6b) could be straightforwardly
and, most importantly exactly, reformulated using auxiliary

2Note that [34] considers the case where different features are missing
across observations, which leads to a more conservative problem.

variables. Consider a specific instance of α, say αk. Then,
the deterministic reformulation of (6b) would be:

min
w,t,ξ

t, (7a)

s.t.
∑
i∈[n]

ξi ≤ t, (7b)

τ(yi −w⊺(xi ⊙ (1−αk))) ≤ ξi, i ∈ [n], (7c)
(τ − 1)(yi −w⊺(xi ⊙ (1−αk))) ≤ ξi, i ∈ [n], (7d)

where ξi ∈ R is an auxiliary variable, and ξ an appropriate
vector. However, care must be given when applying deter-
ministic reformulations in a robust setting, as they could lead
to over-conservative solutions [35]. It is interesting to note
that (7) is essentially equivalent to “retraining” for a specific
combination of missing features. In fact, repeating (7) for all
elements of all sets U constructed by the admissible values of
Γ = {0, . . . , |J |} retrieves the solution proposed in [13], [14],
[15], i.e., retraining without the missing features.

Before proceeding to the solution methods of (6), let us
revisit the uncertainty set, U , and consider its convex hull,
represented by the polyhedral uncertainty set, A,

A = {α
∣∣ 0 ≤ α ≤ 1,

∑
j∈[p]

αj = Γ,Ma = 0}. (8)

Note that M is unimodular, as all of its entries are 0, 1 or −1,
and at most two entries per column are non-zero, at which
case the column-wise sum is zero. Since Γ is also integer,
all vertices of A occur at integer values, therefore the LP
relaxation of the inner max problem over α in (5) is exact.
Evidently, replacing U by its convex hull A in constraint (6b)
also yields equivalent solutions [39, Ch. 10].

III. SOLUTION METHODS

In this section, we present three methods to solve the robust
optimization problem (6). In Subsection III-A, we describe a
method suitable for a small number of features, whereas in
Subsections III-B and III-C we present reformulations that lead
to tractable problems. Finally, in Subsection III-D, we discuss
an extension to piecewise linear loss functions.

A. Vertex Enumeration of FDRR (FDRR-V)

Typically, most energy forecasting problems have relatively
large sample sizes (e.g., n is in the order of 104 for series with
hourly resolution) compared to the number of features, i.e.,
n >> p. Hence, if the number of features is small, problem
(6) could be solved by vertex enumeration of the uncertainty
set A. In fact, since all vertices of A are contained in the
original finite set U , vertex enumeration of A is equivalent to
an enumeration of the elements of U .

Let V denote the number of elements of U , equivalently the
number of vertices of A; assuming no grouping constraints,
V =

(|J |
Γ

)
(grouping constraints would further reduce V ). Let
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ξki be an auxiliary variable, for each i ∈ [n] and each vertex
k ∈ [V ]. Constraint (6b) is equivalently written as:∑

i∈[n]

ξki ≤ t, k ∈ [V ], (9a)

yi −w⊺(xi ⊙ (1−αk)) ≤ 1
τ ξ

k
i , i ∈ [n], k ∈ [V ], (9b)

−yi +w⊺(xi ⊙ (1−αk)) ≤ 1
1−τ ξ

k
i , i ∈ [n], k ∈ [V ], (9c)

where constraints (9a)–(9c) essentially enumerate the deter-
ministic reformulation (7b)–(7d) for all vertices. Hence, the
solution of FDDR by vertex enumeration, referred to as
FDRR-V, is given by the following deterministic LP:

FDRR-V: min
w,t,ξ

t, s.t. (9a) − (9c), (10)

where ξ is an appropriate vector that represents variables ξki .
FDRR-V ensures that the worst-case α remains the same
across all observations and leads to an exact solution of
(6). Evidently, for a specific realization of uncertainty, say
αk, retraining — see (7) — sets a lower bound to the in-
sample error of FDRR-V, which subsumes all individual cases.
However, if the number of features is not small enough,
unavoidably V gets large enough to render both retraining
and FDRR-V at least impractical, in terms of models to be
trained and LPs to be solved, respectively.

B. Reformulation of FDRR (FDRR-R)
An alternative approach is to first apply deterministic refor-

mulation to the maxima terms in (6b), leading to:∑
i∈[n]

ξi ≤ t, (11a)

yi −w⊺(xi ⊙ (1−α)) ≤ 1
τ ξi, i ∈ [n],∀α ∈ A, (11b)

−yi +w⊺(xi ⊙ (1−α)) ≤ 1
1−τ ξi, i ∈ [n],∀α ∈ A. (11c)

In turn, (11b)-(11c) are further reformulated to deterministic
constraints. Since both constraints are similar, we illustrate the
reformulation for (11b).

Changing the order of multiplication in the left-hand side
(lhs) of (11b), and considering that the inequality holds ∀α ∈
A, i.e., the worst-case of α, constraint (11b) is equivalent to:

yi −w⊺xi +max
α∈A

(w ⊙ xi)
⊺α ≤ 1

τ ξi, i ∈ [n]. (12)

The inner max in (12) can be written with explicit constraints,
for the i-th observation, as follows:

max
α

(w ⊙ xi)
⊺α, (13a)

s.t. α ≤ 1 : µ+
i ≥ 0, (13b)∑

j∈[p]

α = Γ : ζ+i , (13c)

Mα = 0 : π+
i , (13d)

α ≥ 0, (13e)

where µ+
i , ζ+i , π+

i are dual variables of appropriate size. Since
problem (13a) is linear in α, it can be replaced by its dual:

min
µ+

i ≥0,ζ+
i ,π+

i

∑
j∈[p]

µ+
ij + Γζ+i , (14a)

s.t. µ+
i + ζ+i +M⊺π+

i ≥ xi ⊙w, (14b)

and hence, the inner max in (12) can be replaced by (14). Evi-
dently, the min operator becomes redundant. Hence, constraint
(11b) is replaced by the following inequalities:

yi −w⊺xi +
∑
j∈[p]

µ+
ij + Γζ+i ≤ 1

τ ξi, i ∈ [n], (15a)

µ+
i + ζ+i +M⊺π+

i ≥ xi ⊙w, i ∈ [n], (15b)

µ+
i ≥ 0, i ∈ [n]. (15c)

Similarly, constraint (11c) is replaced by:

−yi +w⊺xi +
∑
j∈[p]

µ−
ij + Γζ−i ≤ 1

1−τ ξi, i ∈ [n], (15d)

µ−
i + ζ−i +M⊺π−

i ≥ −xi ⊙w, i ∈ [n], (15e)

µ−
i ≥ 0, i ∈ [n]. (15f)

Summarizing, the reformulation of the FDRR, referred to
as FDRR-R, yields the following deterministic LP:

FDRR-R: min
w,t,ξ,

µ+,µ−,ζ+,ζ−,π+,π−

t, s.t. (15a) − (15f). (16)

Note, however, that the uncertainty is now spread over
several constraints, separately optimizing the worst-case loss
of each observation. This worst-case loss may occur for
different α per observation, i.e., different features might be
missing at each observation, which leads to the representation
of uncertainty considered in [34]. When modeling feature
uncertainty in Section II-B, however, we assumed the same α
across all observations. Evidently, FDRR-R considers a more
general case and thus provides a conservative approximation
of (6), which is more pessimistic.

C. Affinely Adjustable Reformulation of FDRR (FDRR-AAR)

The conservativeness introduced by the reformulation of the
maxima terms is reduced using adjustable auxiliary variables
[35]. As ξi is not a true decision variable, it may be adjusted
to the realization of α as long as inequalities (11b) and (11c)
hold. To this end, we introduce linear decision rules vi ∈
R,ui ∈ Rp, and substitute ξi = vi +u⊺

i α, i.e., ξi is an affine
function of uncertainty. Constraint (6b) is written as:∑

i∈[n]

(vi + u⊺
i α) ≤ t, ∀α ∈ A, (17a)

yi −w⊺(xi ⊙ (1−α)) ≤ 1
τ (vi + u⊺

i α), i ∈ [n],

∀α ∈ A, (17b)
−yi +w⊺(xi ⊙ (1−α)) ≤ 1

1−τ (vi + u⊺
i α), i ∈ [n],

∀α ∈ A, (17c)

Similarly to (12), constraint (17a) is equivalent to:∑
i∈[n]

vi +max
α∈A

∑
i∈[n]

u⊺
i α ≤ t,
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and introducing dual variables µ, ζ, and π (similarly to (13b),
(13c), and (13d), respectively), constraint (17a) is replaced by:

∑
i∈[n]

vi +
∑
j∈[p]

µj + Γζ ≤ t, (18a)

µ+ ζ +M⊺π ≥
∑
i∈[n]

ui, (18b)

µ ≥ 0. (18c)

Constraint (17b) is equivalent to:

yi −w⊺xi +max
α∈A

(xi ⊙w − 1
τui)

⊺α ≤ 1
τ vi, i ∈ [n],

and similarly to (12), constraint (17b) is replaced by:

yi −w⊺xi +
∑
j∈[p]

µ+
ij + Γζ+i ≤ 1

τ vi, i ∈ [n], (19a)

µ+
i + ζ+i +M⊺π+

i ≥ xi ⊙w − 1
τui, i ∈ [n], (19b)

µ+
i ≥ 0, i ∈ [n], (19c)

whereas constraint (17c) is replaced by:

−yi +w⊺xi +
∑
j∈[p]

µ−
ij + Γζ−i ≤ 1

1−τ vi, i ∈ [n], (20a)

µ−
i + ζ−i +M⊺π−

i ≥ −xi ⊙w − 1
1−τui, i ∈ [n], (20b)

µ−
i ≥ 0, i ∈ [n]. (20c)

Lastly, the affinely adjustable reformulation of the FDRR
(FDRR-AAR) is equivalent to the following deterministic LP:

FDRR-AAR: min
w,t,v,u,µ,µ+,µ−,
ζ,ζ+,ζ−,π,π+,π−

t, s.t. (18a)− (20c). (21)

Note that we are still optimizing over the worst-case loss
per observation, hence FDRR-AAR is a conservative approx-
imation of (6). However, allowing for adjustable auxiliary
variables reduces the induced conservativeness compared to
FDRR-R. On the other hand, FDRR-AAR leads to a tractable
LP, contrary to FDRR-V that leads to an LP whose size grows
combinatorially. This trade-off between tractability and con-
servativeness places FDRR-AAR as an intermediate solution
between FDRR-V and FDRR-R.

D. Extension to Piecewise Linear Loss Functions
In what follows, we discuss an extension of our proposal to

piecewise linear loss functions.
Consider a piecewise linear loss function

l(y −w⊺x; c, b) = max
j=1,...,m

(cj(y −w⊺x+ bj)), (22)

parameterized by the m-size vectors c, b. Note that the quan-
tile loss is a special case of (22), where m = 2, c = [τ, τ−1]⊺,
and b = 0. Using the piecewise linear loss function (22), the
FDRR model (6) becomes

min
w,t

t,

s.t.
∑
i∈[n]

max
j∈[m]

(
cj(yi −w⊺(xi ⊙ (1−α)) + bj)

)
≤ t,

∀α ∈ U ,

which can be solved with any of the proposed solution
methods. For the solution with vertex enumeration, FDRR-V,
we enumerate the deterministic reformulation for all vertices
and all m vectors; hence, (9b)-(9c) are replaced by

cj(yi −w⊺(xi ⊙ (1−αk)) + bj) ≤ ξki , i ∈ [n],

k ∈ [V ], j ∈ [m].

For FDRR-R, (11b)-(11c) are replaced by

cj(yi −w⊺(xi ⊙ (1−α)) + bj) ≤ ξi, i ∈ [n], j ∈ [m],

∀α ∈ A,

which are further reformulated to deterministic constraints
similarly to (11b)-(11c) — see (15). For FDRR-AAR, (17b)-
(17c) are replaced by

cj(yi −w⊺(xi ⊙ (1−α)) + bj) ≤ (vi + u⊺
i α), i ∈ [n],

j ∈ [m],∀α ∈ A,

which are further reformulated similarly to (11b)-(11c) — see
(19) and (20).

The piecewise linear loss functions can be used to approxi-
mate quadratic, and in general convex, loss functions. Consider
for example an FDRR model with a quadratic loss (LS). It
is straightforward to solve the robust regression model with
vertex enumeration, but this approach is only be practical for
a small number of features. For a larger number of features,
it is not straightforward to reformulate the robust problem, as
the quadratic loss leads to robust constraints that are quadratic
in α and thus more challenging to handle — see [40, Ch. 16].
Hence, a reasonable approach would be to use a piecewise
linear function to approximate the quadratic loss and solve
the resulting robust problem as described above. In general,
the piecewise linearization becomes relevant in first order
approximations of the loss function, e.g., in the context of
adversarial training [41].

IV. EXPERIMENTAL SETUP AND INPUT DATA

In this section, we present the setup of our numerical
experimentation (in Subsection IV-A) and list the input data for
several energy forecasting applications (in Subsection IV-B).

A. Experimental Setup

Our experimental setup involves four prevalent day-ahead
energy forecasting applications, namely (i) electricity price,
(ii) load, (iii) wind production, and (iv) solar production,
forecasting. First, we select a set of features that lead to good
performance in a linear regression model following known best
practices. We then train several benchmarks with the same
set of features, including both linear regression models and
machine learning models with randomization-based training
(e.g., Random Forest),3 which are known to perform well
in energy forecasting applications. We compare their out-of-
sample performance under feature deletion to the proposed

3We opt for tree-based ensembles over other machine learning models
(e.g., neural networks) as they showcase exceptionally good performance
in regression settings with minimal tuning effort, which makes them ideal
benchmarks [42].
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FDRR and retraining without the missing features. Evidently,
our goal is not to search for improved forecast accuracy, but
rather for resilient energy forecasting, i.e., to examine the
robustness of the models.

For point forecasting, we test the following models:
• LS: LS regression.
• LAD: LAD regression.
• LS-ℓ1\ℓ2: LS regression with ℓ1 (lasso) or ℓ2 (ridge)

regularization penalties.
• RF: Random Forest.
• RETRAIN [13]: It involves retraining an LAD model for

each combination of missing features, in total
∑|J |

k=0

(|J |
k

)
times. To facilitate comparisons with the proposed ap-
proach, we use LAD instead of LS models to derive
equivalent performance when Γ is 0 or |J |.

• FDRR(Γ): Robust regression with ℓ1 loss, and robustness
budget Γ.

For probabilistic forecasting, we test the following models:
• QR: Quantile regression.
• QR-ℓ1: Quantile regression with ℓ1 regularization.
• QRF: Quantile Regression Forests [43], a generalization

of Random Forests.
• FDRR(Γ): Robust regression with quantile loss, and ro-

bustness budget Γ.
For the models that cannot handle missing values directly,

i.e., LS-type, LAD, RF, QR-type, and QRF, we follow the
impute-then-regress approach with mean imputation, setting
missing features at their in-sample mean. We purposefully
choose mean imputation as a simple method that is suitable
for an operational setting, 4 thus avoiding complicated and
computationally costly methods, which may not add in terms
of predictive performance — see e.g., [44] for a discussion
in a similar context with missing data. For LS-ℓ1\ℓ2 and RF,
we use 5-fold cross-validation on the training data for hyper-
parameter tuning. We select the hyperparameters with lowest
cross-validation error via grid search, and we retrain each
model using the full training set. The same hyperparameter
values are subsequently used in the probabilistic case for QR-
ℓ1 and QRF, respectively. For FDRR(Γ) missing values are set
to zero, and a different model is trained for each value of Γ. To
ease the notation, FDRR refers to the group of models trained
over all Γ. Clearly, as the number of missing features is known
prior to deriving out-of-sample forecasts, we use FDRR with
Γ set at the exact number of missing features. By definition,
FDRR(0) is equivalent to an LAD model. In addition, FDRR
and RETRAIN are equivalent for Γ = 0 and Γ = |J |. In all
cases, data are scaled between [0, 1] prior to training. Lastly,
to derive probabilistic forecasts a different model is trained
per quantile τ in all cases except for QRF.

To evaluate performance we use standard error metrics. For
point forecasting, we use the mean absolute error (MAE) for
electricity price and wind/solar production (both normalized

4In practice, missing data might be replaced by correlated features (which
may have been removed during feature selection), if such are available, e.g.,
data from nearby locations. Practitioners may also apply imputation methods
that rely on their experience, whose performance is assessed empirically for
a specific forecasting application.

TABLE I
OVERVIEW OF THE DATA SETS.

Data set (# series) Source n |P| |J |

Electricity Prices (1) [45] 13140 9 5
Load (21) [46] 16200 625 4×111
Wind (10) [47] 8807 13 2×4
Solar (3) [47] 8784 13 12

w.r.t. nominal capacity), and the mean absolute percentage
error (MAPE) for load. For probabilistic forecasting, we use
the average pinball loss on 9 equally spaced quantiles, i.e.,
τ ∈ {0.1, . . . , 0.9}.

B. Input Data for Energy Forecasting Applications

Table I provides an overview of the selected data sets. For
each energy forecasting application, it shows the number of
series, the source, the training sample size, n, and the sizes
of the sets P and J . Note that the bias (intercept) term is
included in P and cannot be deleted. Further, all cases involve
features that capture seasonality and cannot be deleted. Thus,
when Γ = |J |, FDRR leads to a model that captures the
seasonal component of each series.

1) Electricity Prices: We use hourly data from the French
electricity market, spanning the period 2017-2019, with a
50/50 training/test split. Features include calendar variables
(cannot be deleted), historical price lags, and TSO published
data, namely net load forecast (demand minus renewable
production) and system margin (ratio of net load and available
thermal generation). For historical lags, we examine the partial
autocorrelation function and select lags that are significant at
the 5% level.

2) Load: We use data from GEFCom 2012 [46], com-
prising 4.5 years of hourly load and temperature data from
a US utility with 21 zones. Following [17], [18], 3 full
years of data are used with a 75/25 training/test split. We
construct the input feature vector according to the vanilla
model [38], which includes a linear trend, calendar variables
(one-hot encoded), polynomial terms of temperature, and
interaction terms of the above, with a total of 292 features. We
consider 4 distinct groups of features based on temperatures
from different stations and examine performance under group
deletion; this leads to 625 features in total and 111 features per
group. Clearly, the subset of features that cannot be deleted
(trend and calendar variables) is included only once. The
results presented concern zone 21 (aggregate demand) using
temperatures from stations 1-3 and a fictitious station with the
average temperature across all stations.

3) Wind Production: We use data from GEFCom2014 [47],
comprising 2 years of hourly production data from 10 wind
farms, and apply a 50/50 training/test split. Following [19], the
selected features include wind speed forecasts, with quadratic
and cubic terms, wind direction forecasts (both at 10m and
100m), and Fourier terms to model the diurnal patterns (these
cannot be deleted). Forecasts of both wind speed and direction
are derived from forecasts of the U- and V-speed components
for each height level; thus, if either is missing, all derivative
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features will be missing. We consider two groups of features
that include wind speed and wind direction at 10m and 100m
and assume that these can be missing independently. The
results presented concern zone 1 of the data set.

4) Solar Production: We use data from GEFCom2014 [47],
comprising 2 years of hourly production data from 3 PV
plants located in Australia and 12 NWP variables, including
precipitation, solar radiation, and temperature — see [47] for
detail, and apply a 50/50 training/test split. We train a separate
model for each hour of the day (except for RF, QRF) using the
respective NWPs as input features, and assume that each NWP
variable could be missing independently. Only hours with
non-zero solar radiation are considered. The results presented
concern zone 1 of the data set.

V. NUMERICAL RESULTS

In this section, we evaluate the FDRR solution methods (in
Subsection V-A), we compare FDRR with various benchmarks
(in Subsection V-B), and we perform a sensitivity analysis
w.r.t. the number of observations with missing features (in Sub-
section V-C). All FDRR solutions are solved with GUROBI
using the Python API.

A. Evaluation of FDRR Solution Methods

In this subsection, we assess the solution methods presented
in Section III, namely FDRR-V, FDRR-R, and FDRR-AAR, by
iterating over all eligible combinations of missing features and
deleting the respective feature observations from the test set.

Fig. 1 plots the average value (per Γ) and range of the point
forecast error metrics, for each solution method, in the four
energy forecasting applications. Note that for each value of
Γ, we evaluate the methods for the same number of features
missing at test time. To avoid cluttering, we only show the
odd (and omit the even) values of Γ in the solar production
forecasting plot. Unsurprisingly, we observe that the accuracy
for each solution method decreases on average as Γ increases,
i.e., as more features are missing. Recall that for Γ = 0, FDRR
is a standard LAD, whereas for Γ = |J | all features in J
are ignored, i.e., coefficients are set to zero; hence the three
methods are equivalent in these cases (not shown in the plots).

The results in Fig. 1 indicate a similar performance on
average for the three methods, with the exception of FDRR-R
in electricity price forecasting — see top for Γ = 4 — and
solar production forecasting — see bottom. As the number
of eligible combinations increases, FDRR-R becomes overly
conservative, setting all coefficients in J to zero, which in
turn decreases the accuracy. For example, in solar production
forecasting, FDRR(3)-R becomes equivalent to FDRR(|J |)-R,
which explains the plateau as Γ increases further. Notably,
FDRR-V and FDRR-AAR provide similar performance in
terms of average value and range in all applications. Overall,
FDRR-V ranks higher in solar production forecasting (in
about 90% of the combinations) but the differences are very
small. FDRR-AAR yields slightly better results compared to
FDRR-V, in electricity price and load forecasting, whereas
the results are the same in wind production forecasting.
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Fig. 1. Average point forecasting error for all combinations of missing
features. Bars indicate the range, V indicates the number of vertices per Γ.

We further evaluate the three solution methods in terms
of computational cost, by comparing the required CPU time
on an Intel Core i7 at 2.7 GHz with 16GB of RAM, using
default solver settings. Our results indicate that when the
number of vertices V is relatively small, all methods incur
a similar cost. However, as V increases, FDRR-V incurs a
computational cost that is several orders of magnitude larger
than the other methods. For example, in solar production
forecasting, for Γ = 6, the CPU time ranges from around 200
to over 27× 103 seconds for FDRR(6)-V, whereas the worst
case is less than 1 second and 3.5 seconds, for FDRR(6)-R
and FDRR(6)-AAR, respectively. Clearly, FDRR-V incurs a
much higher computational cost, which renders this method
at least impractical, even for a modest number of features.

We also evaluated the performance on probabilistic fore-
casts, by repeating the above experiment and training a
separate model for each quantile. The obtained results and
remarks were very similar to the point forecasts. Pinball loss
values increased with Γ, FDRR-R yielded high pinball loss
values, similarly to the errors in Fig. 1, whereas FDRR-V and
FDRR-AAR yielded quite similar performance.

Henceforth, we shall further consider only FDRR-AAR,
which stands out as the best FDRR representative with good
out-of-sample performance and low computational cost.
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Fig. 2. Point forecasting error metrics versus number of missing features.

B. Comparison of FDRR with Benchmark Models

In this subsection, we compare FDRR with the benchmark
models presented in Subsection IV-A. For all applications, we
iterate over each day of the test set, sample a subset of features,
and delete it, repeating the process 10 times.

Fig. 2 presents the average error metrics for point fore-
casting as a function of the number of missing features. In
the nominal case, i.e., without missing features, performance
is on par with previous works. Specifically, for each appli-
cation, the best performing model is: LAD, for electricity
price forecasting, with MAE 6.79 EUR/MWh; LS-ℓ2, for load
forecasting, with MAPE 5.07%; LAD, for wind production
forecasting, with MAE 13.55%, and LS, LS-ℓ2, for solar
production forecasting, with MAE 6.47%.

Overall, RETRAIN yields the best results in terms of
accuracy when features are missing, followed by FDRR, which
is clearly a second best. The relative average (maximum) error
increase of FDRR compared to RETRAIN is 4.7% (10%) for
electricity price, 1.6% (4%) for load, 0.4% (1.7%) for wind
production, and 21% (38%) for solar production forecasting.
The underlying trend suggests that the gap between FDRR and
RETRAIN increases as the number of eligible combinations
increases, with its worst case observed for solar production
forecasting with 6 missing features, i.e.,

(
12
6

)
= 924 com-

binations. FDRR outperforms imputation-based benchmarks,
namely LS-type, LAD, and RF, in almost all cases, with an
average error reduction of 2% for electricity price, 37% for
load, 9% for wind production, and 5% for solar production
forecasting. A few exceptions appear, although the differences
are small — see top left plot for Γ = 1 (7% worse than LAD)
and bottom left plot for Γ = {2, 3} (5% worse than LS-ℓ2).

Taking a closer look at the imputation-based benchmarks,
we observe that LS and LAD exhibit a similar performance, in
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Fig. 3. FDRR(Γ) coefficients for point forecasting of electricity prices.

all applications. Note that for load forecasting (top right plot),
although both LS and LAD perform on par with [17] in the
nominal case, they suffer from bad conditioning, which leads
to very large coefficients, and, in turn, to bad performance
when features are missing (not shown in plot). The regularized
models LS-ℓ1/ℓ2, in general, improve the performance of the
LS model — see ,e.g., LS-ℓ1/ℓ2 for load (top right) and solar
production (bottom left) forecasting. Lastly, RF exhibits the
worst performance on average amongst the benchmarks, with
the exception of the load forecasting case.

To gain further insight, we focus on point forecasting
of electricity prices and examine the effect of Γ. Fig. 3
presents the learned coefficients for Γ = {0, 1, 2}. Considering
FDRR(0), i.e., LAD, the plot suggests that the price at lag
24 (DA Price 24 or F.3), i.e., same hour of the previous
day, is the most important feature, followed by the Net Load
Forecast (F.1); therefore, if any of them is missing, the impact
on performance is expected to be significant. On the other
hand, the coefficients for prices at lag 144 (F.4), and lag
168 (F.5) are small, therefore their deletion has a smaller
impact. Intuitively, F.3, F.4, and F.5 carry similar informa-
tion pertaining to the autoregressive and seasonal nature of
electricity prices. For Γ = 0, these three coefficients vary
significantly, with a standard deviation of approximately 17%.
For Γ = 1 we observe that the values of the coefficients come
closer, and their standard deviation decreases to 3.5%, while
for Γ = 2 their standard deviation further decreases to 0.09%.
Effectively, FDRR(Γ) hedges against feature uncertainty by
assigning similar coefficients to these features, which, in
turn, mitigates the adverse effect of deleting F.3 from the
test set. Moreover, we observe that the total weight of the
coefficients increases with Γ to compensate for the larger
number of features set to zero during training. Similar results
are also observed for the other applications, but omitted due to
space limitations. For solar production, e.g., FDRR(1) hedges
against the deletion of the surface solar radiation down (SSRD)
forecast, which is arguably the most important feature.

We further examine performance for probabilistic forecast-
ing, and illustrate in Fig. 4 the average pinball loss for all
applications. Note that we do not examine RETRAIN in this
case, as applying it for each quantile becomes prohibitive.
Indeed, the results closely resemble the ones presented in
Fig. 2. The ranking of the models is generally maintained, with
FDRR outperforming the benchmarks in all cases except for
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Fig. 5. FDRR(Γ) coefficients for probabilistic forecasting of electricity prices.
Higher transparency indicates lower quantiles (a 10% step is considered).

electricity price forecasting for Γ = 1 (7% worse than QRF),
with an average pinball loss reduction of 5% for electricity
price, 46% for load, 15% for wind production, and 21%
for solar production forecasting. Moreover, as the number
of missing features increases, the pinball loss increases in
a qualitatively similar fashion as the respective error metrics
for point forecasts. Lastly, as Γ increases, the values of the
coefficients for all quantiles come closer — see, e.g., Fig. 5 for
an illustration of probabilistic forecasting of electricity prices,
for Γ = {0, 1, 2}.

C. Sensitivity Analysis

In this subsection, we perform sensitivity analysis w.r.t. the
number of observations with missing features. Specifically, we
sample a percentage of test observations that have missing
features, we draw the number of missing features for each
observation from a uniform distribution, and we subsequently
sample the feature subset that is missing.

Table II presents the average point forecasting errors over 10
runs. The parentheses indicate the difference from the lowest
nominal error, which is used to measure performance degrada-
tion. The best model is underlined in bold and the second best
is in bold. As expected, RETRAIN leads to the smallest error
when features are missing and is also the most consistent, i.e.,
it has the smallest degradation. FDRR typically ranks second
both in terms of expected error and performance degradation,
with generally small differences from RETRAIN (with the
exception of solar production forecasting, where the perfor-
mance degradation of FDRR is about twice higher compared
to RETRAIN). Compared to imputation-based benchmarks,
FDRR leads to both smaller error and smaller degradation in
all cases except for the lower percentages in solar production
forecasting, where it is worse than LS-ℓ2 but only for up to
0.04%. Further, the relative improvement of FDRR over the
benchmarks increases with the percentage of observations with
missing features. Considering only imputation-based bench-
marks, all models exhibit similar performance for electricity
price and wind production forecasting, whereas LS-ℓ1 and
LS-ℓ2 are significantly better than the rest for load and solar
production forecasting.

We further investigate how FDRR performs with an ap-
proximation of the quadratic loss function for solar production
forecasting, which is the only application where LS ranks first
without missing features. We use a piecewise linear function
with 20 equally spaced breakpoints within [−1, 1] — recall
that the production is normalized between [0, 1] — to approx-
imate the quadratic loss and solve the robust problem using
the affinely adjustable reformulation. Results are shown in the
last row of Table II (FDRR-PWL). Without missing features,
FDRR-PWL and LS have the same error, indicating that the
piecewise linearization approximates the quadratic loss well.
However, when features are missing, FDRR-PWL significantly
outperforms LS (similarly to the way FDRR outperforms LAD).
Furthermore, we note that for the lowest percentage (5%) of
observations with missing features, where LS performs better
than LAD, FDRR-PWL slightly outperforms FDRR.

VI. CONCLUSIONS

This work provided a principled approach to enhance re-
silience against missing features in energy forecasting ap-
plications via robust optimization. We formulated a robust
regression model that is optimally resilient against missing
features at test time, considering both point and probabilistic
forecasting, and we developed three solution methods for the
resulting robust formulation, leading to LP problems. The
numerical results indicated that the affinely adjustable refor-
mulation method provides the best trade-off between accuracy
and computational cost. In a comprehensive evaluation against
several benchmarks coupled with imputation, the proposed ap-
proach improved point (probabilistic) forecasting performance
in the presence of missing features by 2% (5%) for electricity
price, 37% (46%) for load, 9% (15%) for wind production,
and 5% (21%) for solar production. Moreover, the proposed
approach performed comparable to retraining without the
missing features, while avoiding a large number of additional
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TABLE II
POINT FORECASTING ERROR VERSUS PERCENTAGE (%) OF

OBSERVATIONS WITH MISSING FEATURES.

% of obs. 0 % 5 % 10 % 25% 50 %

El. Prices LS 7.25 (0.46) 7.39 (0.60) 7.52 (0.73) 7.91 (1.12) 8.57 (1.78)
LS-ℓ2 7.71 (0.92) 7.83 (1.04) 7.95 (1.16) 8.29 (1.50) 8.87 (2.08)
LS-ℓ1 7.33 (0.54) 7.47 (0.68) 7.60 (0.81) 7.99 (1.19) 8.65 (1.86)
LAD 6.79 (0.00) 6.95 (0.16) 7.10 (0.31) 7.56 (0.77) 8.33 (1.54)
RF 6.90 (0.10) 7.07 (0.28) 7.23 (0.44) 7.73 (0.94) 8.58 (1.79)
RETRAIN 6.79 (0.00) 6.92 (0.12) 7.03 (0.24) 7.38 (0.59) 7.97 (1.18)
FDRR 6.79 (0.00) 6.94 (0.15) 7.08 (0.28) 7.48 (0.69) 8.20 (1.41)

Load LS 5.22 (0.14) 13.65 (8.58) 22.35 (17.28) 46.87 (41.79) 89.07 (84.0)
LS-ℓ2 5.07 (0.00) 5.74 (0.67) 6.38 (1.31) 8.39 (3.32) 11.69 (6.62)
LS-ℓ1 5.09 (0.02) 5.60 (0.53) 6.10 (1.03) 7.58 (2.51) 10.03 (4.96)
LAD 5.18 (0.10) 10.60 (5.53) 15.90 (10.83) 31.58 (26.51) 56.79 (51.72)
RF 5.72 (0.65) 6.13 (1.06) 6.55 (1.48) 7.81 (2.74) 9.88 (4.81)
RETRAIN 5.18 (0.10) 5.27 (0.20) 5.38 (0.31) 5.66 (0.58) 6.13 (1.06)
FDRR 5.18 (0.10) 5.28 (0.21) 5.39 (0.31) 5.69 (0.62) 6.18 (1.11)

Wind LS 13.90 (0.36) 14.29 (0.75) 14.65 (1.11) 15.85 (2.31) 17.78 (4.24)
LS-ℓ2 13.90 (0.36) 14.29 (0.75) 14.65 (1.11) 15.85 (2.31) 17.78 (4.24)
LS-ℓ1 13.95 (0.41) 14.32 (0.79) 14.67 (1.14) 15.83 (2.29) 17.71 (4.18)
LAD 13.55 (0.00) 13.92 (0.39) 14.29 (0.75) 15.46 (1.92) 17.36 (3.82)
RF 13.56 (0.01) 13.95 (0.41) 14.34 (0.80) 15.64 (2.11) 17.66 (4.12)
RETRAIN 13.55 (0.00) 13.84 (0.30) 14.06 (0.52) 14.78 (1.24) 16.09 (2.55)
FDRR 13.55 (0.00) 13.85 (0.31) 14.07 (0.53) 14.80 (1.26) 16.15 (2.61)

Solar LS 6.47 (0.00) 6.79 (0.32) 7.10 (0.63) 8.04 (1.57) 9.65 (3.18)
LS-ℓ2 6.47 (0.00) 6.71 (0.23) 6.92 (0.45) 7.58 (1.11) 8.73 (2.26)
LS-ℓ1 6.51 (0.04) 6.74 (0.27) 6.95 (0.48) 7.58 (1.11) 8.70 (2.23)
LAD 6.54 (0.07) 6.91 (0.44) 7.29 (0.82) 8.42 (1.95) 10.35 (3.88)
RF 7.71 (1.24) 8.20 (1.72) 8.62 (2.15) 10.03 (3.56) 12.38 (5.91)
RETRAIN 6.54 (0.07) 6.62 (0.15) 6.71 (0.24) 6.94 (0.47) 7.37 (0.90)
FDRR 6.54 (0.07) 6.74 (0.27) 6.95 (0.48) 7.53 (1.06) 8.51 (2.04)

FDRR-PWL 6.47 (0.00) 6.69 (0.22) 6.94 (0.47) 7.64 (1.17) 8.83 (2.36)

models, and provided resilience in the adverse scenario where
the most important feature is missing in an operational setting.
A sensitivity analysis w.r.t. the number of observations with
missing features further validated the practical applicability
of the proposed approach. Overall, our results highlight the
importance of moving beyond standard accuracy metrics to
also consider resilience in adverse scenarios, prior to model
deployment.

This work can be extended in several directions. In terms
of applications, future work can focus on enhancing resilience
within an intra-day forecasting horizon. Jointly considering
resilience against missing features and noisy data due to cyber-
attacks also presents an interesting methodological challenge.
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