
HAL Id: hal-03792179
https://hal.science/hal-03792179v1

Preprint submitted on 29 Sep 2022 (v1), last revised 15 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Continuous PDE Dynamics Forecasting with Implicit
Neural Representations

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain
Rakotomamonjy, Patrick Gallinari

To cite this version:
Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, Patrick Gallinari.
Continuous PDE Dynamics Forecasting with Implicit Neural Representations. 2022. �hal-03792179v1�

https://hal.science/hal-03792179v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Preprint.

CONTINUOUS PDE DYNAMICS FORECASTING WITH
IMPLICIT NEURAL REPRESENTATIONS

Yuan Yin∗1 Matthieu Kirchmeyer∗1,2 Jean-Yves Franceschi∗2
Alain Rakotomamonjy2 Patrick Gallinari1,2

1Sorbonne Université, CNRS, ISIR, F-75005 Paris, France 2Criteo AI Lab, Paris.

ABSTRACT

Effective data-driven PDE forecasting methods often rely on fixed spatial and / or
temporal discretizations. This raises limitations in real-world applications like
weather prediction where flexible extrapolation at arbitrary spatiotemporal loca-
tions is required. We address this problem by introducing a new data-driven ap-
proach, DINO, that models a PDE’s flow with continuous-time dynamics of spa-
tially continuous functions. This is achieved by embedding spatial observations
independently of their discretization via Implicit Neural Representations in a small
latent space temporally driven by a learned ODE. This separate and flexible treat-
ment of time and space makes DINO the first data-driven model to combine the
following advantages. It extrapolates at arbitrary spatial and temporal locations;
it can learn from sparse irregular grids or manifolds; at test time, it generalizes to
new grids or resolutions. DINO outperforms alternative neural PDE forecasters in
a variety of challenging generalization scenarios on representative PDE systems.

1 INTRODUCTION

Modeling the dynamics and predicting the temporal evolution of physical phenomena is paramount
in many fields, e.g. climate modeling, biology, fluid mechanics and energy (Willard et al., 2022).
Classical solutions rely on a well-established physical paradigm: the evolution is described by
differential equations derived from physical first principles, and then solved using numerical analysis
tools, e.g. finite elements, finite volumes or spectral methods (Olver, 2014). The availability of
large amounts of data from observations or simulations has motivated data-driven approaches to this
problem (Brunton & Kutz, 2022), leading to a rapid development of the field with deep learning.

The main motivations for this research track include developing surrogate or reduced order models
that can approximate high-fidelity full order models at reduced computational costs (Kochkov et al.,
2021), complementing classical solvers, e.g. to account for additional components of the dynamics
(Yin et al., 2021), or improving low fidelity models (De Avila Belbute-Peres et al., 2020).

Most of these attempts rely on workhorses of deep learning like CNNs (Ayed et al., 2020) or GNNs
(Li et al., 2020; Pfaff et al., 2021; Brandstetter et al., 2022). They all require prior space discretization
either on regular or irregular grids, such that they only capture the dynamics on the train grid and
cannot generalize outside it. Neural operators, a recent trend, learn mappings between function spaces
(Li et al., 2021b; Lu et al., 2021) and thus alleviate some limitations of prior discretization approaches.
Yet, they still rely on fixed grid discretization for training and inference: e.g., regular grids for Li et al.
(2021b) or a free-form but predetermined grid for Lu et al. (2021). Hence, the number and / or location
of the sensors has to be fixed across train and test which is restrictive in many situations (Prasthofer
et al., 2022). Mesh-agnostic approaches for solving canonical PDEs (Partial Differential Equations)
are another trend (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018). In contrast to physics-agnostic
grid-based approaches, they aim at solving a known PDE as usual solvers do, and cannot cope with
unknown dynamics. This idea was concurrently developed for computer graphics, e.g. for learning
3D shapes (Sitzmann et al., 2020; Mildenhall et al., 2020; Tancik et al., 2020) and coined as Implicit
Neural Representations (INRs). When used as solvers, these methods can only tackle a single initial
value problem and are not designed for long-term forecasting outside the training horizon.

∗Equal contribution

1

Preprint.

Table 1: Comparison of data-driven approaches to spatiotemporal PDE forecasting.

Model Reference
1. Agnostic

prediction on new
initial conditions

2. Train /
test space grid
independence

3. Evaluation at
arbitrary spatial

locations

4. Free-form spatial
domain (manifold,

irregular mesh)

5. Time
continuous

6. Time
extrapolation

Discrete
{

NODE Chen et al. (2018) 3 7 7 7 3 3
MP-PDE Brandstetter et al. (2022) 3 7 7 3 7 3

Operator
{

MNO Li et al. (2021a) 3 3 7 7 7 3
DeepONet Lu et al. (2021) 3 7 3 3 3 7

INRs
{

PINNs Sitzmann et al. (2020) 7 3 3 3 3 7
DINO Ours 3 3 3 3 3 3

Because of these limitations, none of the above approaches can handle situations encountered in many
practical applications such as: different geometries, e.g. phenomena lying on a Euclidean plane or an
Earth-like sphere; variable sampling, e.g. irregular observation grids that may evolve at train and test
time as in adaptive meshing (Berger & Oliger, 1984); scarce training data, e.g. when observations are
only available at a few spatiotemporal locations; multi-scale phenomena, e.g. in large scale-dynamics
systems as climate modeling, where integrating intertwinned subgrid scales a.k.a. the closure problem
is ubiquitous (Zanna & Bolton, 2021). These considerations motivate the development of new
machine learning models that improve existing approaches on several of these aspects.

In our work, we aim at forecasting PDE-based spatiotemporal physical processes with a versatile
model tackling the aforementioned limitations. We adopt an agnostic approach, i.e. not assuming any
prior knowledge on the physics. We introduce DINO (Dynamics-aware Implicit Neural representa-
tions), a model operating continuously in space and time, with the following contributions.

Continuous flow learning. DINO aims at learning the PDE’s flow to forecast its solutions, in a
continuous manner so that it can be trained on any spatial and temporal discretization and applied to
another. To this end, DINO embeds spatial observations into a small latent space via INRs; then it
models continuous-time evolution by a learned latent Ordinary Differential Equation (ODE).

Space-time separation. To efficiently encode different sequences, we propose a novel INR parame-
terization, amplitude modulation, implementing a space-time separation of variables. This simplifies
the learned dynamics, reduces the number of parameters and greatly improves performance.

Spatiotemporal versatility. DINO combines the benefits of prior models cf. Table 1. It tackles new
sequences via its amplitude modulation. Sequential modeling with an ODE makes it extrapolate to
unseen times within or beyond the train horizon. Thanks to INRs’ spatial flexibility, it generalizes to
new grids or resolutions, predicts at arbitrary positions and handles sparse irregular grids or manifolds.

Empirical validation. We demonstrate DINO’s versatility and state-of-the-art performance v.s. prior
neural PDE forecasters, representative of grid-based, operator and INR-based methods, via thorough
experiments on challenging multi-dimensional PDEs in various spatiotemporal generalization settings.

2 PROBLEM DESCRIPTION

Problem setting. We aim at modeling, via a data-driven approach, the temporal evolution of a
continuous fully-observed spatiotemporal phenomenon. It is described by trajectories v : R→ V in a
set Γ ; we use vt , v(t) ∈ V . Trajectories share the same dynamics but differ by their initial condition
v0 ∈ V . R is the temporal domain and V is the functional space of the form Ω→ Rn, where Ω ⊂ Rp
is a compact domain of spatial coordinates and n the number of observed values. In other words, vt is
a spatial function of x ∈ Ω, with vectorial output vt(x) ∈ Rn; cf. examples of Section 5.1. To this end,
we consider the setting illustrated in Figure 1. We observe a finite training set of trajectories D, with
a free-formed spatial observation grid Xtr ⊂ Ω and on discrete times t ∈ T ⊂ [0, T]. At test time, we
are only given a new initial condition v0, with observed values v0|Xts

restricted to a new observation
grid Xts, potentially different from Xtr. Inference is performed on both train and test trajectories given
only the initial condition, on a new free-formed grid X ′ ⊂ Ω and times t ∈ T ′ ⊂ [0, T ′]. Inference
grid X ′ comprises observed positions (respectively Xtr and Xts for train and test trajectories) and
unobserved positions corresponding to spatial extrapolation. Note that the inference temporal horizon
is larger than the train one: T < T ′. For simplicity, In-s refers to data inX ′ on the observation grid (Xtr
for train /Xts for test), Out-s to data in X ′ outside the observation grid; In-t refers to times within the
train horizon T ⊂ [0, T], and Out-t to times in T ′\T ⊂ (T, T ′], beyond T , up to inference horizon T ′.

2

Preprint.

In-t Out-t

train

test

XtrXtr

Ω\XtrΩ\Xtr

DD

ΩΩ
00 TT T ′T ′

vtvt v0v0

Out-s

In-s

Ω\XtsΩ\Xts
Out-s

ΩΩ

XtsXts
In-s

Figure 1: (Left) We represent time contexts. The train trajectory consists of training snapshots (�),
observed in a train interval [0, T] denoted In-t. The line (—) in continuation is a forecasting of this
trajectory beyond In-t, in (T, T ′] denoted Out-t. The line below (—, test) is a forecasting from a new
initial condition v0 (�) on In-t and Out-t. (Middle and right) We illustrate spatial contexts. (Middle)
Dots (•) correspond to the train observation grid Xtr, denoted In-s. Out-s denotes the complementary
domain Ω \ Xtr. (Right) New test observation grid Xts, used as an initial point for forecasting (left).

Evaluation scenarios. The desired properties in Section 1 call for spatiotemporally continuous
forecasting models. We select six criteria that our approach should meet; cf. column titles of Table 1.
First, the model should be robust to the change of initial condition v0, i.e. generalize to test trajectories
(col. 1). Second, it should extrapolate beyond the train conditions: in space, on a test observation grid
that differs from the train one, i.e. X ′ = Xts 6= Xtr (In-s) (col. 2), and outside the observed train and
test grid, i.e. on X ′ \Xts,X ′ \Xtr (Out-s, col. 3); in time, between train snapshots (col. 5) and beyond
the observed train horizon T (Out-t, col. 6). Finally, it should adapt to free-form spatial domains, i.e.
to various geometries (e.g. manifolds) or irregular grids (col. 4). See also Figure 1.

Objective. To satisfy these requirements, we learn the flow Φ of the physical system:

Φ: (V × R)→ V, (vt, τ) 7→ Φτ (vt) = vt+τ ∀v ∈ Γ, t ∈ R. (1)

Learning the flow is a common strategy in sequential models to better generalize beyond the train time
horizon. Yet, so far, it has always been learned with discretized models, which poses generalization
issues violating our requirements. We describe these issues in Section 3.

3 RELATED WORK

We review current data-driven approaches for PDE modeling and the representative methods listed in
Table 1. We express the forecasting rule using the notations in Eq. (1): t is an arbitrary time; τ is an
arbitrary time interval; δt is a fixed, predetermined time interval (as a model hyperparameter).

Sequential discretized models. Most sequential dynamics models are learned on a fixed observed
grid Xtr and use discretized models, e.g. CNN or GNN to process the observations. CNNs require
observations on a regular grid but can be extended to irregular grids through interpolation (Chae
et al., 2021). GNNs are more flexible as they handle irregular grids, at an additional memory and
computational cost. Yet, prediction on new grids X ′ 6= Xtr fails experimentally for both CNNs and
GNNs, as these discretized models are biased towards the training grid Xtr, as we later show in
Section 5. We distinguish two types of temporal models which both extrapolate beyond the train
horizon due to their sequential nature. • Autoregressive models vt|X 7→ vt+δt|X (Long et al., 2018;
de Bézenac et al., 2018; Pfaff et al., 2021; Brandstetter et al., 2022). These models predict the sequence
from t only at fixed time increments δt and not in between. • Time-continuous extensions using
numerical solvers (vt|X , τ) 7→ vt+τ |X (Yin et al., 2021; Iakovlev et al., 2021) solve this limitation
as they provide a prediction at arbitrary times, thus remove dependency on the time discretization.

Operator learning. Recently, operator-based models aim at finding a parameterized mapping be-
tween functions. They define in theory space-continuous models. First, neural operators (Kovachki
et al., 2021) attempt to replace standard convolution with continuous alternatives. Fourier Neural
Operator (FNO, Li et al., 2021b) applies convolution in the spectral domain via Fast Fourier Trans-
formation (FFT). Graph Neural Operator (GNO, Li et al., 2020) performs convolution on a local
interaction grid described by a graph. Second, DeepONet (Lu et al., 2021) uses a coordinate-based
neural network to output a prediction at arbitrary time and space locations given a function observed
on a fixed grid. Three types of temporal models were used for operators with some limitations. • The
standard approach, v0 7→ vt, models the output at a given time t ∈ [0, T] within the train horizon

3

Preprint.

Figure 2: Proposed DINO model. Inference (left): given a new initial condition observed on a grid
Xts, v0|Xts

, forecasting amounts at decoding αt to ṽt, by unrolling α0 with a time-continuous ODE
dynamics model fψ . Train (right): given an observation grid Xtr and a space-continuous decoder gφ,
αt is learned by auto-decoding s.t. gφ(αt)|Xtr = vt|Xtr

. Its evolution is then modelled with fψ .

(Li et al., 2020); • A sequential extension, vt 7→ vt+δt, was proposed in Li et al. (2021a). • Finally,
a time-continuous version v0 7→ (t ∈ [0, T] 7→ vt) in DeepONet propose a solution at arbitrary
time and space locations. The first and third approaches are not designed to generalize beyond the
train horizon, i.e. when t > T as they are not sequential. The second solves this limitation but is only
able to predict solutions from t at fixed time increments of δt and not in-between. Furthermore, all
existing approaches make restrictive assumptions on the space discretization.

They lack flexibility when encoding spatial observations: FNO is limited to uniform Cartesian
observation grids due to FFT; GNO does not adapt well to changing observation grids as for the
GNN-based models in the previous paragraph; DeepONet is limited to input observations on fixed
observation locations. The latter are chosen at random spatial positions but should remain fixed
throughout training and testing.

Spatiotemporal INRs. Another class of models is based on coordinate-based NNs, called Implicit
Neural Representations (INRs, Sitzmann et al., 2020; Fathony et al., 2021; Tancik et al., 2020). These
space-continuous models share a similar objective as operators, despite constituting a separate research
field. INRs for spatiotemporal data take time as an input along spatial coordinates. Physics-informed
neural networks (PINNs, Raissi et al., 2019) use this formulation to solve PDEs, yet are limited to a
single known differential equation and a set of initial and boundary conditions. Fresca et al. (2020)
propose an agnostic INR approach to build reduced order models for electrophysiology. Extensions
for multi-sequence learning, e.g. for video generation (Yu et al., 2022; Skorokhodov et al., 2022) or
compression (Chen et al., 2021), learn a latent conditioning variable from an initial condition v0, i.e.
take the form v0 7→ (t ∈ [0, T] 7→ vt). Interestingly, these models can predict at an arbitrary time
t in the train horizon without unrolling a sequential model up to t. Yet, as they only learn mappings
from an initial condition v0 to a function of time vt in the train domain, they fail to predict beyond
train conditions, as we show in Section 5. DINO is a new instance of spatiotemporal INR which solves
this limitation via a time-continuous dynamics model of the underlying flow, (vt, τ) 7→ vt+τ .

4 MODEL

We present DINO, the first space / time-continuous model that tackles all prediction tasks of Section 2,
without the above limitations. We specify DINO’s inference procedure (Section 4.1), illustrated in Fig-
ure 2 (left), then introduce each of its components (Section 4.2) and how they are trained (Section 4.3,
Figure 2 (right)). Finally, we detail our implementation based on amplitude modulation, a novel INR
parameterization for spatiotemporal data which performs separation of variables (Section 4.4).

4.1 INFERENCE MODEL

As explained in Section 2, we aim at estimating the flow Φ in Eq. (1), so that our model can be trained
on an observed grid Xtr and perform inference given a new one Xts, both possibly irregular. To this
end, we leverage a space- and time-continuous formulation, independent of a given data discretization.

4

Preprint.

At inference, DINO starts from an initial condition v0 ∈ V and uses a flow to forecast its dynamics.
DINO first embeds spatial observations from v0 into a latent vector α0 of small dimension dα via an
encoder of spatial functions eϕ : V → Rdα (ENC). Then, it unrolls a latent time-continuous dynamics
model fψ : Rdα → Rdα given this initial condition (DYN). Finally, it decodes latent vectors via a
decoder gφ : Rdα → V into a function of space (DEC). At any time t, gφ takes as input αt and outputs
a function ṽt : Ω→ Rn. This results in the following model, illustrated in Figure 2 (left):

(ENC) α0 = eϕ(v0), (DYN)
dαt
dt

= fψ(αt), (DEC) ∀t, ṽt = gφ(αt). (2)

4.2 COMPONENTS

We now further detail each component involved at inference from Eq. (2).

Encoder: αt = eϕ(vt). The encoder computes a latent vector αt given observation vt at any time
t. It is used in two different contexts, respectively for train and test. At train time, given an observed
trajectory vT = {vt}t∈T , it will encode any vt into αt (see Section 4.3). At inference time, only v0 is
available, and then only α0 is computed to be used as initial value for the dynamics. Given the decoder
gφ, αt is a solution to the inverse problem gφ(αt) = vt. We solve this inverse problem with auto-
decoding (Park et al., 2019). Denoting `dec(φ, αt; vt) = ‖gφ(αt)−vt‖22 the decoding loss where ‖·‖2
is the euclidean norm of a function and K the number of update steps, auto-decoding defines eϕ as:

eϕ(vt) = αKt , where ∀k > 1, αkt = αk−1t − η∇αt`dec(φ, α
k−1
t ; vt) and ϕ = φ. (3)

In practice, we observe a discretization (Xtr,Xts) and accordingly approximate the norm in `dec as
in Eq. (6). Compared to auto-encoding, auto-decoding underfits less (Kim et al., 2019) and is more
flexible: without requiring specialized encoder architecture, it handles free-formed (irregular or on a
manifold) observation grids as long as the decoder shares the same property.

Figure 3: Decod-
ing via INR Eq. (4)

Decoder: ṽt = gφ(αt). We define a flexible decoder using a coordinate-based
INR network with parameters conditioned on αt. An INR I : Rdθ → (Ω→ Rn)
is a space-continuous model parameterized by θ ∈ Rdθ which outputs a spatial
function Iθ defined on domain Ω. It approximates functions independently of
the observation grid, e.g. it handles irregular grids and changing observation
positions unlike FNO and DeepONet. Thus, it constitutes a flexible alternative
to operators suitable to auto-decoding. To implement the conditioning of the
INR’s parameters, we use a hypernetwork (Ha et al., 2017) hφ : Rdα → Rdθ ,
as illustrated in Figure 3. It generates high-dimensional parameters θt ∈ Rdθ
of the INR given the low-dimensional latent vector αt ∈ Rdα . In summary, the
decoder gφ, parameterized as h by φ, is defined as:

∀x ∈ Ω, ṽt(x) = gφ(αt)(x) , Ihφ(αt)(x). (4)

We provide further details on the precise implementation in Section 4.4.

Dynamics model: dαt
dt = fψ(αt). Finally, the dynamics model fψ : Rdα →

Rdα defines a flow via an ODE in the latent space. The initial condition can be
defined at any time t by encoding with eϕ the corresponding input function vt.

Overall flow. Combined altogether, our components define the following flow
in the input space that can approximate the data flow Φ in Eq. (1):

∀(t, τ), (vt, τ) 7→ gφ

(
eϕ(vt) +

∫ t+τ
t

fψ(ατ ′) dτ ′
)

where αt = eϕ(vt). (5)

To summarize, DINO defines a time-continuous latent temporal model with a space-continuous
emission function gφ, combining the flexibility of space and time continuity. This is fully novel to our
knowledge, as prior latent approaches are discretized (cf. Fraccaro (2018) for state-space models).

4.3 TRAINING

Given these three components (ENC), (DEC), (DYN), we now present their training procedure,
illustrated in Figure 2 (right). We use a fast and simple two-stage optimization, close to recent works

5

Preprint.

in video prediction (Yan et al., 2021), and provide implementation details in Appendix D. Given
the train sequences D, we first apply auto-decoding across times to obtain the corresponding latent
vectors αT = {αvt }t∈T ,v∈D, as well as the decoder parameters φ. We then learn the parameters of
the dynamics model ψ by modeling the latent flow over αvt for each v ∈ D. We detail this procedure
in Appendix D.1, which can be formalized as a bi-level optimization problem solved in parallel:

minψ `dyn(ψ, αT) , Ev∈D,t∈T
∥∥αvt − (αv0 +

∫ t
0
fψ(αvτ)dτ

)∥∥2
2

s.t. αT , φ = arg minαT ,φ `dec(φ, αT) , Ev∈D,x∈Xtr,t∈T
∥∥vt(x)− gφ(αvt)(x)

∥∥2
2

. (6)

4.4 DECODER IMPLEMENTATION VIA AMPLITUDE-MODULATED INRS

We now specify our implementation of decoder gφ in Eq. (4). This includes the definition of the
INR architecture Iθ and of the hypernetwork hφ. We introduce for the latter a new method called
amplitude modulation, which implements a space-time separation of variables.

Iθ as FourierNet. We implement Iθ as a FourierNet, a state-of-the-art INR architecture, which
instantiates a Multiplicative Filter Network (MFN, Fathony et al., 2021). A FourierNet relies on the
recursion in Eq. (7), where x ∈ Ω is an input spatial location, z(l)(x) is the hidden feature vector at
layer l for x and sω(l)(x) = [cos(ω(l)x), sin(ω(l)x)] is a Fourier basis:{

z(0)(x) = sω(0)(x), z(L)(x) = W (L−1)z(L−1)(x) + b(L−1)

z(l)(x) =
(
W (l−1)z(l−1)(x) + b(l−1)

)
� sω(l)(x) for l ∈ J1, L− 1K

, (7)

where we fix W (0) = 0, b(0) = 1, sω(0)(x) = x. Denoting W = [W (l)]L−1l=1 , b = [b(l)]L−1l=1 , ω =

[ω(l)]L−1l=1 , we fit a FourierNet to an input function v observed on a grid X by learning {W, b, ω} s.t.
∀x ∈ X , z(L)(x) = v(x). In practice, we observe that fixing ω uniformly sampled performs similarly
to learning them, so we exclude them from training parameters.

FourierNets are interpretable, a property we leverage to separate time and space via amplitude
modulation. Fathony et al. (2021) show that ∃M � L ∈ N,∃{c(m)

j }Mm=1 a set of coefficients that
depend individually on {W, b} and ∃{γ(m)}Mm=1 a set of parameters that depend individually on
those of the filters ω s.t. the jth dimension of z(L)(x) can be expressed as:

z
(L)
j (x) =

∑M
m=1 c

(m)
j sγ(m)(x) + bias (8)

Eq. (8) involves a basis of spatial functions {sγ(m)}Mm=1 evaluated on x and the amplitudes of this

basis {c(m)
j }Mm=1. Note that Eq. (8) can be extended to other choices of sω(l) (Fathony et al., 2021).

++

++

++ µt

(2)
µt

(2)
W

(2)
W

(2)
b
(2)
b
(2)

αtαt

xx

z
(0)
t
(x)z

(0)
t
(x)

s
ω

(
0
)

s
ω

(
0
)

××

W
′

W
′

µt

(0)
µt

(0)
W

(0)
W

(0)
b
(0)
b
(0)

s
ω

(
1
)

s
ω

(
1
)

z
(1)
t
(x)z

(1)
t
(x)

µt

(1)
µt

(1)
W

(1)
W

(1)
b
(1)
b
(1)

××

s
ω

(
2
)

s
ω

(
2
)

z
(2)
t
(x)z

(2)
t
(x)

W
(3)

W
(3)

b
(3)
b
(3)

z
(3)
t
(x)z

(3)
t
(x)

ṽt(x)ṽt(x)

xx

xx

Figure 4: Amplitude modula-
tion - Eq. (9), cf. text.

h as amplitude modulation. h generates the INR’s parameters
θt given αt to model a target input function vt. We propose to
implement h as elementwise shift and scale transformations (FiLM,
Perez et al., 2018) of the linear layers parameters W, b (excluding
those of the filters ω). Then, in Eq. (8), amplitudes c(m)

j only depend
on time while the basis functions sγ(m) only depend on space: this
corresponds to separation of variable (Le Dret & Lucquin, 2016).
We call our technique amplitude modulation. In practice, as Dupont
et al. (2022), we consider latent shift transformations as illustrated
in Figure 4 and detailed in Eq. (9). Eq. (9) extends Eq. (7) by
introducing a shift term µ

(l−1)
t at each layer l, defined as µ(l−1)

t =

W ′(l−1)αt, where W ′ = [W ′(l−1)]L−1l=1 is another weight matrix:

z
(l)
t (x) =

(
W (l−1)z(l−1)t (x) + b(l−1) + µ

(l−1)
t

)
� sω(l)(x). (9)

The INR’s parameters are defined as hφ(αt) = {W ; b+W ′αt;ω}
where φ = {W, b,W ′} are h’s parameters. Thus, amplitude modu-
lation separates time and space. We show in Table 5 that it signif-
icantly improves performance, particularly time extrapolation.

6

Preprint.

5 EXPERIMENTS

We assess the spatiotemporal versality of DINO, following Section 2. We introduce our experimental
setting (Section 5.1), which includes a variety of challenging PDE datasets, state-of-the-art baselines
and forecasting tasks. Then, we present and comment the experimental results (Section 5.2).

5.1 EXPERIMENTAL SETTING

Datasets. We consider the following PDEs defined over a spatial domain Ω, with further details in
Appendix C. • 2D Wave equation (Wave) is a second-order PDE ∂2u

∂t2 = c2∆u. u is the displacement
w.r.t. the rest position and c is the wave traveling speed. We consider its first-order form, so that
vt = (ut,

∂ut
∂t) has a two-dimensional output (n = 2). • 2D Navier Stokes (Navier-Stokes, Stokes,

1851) corresponds to an incompressible fluid dynamics dv
dt = −u∇v+ν∆v+f, v = ∇×u,∇u = 0,

where u is the velocity field and v the vorticity. ν is the viscosity and f is a constant forcing term;
n = 1. • 3D Spherical shallow water (Shallow-Water, Galewsky et al., 2004): it involves the
vorticity w, tangent to the sphere’s surface, and the thickness of the fluid h. The input is vt = (wt, ht)
(n = 2).

Baselines. We reimplement representative models from Section 3 and Table 1 and adapt them to
our multi-dimensional datasets. • CNODE (Ayed et al., 2020) combines a CNN and an ODE solver
to handle regular grids. • MP-PDE (Brandstetter et al., 2022) uses a GNN to handle free-formed
grids, yet is unable to predict outside the observation grid. We developed an interpolative extension,
I-MP-PDE, to handle this limitation; it performs bicubic interpolation on the observed grid and
training is done on the resulting interpolation. • MNO (Li et al., 2021a): an autoregressive version of
FNO (Li et al., 2021b) for regular grids; MNO can be evaluated on new uniform grids. • DeepONet
(Lu et al., 2021), considered autoregressively (Wang & Perdikaris, 2021) where we remove time from
the trunk net’s input. DeepONet can be evaluated on new spatial locations without interpolation.
• SIREN (Sitzmann et al., 2020) and MFN (Fathony et al., 2021) are two INR methods which we
extend to fit our setting. We consider an agnostic setting, i.e. without the knowledge of the differential
equation and perform sequence conditioning to generalize to more than a trajectory. This is achieved
by learning a latent vector with auto-decoding; it is then concatenated to the spatial coordinates.

Tasks. We evaluate models on various forecasting tasks which combine the evaluation scenarios
of Section 2. Performance is measured by the prediction Mean Squared Error (MSE) given only
an initial condition. • Space and time extrapolation. We consider a uniform grid X ′ for inference.
Training is performed on different observations grids Xtr subsampled from X ′ with different ratios,
s ∈ {5%, 25%, 50%, 100%}where s = 100% corresponds to the full inference grid, i.e.Xtr = X ′. In
this setting, we consider that all trajectories (train and test) share the same observation grid Xtr = Xts.
We evaluate MSE error onX ′ over the train time interval (In-t) and beyond (Out-t) at each subsampling
ratio. • Flexibility w.r.t. input grid. We vary the test observation grid, i.e. Xts 6= Xtr and perform
inference on X ′ = Xts, i.e. on the test observation grid (In-s) under two settings: . Generalizing
across grids: Xtr,Xts are subsampled differently from the same uniform grid; str (resp. sts) is the train
(resp. test) subsampling ratio. . Generalizing across resolutions: Xtr,Xts are subsampled with the
same ratio s from two uniform grids with different resolutions; the train resolution is fixed to rtr = 64
while we vary the test resolution rts ∈ {32, 64, 256}. • Data on manifold. We consider a PDE on
a sphere and combine several evaluation scenarios, as described later. • Finer time resolution. We
consider an inference time grid T ′ with a finer resolution than the train one T .

5.2 RESULTS

Space and time extrapolation. We report prediction MSE in Table 2 for varying subsampling
ratios s ∈ {5%, 25%, 100%} on Navier-Stokes and Wave. Appendix A provides a fine-grained
evaluation inside the train observation grid (In-s) or outside (Out-s) and reports additionally the results
for s = 50%. We visualize some predictions in Appendix B. DINO is compared to all baselines
when s = 100%, i.e. X ′ = Xtr = Xts, and otherwise it is compared only to models which handle
irregular grids and prediction at arbitrary spatial locations (DeepONet, SIREN, MFN, I-MP-PDE).
• General analysis. We observe that all models degrade when the subsampling ratio s decreases.
DINO performs competitively overall: it achieves the best Out-t performance on all subsampling
settings, it outperforms all the baselines on low subsampling ratios and performs comparably to the

7

Preprint.

Table 2: Space and time extrapolation. Train and test observation grids are equal and subsampled
from an uniform 64×64 grid, used for inference. We report MSE (↓) on the inference time interval
T ′, divided within training horizon (In-t, T) and beyond (Out-t, outside T) across subsampling ratios.

Model

Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

s = 5% subsampling ratio
Discrete

{
I-MP-PDE 8.154E−3 8.166E−3 7.926E−3 8.225E−3 7.055E−4 7.097E−4 1.138E−3 1.116E−3

Operator
{

DeepONet 3.330E−3 7.370E−3 1.346E−2 1.408E−2 8.331E−4 9.295E−3 1.692E−2 3.256E−2

INR
{

SIREN 8.741E−3 1.767E−1 4.303E−2 2.126E−1 2.738E−3 1.818E−2 3.339E−2 6.964E−2
DINO 1.029E−3 1.655E−3 1.326E−3 1.813E−3 4.088E−5 4.121E−5 6.415E−5 7.392E−5

s = 25% subsampling ratio
Discrete

{
I-MP-PDE 3.135E−4 7.245E−4 3.476E−4 7.658E−4 3.293E−5 1.108E−4 5.142E−5 1.545E−4

Operator
{

DeepONet 9.016E−4 5.936E−3 9.376E−3 1.328E−2 5.722E−4 1.061E−2 1.757E−2 3.221E−2

INR
{

SIREN 5.180E−3 2.175E−1 2.436E−1 3.861E−1 8.995E−4 1.292E−2 1.783E−2 5.143E−2
DINO 1.020E−4 4.504E−4 2.646E−4 5.951E−4 3.949E−6 4.436E−6 1.089E−5 1.174E−5

s = 100% subsampling ratio

Discrete
{

CNODE 2.319E−2 9.652E−2 2.305E−2 1.143E−1 2.337E−5 5.280E−4 3.057E−5 7.288E−4
MP-PDE 1.140E−4 5.500E−4 1.785E−4 5.856E−4 1.718E−7 1.993E−5 9.256E−7 4.261E−5

Operator
{

MNO 3.190E−5 8.678E−4 2.763E−4 8.946E−4 9.381E−6 4.890E−3 1.993E−4 6.128E−3
DeepONet 1.375E−3 6.573E−3 9.704E−3 1.244E−2 6.431E−4 1.293E−2 1.847E−2 3.317E−2

INR


SIREN 1.066E−3 4.336E−1 3.874E−1 1.037 3.674E−4 9.956E−3 3.013E−2 7.842E−2
MFN 1.651E−3 1.037E0 2.106E−1 1.059E0 1.408E−4 1.763E−1 4.735E−3 2.274E−1
DINO (no sep.) 3.235E−4 1.593E−3 7.850E−4 1.889E−3 2.641E−6 4.081E−5 5.977E−5 2.979E−4
DINO 8.339E−5 3.115E−4 2.092E−4 4.311E−4 3.309E−6 3.506E−6 9.495E−6 9.946E−6

Table 3: Flexibility w.r.t. input grid. Observed test / train grid differ (Xts 6= Xtr). We report test MSE
(↓) for Navier-Stokes on X ′ = Xts (In-s). Green Yellow Red mean excellent, good, poor MSE.

(a) Generalization across grids: Xtr,Xts are subsampled with different ratios str 6= sts
among {5, 50, 100}% from the same uniform 64×64 grid.

Subsampling Test→ sts = 5% sts = 50% sts = 100%

Train ↓ In-t Out-t In-t Out-t In-t Out-t

str = 5%
MP-PDE 1.330E−1 3.852E−1 1.859E−1 6.680E−1 2.105E−1 7.120E−1
DINO 1.494E−3 2.291E−3 1.257E−3 1.883E−3 1.287E−3 1.947E−3

str = 50%
MP-PDE 4.494E−2 9.403E−2 4.793E−3 1.997E−2 6.330E−3 3.712E−2
DINO 2.470E−4 4.697E−4 2.073E−4 4.284E−4 2.058E−4 4.361E−4

str = 100%
MP-PDE 1.358E−1 3.355E−1 1.182E−2 2.664E−2 1.785E−4 5.856E−4
DINO 2.495E−4 4.805E−4 2.109E−4 4.325E−4 2.092E−4 4.311E−4

(b) Generalization across resolutions: Xts (resp. Xtr) are subsampled at the same ratio s ∈
{5, 100}% from different uniform grids with resolution rts ∈ {32, 64, 256} (resp. rtr = 64).

Test resolution→ rts = 32 - Xts 6= Xtr rts = 64 - Xts = Xtr rts = 256 - Xts 6= Xtr

Subsampling ↓ In-t Out-t In-t Out-t In-t Out-t

s = 5%
MP-PDE 3.209E−1 6.472E−1 2.465E−4 1.105E−3 2.239E−1 8.253E−1
DINO 5.308E−3 9.544E−3 2.533E−4 8.832E−4 1.991E−3 2.942E−3

s = 100%
MNO 4.547E−3 9.281E−3 1.277E−4 8.525E−4 2.174E−3 4.975E−3
MP-PDE 4.194E−2 9.109E−2 1.597E−4 6.483E−4 4.648E−2 1.381E−1
DINO 2.321E−4 6.386E−4 2.320E−4 6.385E−4 2.322E−4 6.385E−4

competitive discretized alternatives (MP-PDE, CNODE) and operator (MNO) when s = 100%, i.e.
when observation and inference grids are equal. Note that this fully observed setting is favorable for
CNODE, MP-PDE and MNO, designed to perform inference on the observation grid. This can be
seen in Table 2, where DINO is slightly outperformed only for few settings. MP-PDE is significantly
better only on Wave for In-t. Overall, CNNs and GNNs exhibit good performance for spatially local
dynamics like Wave, while INRs (like DINO) and MNO are more adapted to global dynamics like
Navier-Stokes. • Analysis per model. MP-PDE is the most competitive baseline across datasets as
it combines a strong and flexible encoder (GNNs) to a good dynamics model; however, it cannot
predict outside the observation grid (Out-s). To keep a strong competitor, we extend this baseline
into its interpolative version I-MP-PDE on subsampled settings. I-MP-PDE is competitive for high

8

Preprint.

subsampling ratios, e.g. s ∈ {50%, 100%} but underperforms w.r.t. DINO at lower subsampling
ratios due to the accumulated interpolation error. MNO is a competitive baseline on Navier-Stokes,
performing on par with MP-PDE and DINO inside the training horizon (In-t); its performance on
Out-t degrades more significantly compared to other models, especially DINO. DeepONet is more
flexible than MP-PDE as it can predict at arbitrary locations. As no interpolation error is introduced,
it outperforms I-MP-PDE for s = 5% on train data. Yet, we observe that it underperforms especially
on Out-t w.r.t. its alternatives. Finally, we observe that SIREN and MFN fit correctly the train
horizon In-t on train, yet generalize poorly outside this horizon Out-t or on new initial conditions
(test). This is in accordance with our analysis of Section 3; we highlight that this is not the case for
DINO which extrapolates temporally and generalizes to new initial conditions thanks to its sequential
modeling of the flow. Thus, DINO is currently the state-of-the-art INR model for spatiotemporal data.
• Modulation. We observe that modulating both amplitudes and frequencies (row DINO (no sep.) in
Table 2) degrades performance w.r.t. DINO (row DINO in Table 2) that only modulates amplitudes.
Amplitude modulation enables long temporal extrapolation and reduces the number of parameters.
Hence, as opposed to DINO (no sep.) which is outperformed by some baselines, time-space variable
separation in DINO is an essential ingredient of the model to reach state-of-the-art levels.

R
e
fe
re
n
c
e

D
IN
o

t = 0t = 0 TT T ′T ′

Model In-t Out-t

I-MP-PDE 1.908E−3 7.240E−3
DINO 1.063E−4 6.466E−4

Figure 5: Data on manifold. DINO’s
Shallow-Water superresolution test pre-
diction (top) against the reference (mid-
dle); test MSE comparison (↓) (bottom).

Table 4: Finer time resolution. Test
MSE (↓) under T ′ for Navier-Stokes.

Model In-t Out-t

I-DINO (linear) 3.459E−4 5.598E−4
I-DINO (quadratic) 2.165E−4 4.473E−4
DINO (ODE solve) 2.151E−4 4.388E−4

Flexibility w.r.t. input grid. We consider in Table 3
Navier-Stokes and compare DINO to the most compet-
itive baselines, MP-PDE and MNO (with s = 100%
subsampling ratio). • Generalizing across grids. In Ta-
ble 3a, we consider that the test observation grid Xts is
different from the train one Xtr. This occurs when sen-
sors differ between two observed trajectories. We vary
the subsampling ratio for the train observation grid str
and the test one sts. We report test MSE on new grids
X ′ = Xts. We observe that DINO is very robust to chang-
ing grids between train and test, while MP-PDE’s perfor-
mance degrades, especially for low subsampling ratios,
e.g. 5%. For reference, we report in Table 6 Appendix A
(col. 3) the performance when X ′ = Xtr, where MP-PDE
is substantially better. • Generalizing across spatial res-
olutions. In Table 3b we vary the test resolution rts. We
train at a resolution rtr = 64 and perform inference at
resolutions rts ∈ {32, 64, 256}. For that, we build a high-
-fidelity 256×256 simulation dataset and downscale it
to obtain the other resolutions. We observe that DINO’s
performance is the stablest across resolutions in the uni-
form or irregular setting. MNO is also relatively stable
but is only applicable to uniform grids while MP-PDE is
particularly brittle, especially for a 5% ratio.

Data on manifold. We consider in Figure 5 Shallow-
Water in a super-resolution setting: test resolution is twice
the train one, close to weather prediction applications. We
observe an irregular 3D Euclidean coordinate gridXtr = Xts ⊂ R3 shared for train and test. It samples
uniformly Euclidean positions on the sphere, via the quasi-uniform skipped latitude-longitude grid
(Weller et al., 2012). We predict the PDE on test trajectories with a conventional latitude-longitude
inference grid X ′. At Earth scale, Xtr corresponds to a resolution of about 300 km, and X ′ to 150 km.
DINO significantly outperforms I-MP-PDE, making it a viable candidate for this complex setting.

Finer time resolution. We consider in Table 4 a longer and 10 times finer test time grid T ′ than
the train grid T on Navier-Stokes. We observe the same spatial uniform grid across train and test
and perform inference on this grid. We compare DINO that performs prediction with an ODE
solver, to interpolating coarser predictions obtained at the train resolution (I-DINO). We report the
corresponding test MSE. We observe that the ODE solver accurately extrapolates outside the train
temporal grid, outperforming interpolation. This confirms that DINO benefits from its continuous-
time modeling of the flow, providing consistency and stability across temporal resolutions.

9

Preprint.

6 CONCLUSION

We propose DINO, a novel space- and time-continuous data-driven forecasting model for PDEs.
DINO handles settings encountered in many applications, where existing methods fail. We assess its
extensive spatiotemporal extrapolation abilities on a variety of PDEs and its generalization to unseen
sparse irregular meshes and resolutions. Its competitive results over recent neural PDE forecasters
make it a strong alternative for real-world settings with free-formed spatiotemporal conditions.

ACKNOWLEDGEMENT

We thank Emmanuel de Bézenac and Jérémie Donà for helpful insights and discussions on this project.
We also acknowledge financial support from DL4CLIM (ANR-19-CHIA-0018-01) and DEEPNUM
(ANR-21-CE23-0017-02) ANR projects.

REFERENCES

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, and Patrick Gallinari. Learning the spatio-
temporal dynamics of physical processes from partial observations. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 3232–3236, May 2020. (cit. on
pp. 1 and 7)

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28, pp. 1171––1179. Curran Associates, Inc., 2015. (cit. on p. 18)

Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53(3):484–512, March 1984. (cit. on p. 2)

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022. (cit. on pp. 1, 2, 3, and 7)

Steven L. Brunton and J. Nathan Kutz. Data-driven science and engineering: Machine learning,
dynamical systems, and control. Cambridge University Press, 2022. (cit. on p. 1)

Keaton J. Burns, Geoffrey M. Vasil, Jeffrey S. Oishi, Daniel Lecoanet, and Benjamin P. Brown.
Dedalus: A flexible framework for numerical simulations with spectral methods. Physical Review
Research, 2(2), April 2020. (cit. on p. 18)

Sangwon Chae, Joonhyeok Shin, Sungjun Kwon, Sangmok Lee, Sungwon Kang, and Donghyun Lee.
PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network.
Scientific Reports, 11, 2021. (cit. on p. 3)

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. NeRV: Neural
representations for videos. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy
Liang, and Jenn Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
volume 34, pp. 21557–21568. Curran Associates, Inc., 2021. (cit. on p. 4)

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Samy Bengio, Hanna Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31, pp. 6572–6583. Curran Associates, Inc., 2018. (cit. on p. 2)

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable PDE
solvers and graph neural networks for fluid flow prediction. In Hal Daumé, III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 2402–2411. PMLR, July 2020. (cit. on p. 1)

Emmanuel de Bézenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes:
Incorporating prior scientific knowledge. In International Conference on Learning Representations,
2018. (cit. on p. 3)

10

Preprint.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum.
From data to functa: Your data point is a function and you can treat it like one. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 5694–5725. PMLR, July 2022. (cit. on p. 6)

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J. Zico Kolter. Multiplicative filter networks.
In International Conference on Learning Representations, 2021. (cit. on pp. 4, 6, and 7)

Marco Fraccaro. Deep Latent Variable Models for Sequential Data. PhD thesis, Danmarks Tekniske
Universitet, 2018. (cit. on p. 5)

Stefania Fresca, Andrea Manzoni, Luca Dedè, and Alfio Quarteroni. Deep learning-based reduced
order models in cardiac electrophysiology. PLoS ONE, 15(10), October 2020. (cit. on p. 4)

Joseph Galewsky, Richard K. Scott, and Lorenzo M. Polvani. An initial-value problem for testing
numerical models of the global shallow-water equations. Tellus A: Dynamic Meteorology and
Oceanography, 56(5):429–440, 2004. (cit. on pp. 7, 17, and 18)

David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks. In International Conference on
Learning Representations, 2017. (cit. on p. 5)

Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning continuous-time PDEs from
sparse data with graph neural networks. In International Conference on Learning Representations,
2021. (cit. on p. 3)

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations, 2019. (cit. on p. 5)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. (cit. on p. 19)

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer.
Machine learning-accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21), 2021. (cit. on p. 1)

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021. (cit. on p. 3)

Hervé Le Dret and Brigitte Lucquin. Partial Differential Equations: Modeling, Analysis and
Numerical Approximation, chapter The Heat Equation, pp. 219–251. International Series of
Numerical Mathematics. Springer International Publishing, Cham, Switzerland, 2016. (cit. on p. 6)

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 6755–
6766. Curran Associates, Inc., 2020. (cit. on pp. 1, 3, and 4)

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Markov neural operators for learning chaotic systems. arXiv
preprint arXiv:2106.06898, 2021a. (cit. on pp. 2, 4, and 7)

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021b. (cit. on
pp. 1, 3, 7, and 17)

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from data. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3208–3216,
Stockholmsmässan, Stockholm, Sweden, July 2018. PMLR. (cit. on p. 3)

11

Preprint.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3:218–229, 2021. (cit. on pp. 1, 2, 3, and 7)

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), The European Conference
on Computer Vision (ECCV), pp. 405–421, Cham, Switzerland, 2020. Springer International
Publishing. (cit. on p. 1)

Peter J. Olver. Introduction to partial differential equations. Undergraduate Texts in Mathematics.
Springer Cham, 2014. (cit. on p. 1)

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
Learning continuous signed distance functions for shape representation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 165–174, June 2019. (cit. on p. 5)

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Hanna Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché
Buc, Emily Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32, pp. 8026–8037. Curran Associates, Inc., 2019. (cit. on p. 18)

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1):3942–3951, April 2018. (cit. on p. 6)

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2021. (cit. on pp. 1 and 3)

Michael Prasthofer, Tim De Ryck, and Siddhartha Mishra. Variable-input deep operator networks.
arXiv preprint arXiv:2205.11404, 2022. (cit. on p. 1)

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019. (cit. on pp. 1 and 4)

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018. (cit. on p. 1)

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 7462–7473. Curran Associates, Inc.,
2020. (cit. on pp. 1, 2, 4, and 7)

Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. StyleGAN-V: A continuous video
generator with the price, image quality and perks of StyleGAN2. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3626–3636, June 2022. (cit. on p. 4)

George Gabriel Stokes. On the effect of the internal friction of fluids on the motion of pendulums.
Transactions of the Cambridge Philosophical Society, 9(2):8–106, 1851. (cit. on pp. 7 and 17)

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 7537–7547. Curran Associates, Inc., 2020. (cit. on pp. 1 and 4)

Sifan Wang and Paris Perdikaris. Long-time integration of parametric evolution equations with
physics-informed DeepONets. arXiv preprint arXiv:2106.05384, 2021. (cit. on p. 7)

12

Preprint.

Hilary Weller, John Thuburn, and Colin J. Cotter. Computational modes and grid imprinting on five
quasi-uniform spherical C grids. Monthly Weather Review, 140(8):2734–2755, 2012. (cit. on p. 9)

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating scientific
knowledge with machine learning for engineering and environmental systems. ACM Computing
Surveys, January 2022. (cit. on p. 1)

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. VideoGPT: Video generation using
VQ-VAE and transformers. arXiv preprint arXiv:2104.10157, 2021. (cit. on p. 6)

Yuan Yin, Vincent Le Guen, Jérémie Donà, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics
forecasting. Journal of Statistical Mechanics: Theory and Experiment, December 2021. (cit. on
pp. 1 and 3)

Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, and Jinwoo Shin.
Generating videos with dynamics-aware implicit generative adversarial networks. In International
Conference on Learning Representations, 2022. (cit. on p. 4)

Laure Zanna and Thomas Bolton. Deep Learning of Unresolved Turbulent Ocean Processes in
Climate Models, chapter 20, pp. 298–306. John Wiley & Sons, Ltd, 2021. (cit. on p. 2)

13

Preprint.

A FULL RESULTS

We provide in Table 5 a more detailed version of Table 2 for the space-time extrapolation problem
where we report the performance In-s (on the observation grid) and Out-s (outside). We add s = 50%.

Then, we report in Table 6, a more detailed version of Table 3a, which includes the results ofXts = Xtr.
This corresponds to our generalization across grids problem.

Table 5: Space and time extrapolation. The train and test observation grids are equal; they are
subsampled with a ratio s from an uniform 64×64 grid fixed here to be the inference grid X ′. We
report MSE (↓) on X ′ (on the observation grid In-s, outside Out-s or on both Full) and the inference
time interval T ′, divided within training horizon (In-t, T) and beyond (Out-t, outside T) across
subsampling ratios s ∈ {5%, 25%, 50%, 100%}. Best in bold and second best underlined.

Model

Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

s = 5% subsampling

In
-s

I-MP-PDE 3.525E−5 1.295E−3 4.554E−4 1.414E−3 1.824E−6 8.672E−5 1.113E−5 1.987E−4
DeepONet 4.778E−4 4.517E−3 1.060E−2 1.059E−2 2.546E−4 8.831E−3 1.501E−2 3.196E−2
SIREN 5.966E−3 1.769E−1 4.082E−2 2.150E−1 1.690E−3 1.707E−2 2.951E−2 6.955E−2
DINO 1.016E−4 6.945E−4 3.623E−4 8.306E−4 2.250E−6 5.283E−6 7.530E−6 2.146E−5

O
ut

-s

I-MP-PDE 8.550E−3 8.515E−3 8.306E−3 8.571E−3 7.412E−4 7.414E−4 1.195E−3 1.163E−3
DeepONet 3.475E−3 7.515E−3 1.361E−2 1.426E−2 8.624E−4 9.318E−3 1.702E−2 3.259E−2
SIREN 8.882E−3 1.767E−1 4.314E−2 2.124E−1 2.791E−3 1.823E−2 3.359E−2 6.965E−2
DINO 1.076E−3 1.704E−3 1.375E−3 1.863E−3 4.285E−5 4.304E−5 6.703E−5 7.659E−5

Fu
ll

I-MP-PDE 8.154E−3 8.166E−3 7.926E−3 8.225E−3 7.055E−4 7.097E−4 1.138E−3 1.116E−3
DeepONet 3.330E−3 7.370E−3 1.346E−2 1.408E−2 8.331E−4 9.295E−3 1.692E−2 3.256E−2
SIREN 8.741E−3 1.767E−1 4.303E−2 2.126E−1 2.738E−3 1.818E−2 3.339E−2 6.964E−2
DINO 1.029E−3 1.655E−3 1.326E−3 1.813E−3 4.088E−5 4.121E−5 6.415E−5 7.392E−5

s = 25% subsampling

In
-s

I-MP-PDE 1.447E−4 5.677E−4 1.763E−4 6.147E−4 6.754E−7 8.251E−5 9.253E−7 1.227E−4
DeepONet 7.500E−4 5.779E−3 9.227E−3 1.300E−2 5.196E−4 1.058E−2 1.743E−2 3.246E−2
SIREN 4.786E−3 2.178E−1 2.461E−1 3.884E−1 8.478E−4 1.282E−2 1.733E−2 5.104E−2
DINO 8.295E−5 4.273E−4 2.444E−4 5.735E−4 3.194E−6 3.747E−6 8.907E−6 1.029E−5

O
ut

-s

I-MP-PDE 3.678E−4 7.748E−4 4.026E−4 8.143E−4 4.330E−5 1.200E−4 6.764E−5 1.648E−4
DeepONet 9.503E−4 5.987E−3 9.423E−3 1.337E−2 5.891E−4 1.062E−2 1.762E−2 3.213E−2
SIREN 5.305E−3 2.173E−1 2.428E−1 3.853E−1 9.159E−4 1.295E−2 1.798E−2 5.156E−2
DINO 1.081E−4 4.578E−4 2.711E−4 6.021E−4 4.192E−6 4.657E−6 1.153E−5 1.220E−5

Fu
ll

I-MP-PDE 3.135E−4 7.245E−4 3.476E−4 7.658E−4 3.293E−5 1.108E−4 5.142E−5 1.545E−4
DeepONet 9.016E−4 5.936E−3 9.376E−3 1.328E−2 5.722E−4 1.061E−2 1.757E−2 3.221E−2
SIREN 5.180E−3 2.175E−1 2.436E−1 3.861E−1 8.995E−4 1.292E−2 1.783E−2 5.143E−2
DINO 1.020E−4 4.504E−4 2.646E−4 5.951E−4 3.949E−6 4.436E−6 1.089E−5 1.174E−5

s = 50% subsampling

In
-s

I-MP-PDE 1.153E−4 5.016E−4 1.594E−4 6.043E−4 2.200E−7 3.179E−5 8.843E−7 5.854E−5
DeepONet 6.214E−4 4.277E−3 5.699E−3 1.082E−2 7.581E−4 1.187E−2 1.649E−2 3.378E−2
SIREN 4.911E−3 6.815E−1 1.607E−1 6.889E−1 5.134E−4 1.481E−2 3.086E−2 8.196E−2
DINO 8.151E−5 2.920E−4 2.004E−4 4.283E−4 3.277E−6 3.659E−6 8.978E−6 9.572E−6

O
ut

-s

I-MP-PDE 1.186E−4 5.010E−4 1.626E−4 6.132E−4 9.638E−7 3.153E−5 2.367E−6 5.574E−5
DeepONet 6.851E−4 4.343E−3 5.740E−3 1.099E−2 7.842E−4 1.185E−2 1.679E−2 3.391E−2
SIREN 5.067E−3 6.867E−1 1.599E−1 6.845E−1 5.354E−4 1.492E−2 3.113E−2 8.333E−2
DINO 9.175E−5 3.041E−4 2.116E−4 4.409E−4 3.277E−6 3.659E−6 8.978E−6 9.572E−6

Fu
ll

I-MP-PDE 1.170E−4 5.013E−4 1.611E−4 6.088E−4 6.021E−7 3.166E−5 1.646E−6 5.710E−5
DeepONet 6.541E−4 4.311E−3 5.720E−3 1.091E−2 7.715E−4 1.186E−2 1.665E−2 3.385E−2
SIREN 4.995E−3 6.841E−1 1.603E−1 6.867E−1 5.246E−4 1.486E−2 3.100E−2 8.265E−2
DINO 8.677E−5 2.982E−4 2.062E−4 4.348E−4 3.380E−6 3.751E−6 9.251E−6 9.710E−6

s = 100% subsampling

Fu
ll

CNODE 2.319E−2 9.652E−2 2.305E−2 1.143E−1 2.337E−5 5.280E−4 3.057E−5 7.288E−4
MP-PDE 1.140E−4 5.500E−4 1.785E−4 5.856E−4 1.718E−7 1.993E−5 9.256E−7 4.261E−5
MNO 3.190E−5 8.678E−4 2.763E−4 8.946E−4 9.381E−6 4.890E−3 1.993E−4 6.128E−3
DeepONet 1.375E−3 6.573E−3 9.704E−3 1.244E−2 6.431E−4 1.293E−2 1.847E−2 3.317E−2
SIREN 1.066E−3 4.336E−1 3.874E−1 1.037 3.674E−4 9.956E−3 3.013E−2 7.842E−2
MFN 1.651E−3 1.037E0 2.106E−1 1.059E0 1.408E−4 1.763E−1 4.735E−3 2.274E−1
DINO (no sep.) 3.235E−4 1.593E−3 7.850E−4 1.889E−3 2.641E−6 4.081E−5 5.977E−5 2.979E−4
DINO 8.339E−5 3.115E−4 2.092E−4 4.311E−4 3.309E−6 3.506E−6 9.495E−6 9.946E−6

14

Preprint.

Table 6: Generalization across grids. Xtr,Xts are subsampled with different ratios str 6= sts ∈
{5, 50, 100}% from the same uniform 64×64 grid. We report test MSE within Xts (In-s). Best in
bold.

Xts = Xtr Xts 6= Xtr

Subsampling Test→ sts = str sts = 5% sts = 50% sts = 100%

Train ↓ In-t Out-t In-t Out-t In-t Out-t In-t Out-t

str = 5%
MP-PDE 1.967E−4 6.631E−4 1.330E−1 3.852E−1 1.859E−1 6.680E−1 2.105E−1 7.120E−1
DINO 3.623E−4 8.306E−4 1.494E−3 2.291E−3 1.257E−3 1.883E−3 1.287E−3 1.947E−3

str = 50%
MP-PDE 1.346E−4 5.110E−4 4.494E−2 9.403E−2 4.793E−3 1.997E−2 6.330E−3 3.712E−2
DINO 2.004E−4 4.283E−4 2.470E−4 4.697E−4 2.073E−4 4.284E−4 2.058E−4 4.361E−4

str = 100%
MP-PDE 1.785E−4 5.856E−4 1.358E−1 3.355E−1 1.182E−2 2.664E−2 1.785E−4 5.856E−4
DINO 2.092E−4 4.311E−4 2.495E−4 4.805E−4 2.109E−4 4.325E−4 2.092E−4 4.311E−4

B PREDICTION

We display the test prediction of DINO (Figure 6) and I-MP-PDE (Figure 7) for various subsampling
levels when X = Xtr = Xts. Predictions are performed on a 64×64 uniform grid which defines the
observation grid X via different subsampling rates. Yellow points correspond to the observation grid
X (In-s) while purple points indicate off-grid points (Out-s). The prediction for I-MP-PDE at t = 0
is the interpolated initial condition.

Subsampling
rate

Observation
grid X

Predicted trajectory
t = 0 −−−−−−−−−−−−−−−−−−−−→ t = T −−−−−−−−−−−−−−−−−−−−→ t = T ′

s = 5%

s = 25%

s = 100%

Ground Truth

Figure 6: Prediction MSE per frame for DINO with its corresponding observed train and test grid X .
For each model, the first row contains the predicted trajectory from 0 to T ′, the second row is the
corresponding error maps w.r.t. the reference data (the darker the pixel, the lower the error).

15

Preprint.

Subsampling
rate

Observation
grid X

Predicted trajectory
t = 0 −−−−−−−−−−−−−−−−−−−−→ t = T −−−−−−−−−−−−−−−−−−−−→ t = T ′

s = 5%

s = 25%

s = 100%

Ground Truth

Figure 7: Prediction MSE per frame for I-MP-PDE with its corresponding observed train and test
grid X . For each model, the first row contains the predicted trajectory from 0 to T ′, the second row is
the corresponding error maps w.r.t. the reference data (the darker the pixel, the lower the error).

16

Preprint.

C DETAILED DESCRIPTION OF DATASETS

We choose T (resp. T ′) on a regular grid in [0, T] (resp. [0, T ′]) with a given temporal resolution and
fix T ′ = 2T . We provide further details on the choice of these parameters and other experimental
parameters, such as the number of observed trajectories.

2D Wave equation (Wave). It is a second-order PDE:

∂2u

∂t2
= c2∆u, (10)

where u is a function of the displacement at each point in space w.r.t. the rest position, c ∈ R∗+ is
the speed of wave traveling. We transform the equation to a first-order form, considering the input
vt =

(
ut,

∂ut
∂t

)
, so that the dimension of vt(x) at each point x ∈ Ω is n = 2.

We generate our dataset for speed c = 2 with periodic boundary condition. The domain is Ω =

[−1, 1]2. For initial conditions v0 =
(
u0,

∂ut
∂t

∣∣∣
t=0

)
, the initial displacement u0 is a Gaussian

function:

u0(x; a, b, r) = a exp

(
− (x− b)2

2r2

)
, (11)

where the height of the peak displacement is a ∼ U(2, 4), the location of the peak displacement is
(b1, b2) ∼ U(−1, 1), and the standard deviation is r ∼ U(0.25, 0.3). The initial time derivative is
∂ut
∂t

∣∣∣
t=0

= 0. Each snapshot is generated on a uniform grid of 64×64. Each sequence is generated
with fixed interval δt = 0.25. We set the training horizon T = 2.25 and the inference horizon
T = 4.75. We generated 512 training trajectories and 32 test trajectories.

2D Navier Stokes (Navier-Stokes, Stokes, 1851). This dataset corresponds to an incompressible
fluid dynamics described by:

∂w

∂t
= −u∇w + ν∆w + f, w = ∇× u, ∇u = 0, (12)

where u is the velocity field and w the vorticity. u,w lie on a spatial domain with periodic boundary
conditions, ν is the viscosity and f is a constant forcing term. The input vt is wt (n = 1). ν is the
viscosity and f is the constant forcing term in the domain Ω.

The spatial domain is Ω = [−1, 1]2, the viscosity is ν = 1× 10−3, the forcing term is set as:

∀x ∈ Ω, f(x1, x2) = 0.1
(

sin
(
2π(x1 + x2)

)
+ cos

(
2π(x1 + x2)

))
. (13)

The full spatial grid is of dimension 64×64 or 256×256 according to experiments in Section 5. We
sample initial conditions as in Li et al. (2021b) to create different trajectories. The first 20 steps of the
trajectories are cut off as they are too noisy and not informative in terms of dynamics. Trajectories
are collected with δt = 1. We set the training horizon T = 19 and the inference horizon T ′ = 39.
We generated 512 training trajectories and 32 test trajectories.

3D spherical shallow water (Shallow-Water, Galewsky et al., 2004). The following problem is
originally presented for testing numerical models of global shallow-water equations. The shallow
water equations is written as:

du

dt
= −fk × u− g∇h+ ν∆u,

dh

dt
= −h∇ · u+ ν∆h.

(14)

where d
dt is the material derivative, k is the unit vector orthogonal to the spherical surface, u is

the velocity field tangent to the surface of the sphere, which can be transformed into the vorticity
w = ∇ × u, h is the thickness of the sphere. Note that the data we observe at each time t is
vt = (wt, ht). f, g, ν,Ω are parameters of the Earth (cf. Galewsky et al., 2004 for details).

The initial conditions are slightly modified from Galewsky et al. (2004), detailed below, to create
symmetric phenomena on the northern and southern hemisphere. The initial zonal velocity u0

17

Preprint.

contains two non-null symmetric bands in the both hemispheres, which are parallel to the circles of
latitude. At each latitude and longitude φ, θ ∈ [−π/2, π/2]× [−π, π]:

u0(φ, θ) =



(
umax

en
exp

(
1

(φ− φ0)(φ− φ1)

)
, 0

)
if φ ∈ (φ0, φ1),(

umax

en
exp

(
1

(φ+ φ0)(φ+ φ1)

)
, 0

)
if φ ∈ (−φ1,−φ0),

(0, 0) otherwise.

(15)

where umax is the maximum velocity, φ0 = π/7, φ1 = π/2− φ0, and en = exp
(
−4/(φ1−φ0)

2
)
. The

water height h0 is initialized by solving a boundary value condition problem as in Galewsky et al.
(2004). It is then perturbed by adding the following h′0 to h0:

h′0(φ, θ) = ĥ cos(φ) exp

(
−
(
θ

α

)2
)exp

(
−
(
φ2 − φ
β

)2
)

+ exp

(
−
(
φ2 + φ

β

)2
). (16)

where φ2 = π/4, ĥ = 120 m, α = 1/3, β = 1/15 are constants defined in Galewsky et al. (2004).

We simulate this phenomenon with Dedalus (Burns et al., 2020) on a latitude-longitude (lat-lon)
grid. The size of the grid is 128 (lat)×256 (lon). We take different initial conditions by sampling
umax ∼ U(60, 80) to generate long trajectories. These long trajectories are then sliced into shorter
ones. For simulation, we take one snapshot per hour (of internal simulation time), i.e. δt = 1 h. We
stop the simulation at the 320th hour. To construct a dataset rich of dynamical phenomena, we take
the snapshots within the last 160 h in a long trajectory and slice them into 8 shorter trajectoires. Also
note that the data is scaled into a reasonable range: the height h is scaled by a factor of 3× 103, and
the vorticity w by a factor 2. In each short trajectory, T = 9 h and T ′ = 19 h. In total, we generated
16 long trajectories (i.e. 128 short trajectories) for train, 2 for test (i.e. 16 short trajectories).

D IMPLEMENTATION

D.1 ALGORITHM

We detail the algorithm of DINO for training and test via pseudo-code in Algorithm 1.

Algorithm 1: DINO pseudo-code
Training: Input :D = {vT }, {αvT }v∈D ← {0}, φ← φ0, ψ ← ψ0;
while not converged do

for v ∈ D do αvT ← αvT − ηα∇αvT `dec(φ, α
v
T); /* Modulation */

φ← φ− ηφ∇φ
(∑

v∈D `dec(φ, α
v
T)
)

; /* Hypernetwork */

ψ ← ψ − ηψ∇ψ
(∑

v∈D `dyn(ψ, αvT)
)

; /* Dynamics */

Test: Input :D′0 = {v0}, {αv0}v∈D′ ← {0}, φ?, ψ?, T ′ 6= T ;
while not converged do

for v ∈ D′ do αv0 ← αv0 − η∇αv0 `dec(φ
?, αv0); /* Modulation */

for v ∈ D′, t ∈ T ′ do αvt ← αv0 +
∫ t
0
fψ?(αvτ)dτ ; /* Unroll dynamics */

D.2 ADDITIONAL IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al., 2019) to implement DINO and the baselines. The dynamics model fψ
is a multilayer perceptron. Its input and output size are same as the size of latent space dα. All hidden
layers share the same size. DINO’s parameters are initialized with the default initialization in PyTorch.
The frequency parameters in FourierNet are scaled by a factor, considered as a hyperparameter. For
dynamics learning, we use an RK4 integrator and apply exponential Scheduled Sampling (Bengio

18

Preprint.

et al., 2015) to stabilize training. ω is fixed at initialization to reduce the number of optimized
parameters without loss of performance. In practice, modulations of αt are learned channel-wise
such that Iθ : Ω → Rdc has separate parameters per output dimension to make predictions less
correlated across channels. We optimize all parameters using Adam (Kingma & Ba, 2015) with
(β1, β2) = (0.9, 0.999).

D.3 HYPERPARAMETERS

Table 7: DINO’s hyperparameters

Hyperparameter Navier-Stokes Wave Shallow-Water

Decoder gφ = Ihφ
Nb. of layers 3 3 6
Nb. hidden channels 64 64 256
Frequency scale factor 64 64 64
Size of latent space dα 100 50 300

Dynamics model fψ
Nb. of layers 4 4 4
Hidden layer size 512 512 800
Activation function Swish Swish Swish

Optimization
Learning rate ηφ 10−2 10−2 10−2

Learning rate ηα 10−3 10−3 10−3

Learning rate ηψ 10−3 10−3 10−3

Nb. of epochs 12 000 12 000 12 000
Batch size i.e. sequences per batch 64 64 16

We list the hyperparameters of DINO for each dataset in Table 7. In practice, we observe it is
beneficial to decay the learning rates ηφ, ηα when the loss reaches a plateau.

19

	Introduction
	Problem description
	Related work
	Model
	Inference model
	Components
	Training
	Decoder implementation via amplitude-modulated INRs

	Experiments
	Experimental setting
	Results

	Conclusion
	Full results
	Prediction
	Detailed description of datasets
	Implementation
	Algorithm
	Additional implementation details
	Hyperparameters

