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THE ROSENZWEIG-MACARTHUR GRAPHICAL CRITERION FOR A

PREDATOR-PREY MODEL WITH VARIABLE MORTALITY RATE

AMINA HAMMOUM, TEWFIK SARI, AND KARIM YADI

Abstract. We consider a general modified Gause type model of predation, for which the
predator mortality rate can depend on the densities of both species, prey and predator. We give
a graphical criterion for the stability of positive hyperbolic equilibria, which is an extension of
the well-known Rosenzweig-MacArthur graphical criterion for the case of a constant predator
mortality rate. We examine the occurrence of a Poincaré-Andronov-Hopf bifurcation and give
an expression for the first Lyapunov coefficient. Our model generalizes several models appearing
in the literature. The relevance of our results, i.e. the use of the graphical criterion and the
expression for the first Lyapunov coefficient, is tested on these models. The global behavior
of the system is illustrated by numerical simulations which confirm the local properties of the
models near the equilibria.
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1. Introduction

Chronologically, we can agree that the main predator-prey ecological models are those of
Lotka-Volterra [26], Gause [7], Rozensweig-MacArthur [22] and finally the density-dependent
model of Arditi-Ginzburg [1]. Andrëı Kolmogorov [15] had focused his interest on very general
systems modeling the different interactions of populations. A number of modifications have been
made to these differential systems in order to theoretically answer new questions of a biological
nature or to remove certain paradoxes inherent in these models. Among them, the case of a
non-constant mortality rate of the predator. In this article, we consider the generalized Gause
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Model [7] :

(1)

{
ẋ = g(x)− yp(x),
ẏ = [q(x)−m] y,

where the variables x and y are the density of prey and predator species respectively. The
function g is the growth rate of the prey population, the function p is the functional response of
the predator and the function q is the rate of conversion of prey to predator or the growth rate
of the predator. The function g is of logistic type and the functions p and q are increasing and
vanish at 0. The dot represents the derivative with respect to time: ẋ = dx/dt, and ẏ = dy/dt.
For the background on this model, see [7]. For the case where the function p is not smooth in
0, which presents interesting behaviors because of the non-uniqueness of the solutions along the
axis x = 0, the reader is referred to [4].

We extend (1) by replacing the constant mortality rate m by a disappearance or mortality
rate d(x, y) that may vary according to the density of the species. The term d(x, y) can have
different interpretations according to the models, as the intraspecific competition for resources
and territory. It is legitimate to assume that the predator mortality rate is non-negative, de-
creasing with increasing prey density and increasing with increasing predator density, which will
be specified in the assumptions on d(x, y). We propose in Table 1 different expressions of d
found in the literature. Explanations and comments on the models presented in this table are
given in the appendix.

For (1), the well-known Rosenzweig-MacArthur graphical criterion asserts that a positive
equilibrium point is locally exponentially stable if and only if it is located on a descending
branch of the prey isocline, see [7], Section 4.4. For the more general case with a nonconstant
mortality rate we bring out arcs of the ascending branches of the prey isocline outside of which
a positive equilibrium is locally exponentially stable, provided that the slope of the prey isocline
at that point is smaller than that of the predator isocline. Hence, a positive equilibrium could
be attractive even if it is located on an ascending branch of the prey isocline.

The paper is organized as follows. In Section 2 we present the Rosenzweig-MacArthur graph-
ical criterion of stability of a positive hyperbolic equilibrium. In Section 3, we examine the
occurrence of a Poincaré-Andronov-Hopf bifurcation for the general model and compute the first
Lyapunov coefficient ρ. If ρ ̸= 0, the system undergoes a non degenerate Poincaré-Andronov-
Hopf bifurcation at a certain positive equilibrium point. In Section 4, we illustrate the applica-
bility of the previous results obtained for the general model to different particular models with
the disappearance rates given in Table 1 : we use our graphical criterion to compare the local
stability results with those of the examples and, for some of these models, we also compare
the first Lyapunov coefficients. The global behavior is illustrated by numerical simulations that
confirm the local properties of the models near the equilibria.

2. Model and main properties

We consider the generalized Gause model (1) in which we take into account a variable disap-
pearance rate d(x, y) in the predator equation. The model is therefore as follows :

(2)

{
ẋ = g(x)− yp(x),
ẏ = [q(x)− d(x, y)] y.

The model (2) satisfies the following assumptions :

• H1 : g is a C1 function such that g(0) = 0, g′(0) > 0, and there exists K > 0 such that
g(K) = 0 and (x−K)g(x) < 0 if x ̸= K with g′(K) < 0.

• H2 : p and q are C1 functions such that p(0) = q(0) = 0, p′(x) > 0 and q′(x) > 0 for all
x ≥ 0.

• H3 : d is a positive C1 function such that for all (x, y) ∈ R+×R+, d(0, 0) > 0, dx(x, y) :=
∂d
∂x(x, y) ≤ 0 and dy(x, y) :=

∂d
∂y (x, y) ≥ 0.
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The assumption H1 means that the growth function g is of logistical type. As a consequence of
H2, we have

(3) lim
x→+∞

q(x) = q∞, 0 < q∞ ≤ +∞,

and the function q admits an inverse function

q−1 : [0, q∞) → R+, q−1(0) = 0, (q−1)′ > 0.

The inequality dx(x, y) ≤ 0 means that the mortality rate decreases when the density of prey
increases for a fixed number of predators. The inequality dy(x, y) ≥ 0 means that the mortality
rate increases when the density of predators increases for a fixed number of prey. Finally, the
smoothness of g, p, q and d insures uniqueness property of the solutions of (2).

2.1. Positivity and boundedness. The first theorem deals with the positiveness and the
boundedness of the solutions of (2).

Proposition 1. Under the assumptions H1 − H3, the solutions of (2) are non-negative and
asymptotically bounded.

Proof. The axes x = 0 and y = 0 being invariant for the model (2), the positive cone is invariant.
According to H1, the growth function is of logistical type and using H2 and the comparison
lemma, we can prove that

(4) lim sup
t→+∞

x(t) ≤ K,

that is the component x(t) is asymptotically bounded above. To show that y(t) is asymptotically
bounded one can use a phase plane analysis similar to that given in [7], pp. 78-80. □

2.2. Existence and stability of equilibria. In the following, we give conditions for the ex-
istence and stability of the boundary and positive equilibrium points. The equilibria of (2) are
the intersection points of the isoclines ẋ = 0 and ẏ = 0. The isocline ẋ = 0 is the union of the
semi-axis x = 0 and the curve y = h(x) where

(5) h(x) :=
g(x)

p(x)
if x ̸= 0, h(0) =

g′(0)

p′(0)
> 0.

The isocline ẏ = 0 is the union of the semi-axis y = 0 and the curve of equation U(x, y) = 0,
where U is defined by

(6) U(x, y) := q(x)− d(x, y).

As a consequence of H3, the limit

m := lim
x→+∞

d(x, 0) ≥ 0

exists. Assume that m < q∞, where q∞ is defined by (3). Hence, x 7→ d(x, 0) is decreasing from
d(0, 0) > 0 to m ∈ [0, q∞). Since q is strictly increasing from 0 to q∞, equation q(x) = d(x, 0)
admits a unique solution which is denoted x1:

(7) x = x1 ⇐⇒ q(x) = d(x, 0).

Let us prove that under assumptions H2 and H3, the equation U(x, y) = 0 defines a function
x = φ(y), such that x1 = φ(0). More precisely, we have the following result.

Lemma 1. Assume that m < q∞. There exists a C1 function

(8) φ : [0, y∞) → R+, 0 < y∞ ≤ +∞, φ(0) = x1,

such that, for all y ∈ [0, y∞), we have U(φ(y), y) = 0, where U is defined by (6), and

(9) φ′(y) =
dy(φ(y), y)

[q′(φ(y))− dx(φ(y), y)]
.
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Proof. Consider the set

I = {y : lim
x→+∞

d(x, y) < q∞},

where q∞ is defined by (3). This set is not empty since 0 ∈ I. Consider y∞ = sup I. For any
y ∈ [0, y∞), we have

d(∞, y) := lim
x→+∞

d(x, y) < q∞.

Therefore, the function x 7→ d(x, y) is decreasing from d(0, y) > 0 to d(∞, y) < q∞. Since q is
strictly increasing from q(0) = 0 to q∞, for any y ∈ [0, y∞), the equation q(x) = d(x, y) admits
a unique solution, denoted x = φ(y). Using the Implicit Function Theorem, we prove that the
function y 7→ φ(y) is C1 and that its derivative is given by (9). □

Remark 1. The isocline U(x, y) = 0 is the curve of equation x = φ(y). If d does not depend
on x the function φ is simply given by

(10) φ(y) = q−1(d(y)).

Moreover, if dy(x, y) > 0, then the isocline x = φ(y) can be also seen as a curve of equation
y = ψ(x). The function ψ is simply the inverse of the function φ and we have ψ′(x) = 1/φ′(y).
See Table 1 for the expressions of φ and ψ for various examples of the function d, that were
considered in the literature.

Theorem 1. Under the assumptions H1 to H3, the model (2) has the equilibria E1(0, 0),
E2(K, 0) that always exist. A positive equilibrium exists if and only if

(11) x1 < K,

where x1 is defined by (7). Let E∗(x∗, y∗) be a positive equilibrium. Then, x∗ ∈ [x1,K) is a
solution of equation x = φ(h(x)) and y∗ = h(x∗).

Proof. By H1, the boundary equilibria are E1(0, 0) and E2(K, 0). According to H2, H3 and (9),
φ′(y) ≥ 0. Hence, φ(y) is non-decreasing. A necessary and sufficient condition to have at least
one non trivial intersection of the isoclines y = h(x) and x = φ(y) is that x1 < K. Hence, under
the condition (11), there exists at least a positive equilibrium point designated by E∗(x∗, y∗).
Thus, x∗ = φ(y∗) and y∗ = h(x∗). Therefore, x∗ ∈ [x1,K) and x∗ = φ(h(x∗)). □

The graphics in Fig. 1 represent some typical situations showing the isoclines ẋ = 0 (in blue)
and ẏ = 0 (in red). An equilibrium is at the intersection of a blue curve and a red curve. The

Figure 1. Schematic figures of isoclines of (2) and equilibria under condition (11).

following result gives the stability properties of the equilibria.
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Theorem 2. Under the assumptions H1, H2, H3, the equilibrium E1 is a saddle point of stable
separatrix the y semi-axis and of unstable separatrix the open segment (0,K) of the x-semi-axis.
E2 is locally exponentially stable (LES) if and only if x1 > K and it is a saddle point if x1 < K,
the stable separatrix of which is the x-semi-axis. If x1 < K, E∗ exists, it is LES if and only if

(12) φ′(y∗)h′(x∗) < 1,

and

(13)
p(x∗)h′(x∗)

h(x∗)
< dy(x

∗, h(x∗)).

Proof. The Jacobian matrix of (2) at (x, y) is

(14) J (x, y) =

(
p(x)h′(x) + p′(x) [h(x)− y] −p(x)

[q′(x)− dx(x, y)] y q(x)− d(x, y)− dy(x, y)y

)
.

First, using H2 and H3, the Jacobian matrix (14) at E0(0, 0) is

J (0, 0) =

(
h(0)p′(0) 0

0 −d(0, 0)

)
,

the eigenvalues of which are λ1 = h(0)p′(0) and λ2 = −d(0, 0). From H2 and (5) we have λ1 < 0.
From H3 we have λ2 < 0. Then, E1 is a saddle point with separatrices indicated in the statement
of the theorem. Similarly, using H1 and H3, the Jacobian matrix (14) at E2(K, 0) is given by

(15) J (K, 0) =

(
p(K)h′(K) −P (K)

0 q(K)− d(K, 0)

)
,

the eigenvalues of which are λ1 = p(K)h′(K) and λ2 = q(K)− d(K, 0). From H2 and h′(K) =
g′(K)/p(K) < 0, we have λ1 < 0. Hence, E2 is LES if and only if λ2 < 0, i.e. q(K) < d(K, 0),
which is equivalent to (11). If x1 < K, then it is a saddle point with the x semi-axis as the
stable separatrix. Let us now examine the stability of any positive equilibrium E∗(x∗, y∗). The
Jacobian matrix (14) at E∗ can be written as

J (x∗, y∗) =

(
p(x∗)h′(x∗) −p(x∗)

[q′(x∗)− dx(x
∗, y∗)] y∗ −dy(x∗, y∗)y∗

)
,

with y∗ = h(x∗). The determinant and trace of this matrix are given by

detJ (x∗, y∗) = h (x∗) p(x∗)
[
q′(x∗)− dx (x

∗, h (x∗))− h′ (x∗) dy (x
∗, h (x∗))

]
,(16)

trJ (x∗, y∗) = p(x∗)h′(x∗)− h(x∗)dy(x
∗, h(x∗)).(17)

Since h (x∗) p(x∗) > 0, we have

detJ (x∗, y∗) > 0 ⇐⇒ h′(x∗)dy(x
∗, y∗) < q′(x∗)− dx(x

∗, y∗).

Dividing by q′(x∗)− dx(x
∗, y∗) which is positive, according to H2 and H3, we obtain

detJ (x∗, y∗) > 0 ⇐⇒ dy(x
∗, y∗)

q′(x∗)− dx(x∗, y∗)
h′(x∗) < 1.

Using (9) and x∗ = φ(y∗), we obtain the condition (12). We also have

trJ (x∗, y∗) < 0 ⇐⇒ p(x∗)h′(x∗) < h(x∗)dy(x
∗, h(x∗)).

Dividing by h(x∗) which is positive, we obtain the condition (13) of the theorem. □

Remark 2. In the Rosenzweig-MacArthur case (RMA) (i.e. d(x, y) = m), we have φ′(y) = 0,
so that condition (12), which is equivalent to detJ (x∗, y∗) > 0, is always verified. Moreover,
condition (13), which is equivalent to trJ (x∗, y∗) < 0, is equivalent to h′(x∗) < 0. Thus, E∗ is
LES if and only if it belongs to a decreasing branch of the isocline of the prey. This condition is
known in the literature as the Rosenzweig-MacArthur graphical criterion, see Section 4.4 in [7].

We have the following result.

Proposition 2. If the positive equilibrium point of (2) is located on a descending branch of the
isocline of the prey isocline then it is LES.
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Proof. From H2 and H3, we have p(x∗) > 0, φ′(x∗) > 0 and dy(x
∗, h(x∗)) ≥ 0. Therefore, if

h′(x∗) < 0, then conditions (12) and (13) are satisfied. From Theorem 2 we deduce that E∗ is
LES. □

When d is not constant, conditions detJ (x∗, y∗) > 0 and trJ (x∗, y∗) < 0 can also be satisfied
when h′(x∗) > 0. We deduce that E∗ can be LES, even if it belongs to an ascending branch
of the isocline of the prey. Our aim now is to give a graphical description of the conditions of
stability of a positive equilibrium. Our conditions are extensions of the Rosenzweig-MacArthur
graphical condition of stability of E∗. We begin by the graphical description of the condition
on the determinant.

Proposition 3. Let T1 = (1, h′(x∗)) and T2 = (φ′(y∗), 1) be the director vectors of the tangents
of the prey and predator isoclines at E∗(x∗, y∗), respectively. Condition (12) is equivalent to
condition det (T1, T2) > 0, i.e. (T1, T2) is a basis with the same orientation as the canonical basis.
If, in addition dy(x

∗, y∗) > 0, then condition (12) is equivalent to condition ψ′(x∗) > h′(x∗),
where y = ψ(x) is the equation of the predator isocline.

Proof. We have det (T1, T2) = 1 − φ′(y∗)h′(x∗). Therefore (12) is equivalent to condition
det (T1, T2) > 0. If, in addition, dy(x

∗, y∗) > 0, then in a neighborhood of (x∗, y∗) the function
φ has an inverse function ψ and ψ′(x∗) = 1/φ′(y∗). Therefore, the condition φ′(y∗)h′(x∗) < 1 is
equivalent to the condition ψ′(x∗) > h′(x∗). □

Proposition 3 means that the determinant is positive if and only if, at the equilibrium point,
the slope of the prey isocline is smaller than that of the predator isocline. Now we give the
graphical description of the condition on the trace. We need the following definitions: the
functions H,G : [0,K) → R are given by

(18) H(x) =
p(x)h′(x)

h(x)
, G(x) = dy(x, h(x)).

Proposition 4. Let A be the closed subset of the prey isocline defined by

(19) A = {(x, h(x)) : x ∈ [0,K) and H(x) ≥ G(x)} .
Condition (13) is satisfied if and only if E∗ /∈ A.

Proof. Using the definitions (18) of the functions H and G, the condition (13) can be written
H(x∗) < G(x∗), which is equivalent to E∗ /∈ A. □

Notice that A is necessarily a subset of the ascending part of the prey isocline. Proposition
4, asserts that the trace is positive if and only if the equilibrium point belongs to the interior of
the set A. The combination of Propositions 3 and 4 gives a geometric criterion of stability of a
positive hyperbolic equilibrium point. It is an extension of the Rosenzweig-MacArthur graphical
condition of stability to predator and prey models with a non constant mortality rate of the
predator.

Theorem 3. Let E∗ be any positive equilibrium of (2).

• If, at E∗, the slope of the prey isocline is larger than that of the predator isocline, then
E∗ is a saddle point.

• If, at E∗, the slope of the prey isocline is smaller than that of the predator isocline and
E∗ /∈ A, then E∗ is LES (a stable focus or node).

• If, at E∗, the slope of the prey isocline is smaller than that of the predator isocline and
E∗ ∈ intA, then E∗ is a repeller (an unstable focus or node).

Proof. If the slope of the prey isocline is larger than that of the predator isocline, then, using
Proposition 3, the determinant is negative, so that E∗ is a saddle point. If the slope of the prey
isocline is smaller than that of the predator isocline, then, using Proposition 3, the determinant
is positive and two sub-cases must be distinguished. If E∗ ∈ intA, then, using Proposition 4,
the trace is negative, so that E∗ is LES. On the other hand, if E∗ is in the interior of A, then,
using Proposition 4, the trace is positive, so that E∗ is a repeller. □
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Remark 3. If at a positive equilibrium point the isoclines of the prey and predator are tangent,
the determinant is zero. This point corresponds to saddle node bifurcations. If a positive
equilibrium belongs to the boundary of A, the trace is zero. If, in addition, at this equilibrium
point, the slope of the prey isocline is smaller than that of the predator isocline, then this point
corresponds to the possibility of a Poincaré-Andronov-Hopf bifurcation.

3. Poincaré-Andronov-Hopf bifurcation (PAH)

In this section, we want to take a close look at the possibility of having a PAH bifurcation
of the general model (2) under some additional hypotheses. Recall that, this bifurcation is
characterized by an appearance or disappearance of a limit cycle from an equilibrium, changing
its stability via a pair of purely imaginary eigenvalues. Hence, we assume that there exists a
positive equilibrium Ẽ = (x̃, ỹ) at which the following properties are satisfied

(20) detJ (x̃, ỹ) > 0 and trJ (x̃, ỹ) = 0.

Recall that x = x̃ ∈ [x1,K) is a solution of equation φ(h(x)) = x, and ỹ = h(x̃). We use the
following notations.

(21)

p0 = p(x̃), p1 = p′(x̃), p2 = p′′(x̃),
q0 = q(x̃), q1 = q′(x̃), q2 = q′′(x̃),
h0 = h(x̃), h1 = h′(x̃), h2 = h′′(x̃), h3 = h′′′(x̃),
d1 = dx(x̃, ỹ), d2 = dy(x̃, ỹ),
d11 = dxx(x̃, ỹ), d12 = dxy(x̃, ỹ), d22 = dyy(x̃, ỹ),
d112 = dxxy(x̃, ỹ), d122 = dxyy(x̃, ỹ), d222 = dyyy(x̃, ỹ).

With these notations the determinant of the Jacobian matrix J (x̃, ỹ), denoted as ω2, since it
is positive, can be written as follows, see (16):

ω2 = detJ (x̃, ỹ) = p0h0(q1 − d1 − h1d2) > 0.(22)

We define now the first Lyapunov coefficient ρ given by

(23) ρ =
1

16p0ω2

(
p0h0b0 + h0b1d2 + h20b2d

2
2 + (2h0d122 − p2)h

3
0d

3
2

)
,

where the coefficients b0, b1 and b2, are given by

b0 = 2p0p1q1h2 + p20q1h3 − p20q2h2 +
(
p20h2 − p0h0d12

)
d11

+ (p0q2 − q1h0d22)h0d12 − 2q21h0d22 − p0q1h0d112 − q21h
2
0d222

−
(
p20h3 + 2p0p1h2 − p0h0d112 − h20d12d22 − 2q1h

2
0d222 − 4q1h0d22

)
d1

− (h0d222 + 2d22)h0d
2
1,

b1 = p0p2q1h0 + p30h
2
2 − p0p1q2h0 − p20q1h2 + p0p1h0d11 + p0h0(p0h2 − 2q1)d12

+ (p1q1 + p0q2)h
2
0d22 − 2p0h

2
0d

2
12 − q1h

3
0d

2
22 − p0h

2
0d11d22 − 2p0q1h

2
0d122

+
(
p20h2 − p0p2h0 − p1h

2
0d22 + h30d

2
22 + 2p0h0d12 + 2p0h

2
0d122

)
d1,

b2 = p0q2 − p0p1h2 − p20h3 − p0d11 + 2p1h0d12 + q1h0d22 − 2h20d12d22

+ q1h
2
0d222 + p0h0d112 − (d22 + h0d222)h0d1.

Note that ρ appears as a polynomial in d2 of degree 3, whose coefficients are depending only on
the other derivatives of d.

The occurrence of a PAH bifurcation is stated in the following proposition, where we simply
choose x∗ as a parameter bifurcation, where E∗(x∗, y∗), with y∗ = h(x∗), is a positive equilib-
rium.

Theorem 4. Let f , g and d be C3, suppose that assumptions H1-H3 are satisfied and condition
(11) holds, so that the system has at least one positive equilibrium, denoted Ẽ(x̃, ỹ), with ỹ = h(x̃)
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and x̃ ∈ [x1,K). Suppose that x̃ satisfies the following conditions

detJ (x̃, ỹ) > 0 ⇐⇒ q′(x̃)− dx(x̃, ỹ)− h′(x̃)dy(x̃, ỹ) > 0,(24)

trJ (x̃, ỹ) = 0 ⇐⇒ H(x̃) = G(x̃),(25)

and the transversality condition

(26) H ′(x̃) ̸= G′(x̃),

where H and G are defined by (18). Then, the model (2) undergoes a PAH bifurcation when
x∗ crosses the value x̃. Moreover, if the parameter ρ, defined by (23) is non-zero, then the
bifurcation is non degenerate: if ρ < 0, then the bifurcation is supercritical, while if ρ > 0, it is
subcritical.

Proof. The proof is given in Appendix A □

As a consequence of Theorem 4, we obtain the existence of limit cycles for (2). More precisely,
we can make the following remark.

Remark 4. If H ′(x̃) > G′(x̃), then

• if ρ < 0, then there exists x̃1 > x̃ such that if x∗ ∈ (x̃, x̃1) then the corresponding
equilibrium E∗(x∗, h(x∗)) is unstable and is surrounded by a stable limit cycle,

• while if ρ > 0, then there exists x̃1 < x̃ such that if x∗ ∈ (x̃1, x̃) then the corresponding
equilibrium E∗(x∗, h(x∗)) is stable and is surrounded by a repelling limit cycle.

Similarly if H ′(x̃) < G′(x̃), then

• if ρ < 0, then there exists x̃1 < x̃ such that if x∗ ∈ (x̃1, x̃) then the corresponding
equilibrium E∗(x∗, h(x∗)) is unstable and is surrounded by a stable limit cycle,

• while if ρ > 0, then there exists x̃1 > x̃ such that if x∗ ∈ (x̃, x̃1) then the corresponding
equilibrium E∗(x∗, h(x∗)) is stable and is surrounded by a repelling limit cycle.

4. Some specific examples

In this section, we illustrate the applicability of our results obtained for the previous general
model to different particular models with the disappearance rates given in Table 1. This table
also gives the equation x = φ(y) of the predator isocline and also its equation y = ψ(x), if it
exists.

Table 1. Different disappearance rates existing in the literature and the corre-
sponding predator isocline.

Model d(x, y) x = φ(y) y = ψ(x)
Gause or RMA

[7, 16, 18, 22, 23, 28]
m x = q−1(m) Does not exist

Hsu
[11]

d(x) x = x1, see (7) Does not exist

Bazykin
[2, 3, 9, 19, 27]

m+ αy x = q−1(m+ αy) y = q(x)−m
α

Cavani Farkas
[5, 6]

m+ αy
1+y x = q−1

(
m+ αy

1+y

)
y = q(x)−m

α+m−q(x)

Variable Territory
[13, 24, 25]

m+ αy
δ+x Exists, see Lemma 1 y = (q(x)−m)(δ+x)

α

To illustrate our results we will consider the case where the growth function g is given by the
logistic growth function, the functional response p is given by the Holling II functional response
and the growth function of the predator q is proportional to p. More precisely

(27) g(x) = rx
(
1− x

K

)
, p(x) = ax

c+x , q(x) = ep(x) = eax
c+x ,
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where the parameters r, K, a, c and e are all positive biological parameters. More exactly, r is
the growth rate per capita of the prey, K is the carrying capacity of the prey, a is the maximum
rate of prey consumption per unit of predator biomass, c is the half saturation constant for the
prey and e is the rate of conversion of prey to predator. Assumptions H1 and H2 are clearly
satisfied by functions (27). One can easily check that for all mortality rates d(x, y) summarized
in Table 1, the assumption H3 is satisfied. From a biological point of view, it is interesting to
consult the references indicated in Table 1 to know about the motivation of these models. Brief
information is provided in Appendix B.

For the functions g and p given in (27), the prey isocline is the parabola y = h(x) where h,
defined by (5), becomes

(28) h(x) = r
aK (K − x)(c+ x).

The top of the parabola is obtained for x = x̂, where x̂, the solution of h′(x) = 0, is given by

(29) x̂ := K−c
2 .

For the function q given in (27), a positive equilibrium exists if the condition (11) of Theorem 1
is satisfied, that is

(30) x1 := q−1(m) = mc
ea−m < K ⇐⇒ eaK

c+K > m.

If E∗(x∗, y∗) is a positive equilibrium, then x1 ≤ x∗ < K, where x1 is given in (30). The positive
equilibria are obtained as the intersection of the prey isocline y = h(x), where h is defined by
(28), and the predator isocline which depends on functions q and d, is given in Table 1. Note
that the function ψ = φ−1 exists for all the models in Table 1, except for the RMA and Hsu
models. In the case where q is as in (27), we can also obtain an explicit formula for φ by solving
in x the equation eax

c+x = d(x, y) +m.

For the functions p and g given by (27), the function H defined by (18), is written

H(x) =
ax(K − c− 2x)

(K − x)(c+ x)2
.

Recall that H is defined on [0,K). Suppose that x̂ > 0, where x̂ is given by (29). The function
H is positive for x ∈ (0, x̂) and negative for x ∈ (x̂,K) and satisfies H(0) = 0 and H (x̂) = 0. It
is increasing, then decreasing on the interval [0, x̂]. Moreover, according to assumption H3, the
function G defined in (18) is non-negative.

Let us determine the subset A of the ascending part of the prey isocline, defined by (19),
where the trace is non-negative. We must solve the equation H(x) = G(x). Its appears that
this equation can have no or two real roots xL and xR in [0, x̂] (see the upper part of Fig. 2).

If this equation does not admit a solution, it means graphically, according to the properties
of H and G, that the graph of G is above the one of H for x ∈ [0,K]. Consequently, the trace is
always negative. If it admits a solutions, the subset A, is the closed arc

A = {(x, h(x)) : xL ≤ x ≤ xR}
of the ascending branch of the prey isocline. This arc is plotted in red in the lower part of Fig. 2
for some specific examples, while the complementary arc is plotted in blue. If an equilibrium
belongs to the red arc, then the trace is positive. If it belongs to the blue arc, then the trace is
negative. In Gause/RMA model and in Hsu model, xL and xR coincide with 0 and x̂ respectively
and we find that condition (13) is verified if and only if x∗ > x̂, since A consists of the increasing
branch of the isocline of the prey. In Bazykin, CF and VT models, when α → 0, then xL → 0
and xR → x̂ , and we find the result of RMA model.

In all figures of the following subsections, we depicted the non-trivial prey isocline y = h(x)
and the non-trivial predator isocline y = ψ(x), respectively in blue and black, the functions g,
p and q being defined by (27). In addition to the boundary equilibria which both are saddle-
points, the intersection of the non-trivial isoclines define positive equilibria plotted in blue dots
when they are LES and in red dots when they are unstable. The figures show also the closed
arc A of the ascending branch of the prey isocline, in red, outside which the trace condition (13)
holds. We examine the change of the phase portraits by increasing the value of m, which will be
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Figure 2. The graphs of the functions H and G for Bazykin, CF and VT models
with the parameter values given in Table 2, 7, 10 and the corresponding arcs A
on the prey isocline.

our bifurcation parameter. Note that, except for the example of Fig. 6 bellow, the ends points
(xL, h(xL)) and (xR, h(xR)) of A do not change with m, since H(x) and G(x) do not.

4.1. The Gause/RMA model. In the Gause type model (1), d(x, y) = m > 0 does not
depend on x and y. We have the following result.

Proposition 5. For (1), a PAH bifurcation can occur at x̃, if and only if h1 := h′(x̃) = 0. We
have

(31) ρ =
1

16

(
2p1h2 + p0h3 −

p0q2
q1

h2

)
.

Proof. For (1), we have detJ (x̃, ỹ) > 0 and trJ (x̃, ỹ) = 0, if and only if h′(x̃) = 0. Moreover,
we have d2 = 0, so that only the first term p0h0b0 in ρ, given by (23), must be considered. Using
the fact that all derivatives of d are equal to 0, the coefficient b0 is given by

b0 = 2p0p1q1h2 + p20q1h3 − p20q2h2.

Now, using (22) we have ω2 = p0h0q1. Therefore, using (23), we have

ρ =
1

16p20h0q1
p0h0b0 =

1

16p0q1
b0,

which is the expression given in the proposition. □

The formula (31) for ρ, is known in the literature, see Equation (4.3) in [28]. If we replace in
(31) p, q and h by their expressions given in (27) and (28) respectively, we obtain

ρ = − r

2K(c+K)
.

Therefore, for the functions (27), the PAH bifurcation of (1) is always supercritical. However,
for other growth functions it can be subcritical. It is the case, for example, for the trigonometric
growth function q(x) = a tanh(bx), as shown in [23].

4.2. The Hsu model. In the Hsu model, i.e. d(x, y) = d(x) > 0 depends only on x and is
decreasing, the system (2) is written

(32)

{
ẋ = g(x)− yp(x),
ẏ = [q(x)− d(x)] y.

We have the following result.
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Proposition 6. For (32), a PAH bifurcation can occur at x̃, if and only if h1 := h′(x̃) = 0. We
have

(33) ρ = 1
16(q1−d1)

(2p1q1h2 + p0q1h3 − p0q2h2 − (p0h3 + 2p1h2)d1 + p0h2d11) .

Proof. For (32), we have detJ (x̃, ỹ) > 0 and trJ (x̃, ỹ) = 0, if and only if h′(x̃) = 0. Moreover,
we have d2 = 0, so that only the first term p0h0b0 in ρ, given by (23), must be considered. Using
the fact that all derivatives of d are equal to 0, except for d1 and d11, the coefficient b0 is given
by

b0 = 2p0p1q1h2 + p20q1h3 − p20q2h2 − (p20h3 + 2p0p1h2)d1 + p20h2d11.

Now, using (22) we have ω2 = p0h0(q1 − d1). Therefore, using (23), we have

ρ =
1

16p20h0(q1 − d1)
p0h0b0 =

1

16p0(q1 − d1)
b0,

which is the expression given in the proposition. □

To our knowledge, the formula (33) for ρ, is not known in the existing literature. If we replace
in (33) p, q and h by their expressions given in (27) and (28) respectively, and d(x) is given by

(34) d(x) = m+
α

δ + x
,

we obtain

ρ = − r

2K(c+K)

ace(c−K − 2δ)3 + α(c+K) [2c(c−K − 2δ) + (c+K)(c−K)]

[ace(c−K − 2δ)2 + α(c+K)2] (c−K − 2δ)
.

ρ is then the product of two fractions, the first one −r/ [2K(c+K)] being negative. Moreover,
knowing that x̂ given by (29) is positive, one has c−K < 0, hence c− k − 2δ < 0. This makes
the numerator and the denominator of the second fraction clearly negative. Hence, ρ is always
negative. Therefore, for the functions (27) and (34), the PAH bifurcation of (32) is always
supercritical.

4.3. The Bazykin model. In this section we apply our findings to the Bazykin model [2, 3].
This model was studied in detail in [9] and in the the Kuznetsov book on bifurcation theory
[17]. It has also been considered recently in [19, 27]. In these works, conditions for the existence
and stability of equilibria are established, as a function of parameters, and bifurcation diagrams,
with respect to one or two parameters, are constructed. Our aim is not to make a complete
new study of the model, but to show how the graphical method we have developed allows us
to clarify and complete certain results of the literature. In particular, when the parameters of
the model are fixed, we construct the part of the ascending branch of the prey isocline, denoted
A and shown in red in the figures, such that the trace of a positive coexistence equilibrium is
positive, when this equilibrium is on this part. In the Bazykin model, i.e. d(x, y) = m+αy, the
system (2) is written

(35)

{
ẋ = g(x)− yp(x),
ẏ = [q(x)− αy −m] y.

We have the following result.

Proposition 7. For (35), a PAH bifurcation can occur at x̃, if and only if q1 − αh1 > 0 and
p0h1/h0 = α. We have

(36) ρ =
1

16(q1 − αh1)

(
c0 +

c1
p0
α+

c2
p0
α2 − p2h

2
0

p20
α3

)
,

where

c0 = 2p1q1h2 + p0q1h3 − p0q2h2,

c1 = p2q1h0 + p20h
2
2 − p1q2h0 − p0q1h2,

c2 = q2h0− p1h0h2 − p0h0h3.
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Proof. For (35), we have

detJ (x̃, ỹ) = p(x̃)h(x̃)
[
q′(x̃)− αh′(x̃)

]
.

Therefore detJ (x̃, ỹ) > 0 if and only if q′(x̃) > αh′(x̃). On the other hand, we have

trJ (x̃, ỹ) = p(x̃)h′(x̃)− αh(x̃).

Therefore trJ (x̃, ỹ) = 0, if and only if h′(x̃) = αh(x̃)/p(x̃). Moreover, we have d2 = α. Using
the fact that all other derivatives of d are equal to 0 we obtain

b0 = 2p0p1q1h2 + p20q1h3 − p20q2h2,

b1 = p0p2q1h0 + p30h
2
2 − p0p1q2h0 − p20q1h2,

b2 = p0q2 − p0p1h2 − p20h3.

Now, using (22) we have ω2 = p0h0(q1 − αh1). Therefore, using (23), we have

ρ =
1

16p20(q1 − αh1)

(
p0b0 + b1α+ h0b2α

2 − p2h
2
0α

3
)
,

which is the expression given in the proposition. □

To our knowledge, the formula (36) for ρ in the Bazykin case, is known in the literature only
for the specific case where g, p and q are of the form (27), see [19]. In what follows we give more
details and information on this issue and we show how our formula (36) reduces in this special
case to the formula of [19]. The Bazykin model, with g, p and q given by (27), is written

(37)

dx

dt
= rx(1− x/K)− ax

c+xy,

dy

dt
=

(
e ax
c+x − αy −m

)
y.

The difficulty in using formula (36) is that the value x̃ where the PAH bifurcation can occur is
a solution of the equation p0h1/h0 = α, i.e. H(x) = G(x), which is written

(38)
ax(K − c− 2x)

(K − x)(c+ x)2
= α.

This equation is equivalent to a third degree algebraic equation in x. To overcome this difficulty,
and following [19], we parametrize the Bazykin model (37) as follows

(39)

dx

dt
= x(M −Nx)− B1x

Q+xy,

dy

dt
=

(
B2x
Q+x − 1

N y − P
)
y,

where

(40) B1 = (M −N)(Q+ 1) and B2 = (P + 1/N)(Q+ 1),

with M > N > 0, P > 0 and Q > 0, see the model (4.13) in [19]. There is a linear change
of variable transforming system (37) in (39). The interest of the form (39) is that it has a
positive equilibrium at E(1, 1). The study of the PAH bifurcation around (1, 1) in system (39),
corresponds to the PAH bifurcation in (37) around a positive equilibrium where the determinant
is positive and the trace is 0. This bifurcation occurs only if H(1) = G(1) = 1/N , which is
equivalent to the following condition

(41) M∗ = N2Q+2N2+Q+1
N .

Now, we replace in (36), α = 1/N , x̃ = 1 and

g(x) = x(M −Nx), p(x) =
B1x

Q+ x
, q(x) =

B2x

Q+ x
,
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where B1 and B2 are defined by (40) and M = M∗, given by (41). We obtain the following
expression for ρ,

ρ = −2(2N((N2 + 1)Q2 +QN2 −N2) +QP (1 +N2 + 2N4 + 2N2(N2 + 1)Q))

(Q+ 1)2(Q+ PNQ+QN2 + PN3Q− 1)
,

which is the same, to a multiplicative positive factor, as the expression of the first Lyapunov
coefficient σ1 obtained by [19] in page 132.
Numerical simulations : In order to compare with some of the results in the literature, we
choose the parameter values used in Figs. 4.5(a,d) of [19]. The parameters in (39), where B1

and B2 are given by (40), correspond to the following parameters in (37)

(42) r =M, K = M
N , a = (M −N)(Q+ 1), c = Q, e = P+1/N

M−N , α = 1
N ,

and m = P . We use the values ofM , N , P and Q, depicted in Table 2. These values are choosen
such that Fig. 3(d), where m = P = 0.25, corresponds to Fig. 4.5(a) of [19] and Fig. 4(b), where
m = P = 4/3− 0.07, corresponds to Fig. 4.5(d) of [19].

Table 2. The values of the parameters r, K, a, c, e and α used in the Bazykin
model (37) are given by (42), where M , N , P and Q are as in the table. The
value of m is depicted on each figure.

Figure M N P Q
Figs. 2(1), 3 5− 0.03 2 1/4 1/5

Figs. 4 5− 0.0015 2 4/3− 0.07 1/5

Recall that the abscissas xL and xR of the ends of the arc A are the roots of the third degree
algebraic equation (38), which lay between 0 and x̂, where x̂ is given by (29).

We consider m as the bifurcation parameter. We give in Fig. 3 the plots corresponding
to the values of the parameter r, K, a, c, e and α defined in Line 1 of Table 2 and various
values of m, chosen such that the principal behaviors of the model are illustrated. For these
parameter values, the abscissas xL and xR are given by xL = 0.0065 and xR = 0.9924, see
Fig. 2(1) and 3. The corresponding bifurcation values mL and mR of m are obtained by solving
equation ψ(xi) = h(xi), i = L,R, with respect to m, where ψ is given in Table 1. For these
parameter values, mL = −0.1151 and mR = 0.2496. The first value corresponds to the passage
of the predator isocline through point (xL, h(xL)), that is to say for x̃ = xL. The second value
corresponds to the passage of the predator isocline through point (xR, h(xR)), that is to say
for x̃ = xR. Furthermore, the isocline of the predator is tangent to the isocline of the prey,
which corresponds to a saddle-node bifurcation, when m = 0.2468 or m = 0.2530. These two
values are obtained firstly by solving the equation h′(x) = ψ′(x), with respect to x. This leads
to solving a third degree algebraic equation. We keep only its positive roots noted by xSN1
and xSN2 . For these parameter values, xSN1 = 0.5149 and xSN2 = 0.8534. Then, by solving the
equation ψ(xSNi ) = h(xSNi ), i = 1, 2, with respect to m, we obtain the two values of m stated
above.

The results on the existence and stability of the positive equilibria are deduced from Theorem 3
and are summarized in Table 3.

Note that when m < 0.2496 the Poincaré-Bendixson theorem predicts that the system has
at least one limit cycle that is stable in its exterior. Indeed, in this case the system has only
unstable equilibria. Let us illustrate some of these behaviors by numerical simulations, which
will also highlight homoclinic bifurcations.

For m = 0.24, the system has one positive equilibrium which is unstable, surrounded by a
stable limit cycle (in blue). The unstable positive separatrix of E2(K, 0) (in green) converges
towards this limit cycle, see Fig. 3(a).

For m = 0.2474, the system has three positive equilibria. The left and the right point are
unstable, the middle one is a saddle. These equilibria are surrounded by the blue stable limit
cycle, see Fig. 3(b and c). Note that the unstable positive separatrix of E2(K, 0) and the unstable
separatrices (in magenta) of the interior saddle point converge towards the limit cycle, while the
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Table 3. Positive equilibria and their stability of the Bazykin model for the
parameter values given in Line 1 of Table 7.

m Behavior of the system
0 ≤ m < 0.2468 A unique positive (unstable) equilibrium
m = 0.2468 Saddle-node bifurcation
0.2468 < m < 0.2496 Three positive unstable equilibria
m = 0.2496 Subcritical PAH bifurcation (ρ = 1.6678)
0.2496 < m < 0.2530 Three positive equilibria, two unstable and one stable
m = 0.2530 Saddle-node bifurcation
0.2530 < m A unique positive (stable) equilibrium

stable separatrices (in green) of the interior saddle point each converge towards one of the two
unstable equilibria when t→ −∞.

Form = 0.25, which corresponds to Fig. 4.5(a) in [19], the system has three positive equilibria.
The left one is unstable, the middle one is a saddle point and the right one is LES. These equilibria
are surrounded by a big stable limit cycle (in blue). The right equilibrium is surrounded by a
small unstable limit cycle (in red) which has been created by a subcritical PAH bifurcation for
m = 0.2496, see Fig. 3(d and g). Note that the unstable positive separatix of E2(K, 0) and the
unstable separatrices of the interior saddle point converge towards the big limit cycle, while a
stable separatrix of the interior saddle point converges towards the small cycle when t→ −∞.

When the value of m increases, the unstable limit cycle grows and approaches to the unstable
separatrix of the positive saddle point. When m crosses a value between 0.25167 and 0.25168,
(see Fig. 3 (e and f) and their zooms), the unstable limit cycle disappears when meeting the
saddle point by a homoclinic bifurcation.

For m = 0.25167, the stable separatrix is trapped between the unstable separatrix (magenta)
and the small cycle.

For m = 0.25168, the unstable separatrix converges to the positive LES equilibrium and is
surrounded by the stable separatrix. There has been a crossing of the separatrices, leading to
the destruction of the unstable cycle. The stable big cycle also disappears through a homoclinic
bifurcation which occurs for a value of m between 0.25214 and 0.25215, see Fig. 3 (j and l).

In Fig. 4, we consider the parameter values indicated in Line 2 of Table 2. For these parameter
values, the abscissas of the ends of the arc A, are given by xL = 0.0064 and xR = 0.9996. Note
that the predator isocline passes through the ends of the arc A for m = mL = −0.0768 or
m = mR = 1.2632. The first value corresponds to the passage of the predator isocline through
point (xL, h(xL)), that is to say for x̃ = xL. The second value corresponds to the passage of
the predator isocline through point (xR, h(xR)), that is to say for x̃ = xR. The results on the

Table 4. Positive equilibria and their stability of the Bazykin model for the
parameter values given in Line 2 of Table 2.

m Behavior of the system
0 ≤ m < 1.2632 A unique positive (unstable) equilibrium
m = 1.2632 Subcritical PAH bifurcation (ρ = 0.0213)
1.2632 < m A unique positive (stable) equilibrium

existence and stability of the positive equilibria are deduced from Theorem 3 and are summarized
in Table 4.

When m < 1.2632, the Poincaré-Bendixson theorem predicts that the system has at least one
limit cycle that is stable in its exterior and surrounding the unique unstable positive equilibrium.
Numerical simulations in Fig. 4 illustrate these behaviours and also highlight a saddle node
bifurcation of cycles.
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(a) m = 0.24 (b) m = 0.2474 (c) zoom of (b)

(d )m = 0.25 (e) m = 0.25167 (f) m = 0.25168

(g) zoom of (d) (h) zoom of (e) (i) zoom of (f)

(j) m = 0.25214 (k) zoom of (j) (l) m = 0.25215

Figure 3. Some phase portraits of Bazykin model with the parameter values
given in Line 1 of Table 2.

For m = 1.217, the system has one positive equilibrium which is unstable and surrounded by
a stable limit cycle (in blue). The unstable positive separatrix of E2(K, 0) (in green) converges
towards this limit cycle, see Fig. 4(a).

For m = 4/3 − 0.07, which corresponds to Fig. 4.5(d) in [19], the system has one positive
equilibrium which is LES and is surrounded by two limit cycles, a big stable one (in blue) and
a small unstable one (in red). The small limit cycle has been created by a subcritical PAH
bifurcation for m = 1.2632, see Fig. 4(b and c). Note that the unstable positive separatix of
E2(K, 0) still converges towards the big limit cycle.
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(a) m = 1.217 (b) m =
4

3
− 0.07 (c) zoom of (b)

(d) m = 1.2636 (e) zoom of (d) (f) m = 1.2637

Figure 4. Some phase portraits of Bazykin model with the parameter values
given in Line 2 of Table 2.

For m = 1.2636, the cycles approach each other, the stable one getting smaller, and the
unstable one getting bigger. The two cycles disappear through a saddle node bifurcation of
cycles which occurs for a value of m between 1.2636 and 1.2637, see Fig. 4 (d, e and f).

Form = 1.2637, the unstable separatrix of E2(K, 0) converges to the positive LES equilibrium,
see Fig. 4 (f).

The reader can find in [10] numerical illustrations for other sets of values of the numerical
parameters of the Bazykin model.

4.4. The Cavani-Farkas (CF) model. In CF model, i.e. d(x, y) = m + αy
1+y , the system (2)

is written

(43)

{
ẋ = g(x)− yp(x),

ẏ =
[
q(x)− αy

1+y −m
]
y.

One could, as for the Bazykin model, write the particular form of the exponent ρ given by
(23) in the case of (43) and g, p q given by (27). However, we do not do so, because the resulting
expression is rather complicated. Furthermore, the equation H(x) = G(x) defining the values
xL and xR becomes now

(44)
ax(K − c− 2x)

(K − x)(c+ x)2
=

α

(1 + h(x))2
,

where h is given by (28). It is a sixth degree algebraic equation in x. The values xL and xR are
the roots that lay between 0 and x̂, where x̂ is given by (29) .

In Fig. 5, we give the principal behaviors of the model with the values of the parameters
indicated in Line 1 of Table 7. These values were chosen to show the possibility of having
homoclinic bifurcation in CF model. For these parameter values, the abscissas of the ends
of the arc A, are given by xL = 0.1365 and xR = 0.4717, see Fig. 2(2) and Fig. 5. Note
that the predator isocline passes through the ends of the arc A if m = mL = 0.0473 and
m = mR = 0.0910. The first value corresponds to the passage of the predator isocline through
the point (xL, h(xL)), that is to say for x̃ = xL. The second value corresponds to the passage
of the predator isocline through the point (xR, h(xR)). The bifurcation values mL and mR are
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obtained by solving equation ψ(xi) = h(xi), i = L,R, with respect to m. For the second value,
E∗(xR, h(xR)) is a saddle point since detJ (xR, h(xR)) < 0. Hence, the PAH bifurcation does
not occur at m = mR. Furthermore, the isocline of the predator is tangent to the isocline of the
prey, which corresponds to a saddle-node bifurcation, when m = 0.0368 or m = 0.0911. These
two values are obtained firstly by solving the equation h′(x) = ψ′(x), with respect to m. We
find a value of m = m(x) that depends on x. Substituting m(x) in ψ and solving the equation
h(x) = ψ(x) with respect to x, we only keep the positive roots, noted by xSN1 and xSN2 . With
our parameter values, we find xSN1 = 2.1536 and xSN2 = 0.4454. Then, by solving the equation
ψ(xSNi ) = h(xSNi ), i = 1, 2, with respect to m, we obtain the two values of m stated above.

Table 5. Positive equilibria and their stability of the CF model for the param-
eter values given in Line 1 of Table 7.

m Behavior of the system
0 < m < 0.0368 A unique positive (stable) equilibrium
m = 0.0368 Saddle-node bifurcation
0.0368 < m < 0.0473 Three positive equilibria, two stable and one unstable
m = 0.0473 Supercritical PAH bifurcation (ρ = −0.0272)
0.0473 < m < 0.0911 Three positive equilibria, two unstable and one stable
m = 0.0911 Saddle-node bifurcation
0.0911 < m A unique positive (stable) equilibrium

The results on the existence and stability of the positive equilibria are deduced from Theorem 3
and are summarized in Table 5. Here is an illustration of some of these behaviors by numerical
simulations, which will also highlight homoclinic bifurcation.

Form = 0.02, the system has one positive equilibrium, which is LES and the unstable positive
separatrix of E2(K, 0) (in green) converges towards this equilibrium, see Fig. 5, (a).

For m = 0.038, the system has three positive equilibria. The left and the right point are LES,
the middle is a saddle, see Fig. 5, (b). Note that the unstable positive separatrix of E2(K, 0)
converges towards the right LES point. The unstable separatrices (in magenta) each converges
to one of the two LES equilibria.

For m = 0.062, the system has three positive equilibria. The left one is unstable, the middle
one is a saddle point and the right one is LES. The left equilibrium is surrounded by a stable limit
cycle (in blue) which has been created by a supercritical PAH bifurcation for m = 0.0473, see
Fig. 5, (c). The unstable positive separatrix of E2(K, 0) converges towards the right equilibrium
while the unstable separatrices converge one towards the limit cycle, the other towards the LES
equilibrium. When the value of m increases, the stable limit cycle grows and approaches the
unstable separatrix of the positive saddle point.

When m crosses a value between 0.066 and 0.067, (see Fig. 5, (d and f) and their zooms), the
stable limit cycle disappears when meeting the saddle point by a homoclinic bifurcation. There
has been a crossing of the stable and unstable separatrices.

For m = 0.12, the system has one positive equilibrium which is LES, the unstable positive
separatrix of E2(K, 0) converges towards this equilibrium, see Fig. 5, (h).

Actually, for the CF model, as written for example in [6], α = δ −m, where δ is a constant,
and thus depends on m. It is the case of the parameter values indicated in Line 2 of Table 7,
for which the bifurcation diagram of Fig. 3 (a) was dressed in [6]. The authors gave there the
bifurcation values m1 = 0.5806 and m2 = 2.265. Note that in this case, the arc A varies with
m, since it depends on α which varies with m. We can predict the existence and stability of the
positive equilibria by the use of Theorem 3 (see Table 6).

Numerical simulations are reproduced in Fig. 6. Note that, when 0.5806 < m < 2.265, the
Poincaré-Bendixson theorem predicts that the system has at least one limit cycle that is stable
in its exterior. Now, numerical simulations show that for m = 0.5, the system has one positive
equilibrium which is LES. The unstable positive separatrix of E2(K, 0) (in green) converges
towards this equilibrium, see Fig. 6 (a and b).
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(a) m = 0.02 (b) m = 0.038 (c) m = 0.062

(d) m = 0.066 (e) zoom of (d) (f) m = 0.067

(g) zoom of (f) (h) m = 0.12

Figure 5. Some phase portraits of CF model with the parameter values given
in Line 1 of Table 7.

Table 6. Positive equilibria and their stability of the CF model for the param-
eter values given in Line 2 of Table 7 .

m Behavior of the system
0 ≤ m < 0.5806 A unique positive (stable) equilibrium
m = 0.5806 Supercritical PAH bifurcation (ρ = −0.3565)
0.5806 < m < 2.265 A unique positive (unstable) equilibrium
m = 2.265 Supercritical PAH (ρ = −0.4177)
2.265 < m A unique positive (stable) equilibrium

Form = 1.5, the system has one positive equilibrium which is unstable surrounded by a stable
limit cycle (in blue) which has been created by a supercritical PAH bifurcation for m = 0.5806,
see Fig. 6 (c). Note that the unstable positive separatrix of E2(K, 0) converges towards this
stable limit cycle.

For m = 2.288, the unstable positive separatrix of E2(K, 0) converges to the unique positive
LES equilibrium, see Fig. 6 (d).

For m = 2.265, the cycle disappears through a supercritical PAH bifurcation and not subcrit-
ical, as claimed in [6].

Here is briefly the procedure that allows us to find the bifurcation values : The PAH bifur-
cation values m1 and m2 are given by solving the equation (44) where α = δ −m, with respect



PREDATOR-PREY MODEL WITH VARIABLE MORTALITY RATE 19

(a) m = 0.5 (b) zoom of (a)

(c) m = 1.5 (d) m = 2.288

Figure 6. Some phase portraits of CF model with the parameter values given
in Line 2 of Table 7. The red arc A depends on m.

to m. We find a value of m = m(x) that depends on x. We substitute m(x) in ψ, where ψ
is given in Table 1, and solve the equation h(x) = ψ(x) with respect to x. We only keep the
positive roots which are smaller than K, noted by x1 and x2. With our parameter values, we
find x1 = 0.0390 and x2 = 0.3905. Then, by solving the equation ψ(xi)) = h(xi), i = 1, 2, with
respect to m, we obtain the two same values of m given in [6].

Table 7. The parameter values used in the CF model. The value ofm is depicted
on each figure.

Figure r K a c e α
Fig. 2(2), 5 0.28 5 0.55 0.2 0.75 0.84

Fig. 6 1 1 1 0.1 3 2.8−m

4.5. The Variable-Territory (VT) model. In the VT model, i.e. d(x, y) = m + αy
δ+x , the

system (2) is written

(45)

{
ẋ = g(x)− yp(x),

ẏ =
[
q(x)− αy

δ+x −m
]
y.

Here again, one could write the particular form of the coefficient ρ given by (23) in the case
of (45) and g, p, q given by (27). We do not do so, because of the complexity of the resulting
expression. Furthermore, the equation H(x) = G(x) defining the values xL and xR becomes
now

ax(K − c− 2x)

(K − x)(c+ x)2
=

α

δ + x
.
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It is a third degree algebraic equation in x. The values xL and xR are the roots that lay between
0 and x̂.

We first consider the parameter values indicated in Line 1 of Table 10. These values were
chosen to reproduce, for m = 2.4, the case of Fig.1 (phase plot VT) in [24]. However, in [24],
δ = 0. To compare with this reference, and in order to use our results, we have taken a value of
δ = 10−6 close to zero. For these parameter values, the abscissas of the ends of the arc A, are
given by xL = 0.2753 and xR = 3.2491, see Fig. 2(3) and Fig. 6. Note that the predator isocline
passes through the ends of the arc A if m = mL = 0.7830 and m = mR = 2.6888. The first value
corresponds to the passage of the predator isocline through point (xL, h(xL)), that is to say for
x̃ = xL. The second value corresponds to the passage of the predator isocline through point
(xR, h(xR)). The bifurcation values mL and mR are obtained by solving equation ψ(xi) = h(xi),
i = L,R with respect to m.

Table 8. Positive equilibria and their stability of VT model for the parameter
values given in Line 1 of Table 10.

m Behavior of the system
0 < m < 0.7830 A unique positive (stable) equilibrium
m = 0.7830 Supercritical PAH bifurcation (ρ = −0.2243)
0.7830 < m < 2.6888 A unique positive (unstable) equilibrium
m = 2.6888 Supercritical PAH bifurcation (ρ = −0.0097)
2.6888 < m A unique positive (stable) equilibrium

The results on the existence and stability of the positive equilibria are deduced from Theorem 3
and are summarized in Table 8. Numerical simulations are reproduced in Fig. 7. Note that when
0.7830 < m < 2.6888, the Poincaré-Bendixson theorem predicts that the system has at least one
limit cycle that is stable in its exterior.

We see numerically that for m = 0.7, the system has one positive equilibrium which is LES.
The unstable positive separatrix of E2(K, 0) (in green) converges towards this equilibrium, see
Fig. 7 (a and b).

Form = 2.4, the system has one positive equilibrium which is unstable surrounded by a stable
limit cycle (in blue) which has been created by a supercritical PAH bifurcation for m = 0.7830,
see Fig. 7 (c). The unstable positive separatix of E2(K, 0) converges towards this stable limit
cycle.

For m = 2.8, the unstable separatrix of E2(K, 0) converges to the positive LES equilibrium,
see Fig. 7 (d). The stable limit cycle has been destroyed through a supercritical PAH bifurcation
for m = 2.6888.

In Fig. 8, we consider the parameter values indicated in Line 2 of Table 10. For these parameter
values, the abscissas of the ends of the arc A, are given by xL = 0.0065 and xR = 0.9943. Note
that the predator isocline passes through the ends of the arc A if m = mL = −0.1151 or
m = mR = 0.2558. The first value corresponds to the passage of the predator isocline through
point (xL, h(xL)), that is to say for x̃ = xL. The second value corresponds to the passage of
the predator isocline through point (xR, h(xR)), that is to say for x̃ = xR. Furthermore, the
isocline of the predator is tangent to the isocline of the prey, which corresponds to a saddle-node
bifurcation, when m = 0.2518 or m = 0.2556. The bifurcation values mL and mR are obtained
by solving equation ψ(xi) = h(xi), i = L,R with respect to m.

The results on the existence and stability of the positive equilibria are deduced from Theorem 3
and are summarized in Table 9.

Note that when m < 0.2556 the Poincaré-Bendixson theorem predicts that the system has
at least one limit cycle that is stable in its exterior. Indeed, in this case the system has only
unstable equilibria. Let us illustrate the principal behaviors by numerical simulations, which
will also highlight a saddle node bifurcation of cycles.
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(a) m = 0.7 (b) zoom of (a)

(c) m = 2.4 (d) m = 2.8

Figure 7. Some phase portraits of VT model with the parameter values given
in Line 1 of Table 10.

Table 9. Positive equilibria and their stability of the VT model for the param-
eter values given in Line 2 of Table 10.

m Behavior of the system
0 ≤ m < 0.2518 A unique positive (unstable) equilibrium
m = 0.2518 Saddle-node bifurcation
0.2518 < m < 0.2556 Three positive unstable equilibria
m = 0.2556 Saddle-node bifurcation
0.2556 < m < 0.2558 A unique positive (unstable) equilibrium
m = 0.2558 Subcritical PAH bifurcation (ρ = 1.3839)
0.2558 < m A unique positive (stable) equilibrium

For m = 0.1, the system has one positive equilibrium which is unstable, surrounded by a
stable limit cycle (in blue). The unstable positive separatrix of E2(K, 0) (in green) converges
towards this limit cycle, see Fig. 8(a).

For m = 0.2528, the system has three positive equilibria. The left and the right point are
unstable, the middle one is a saddle. These equilibria are surrounded by the blue stable limit
cycle, see Fig. 8(b). Note that the unstable positive separatrix of E2(K, 0) and the unstable
separatrices (in magenta) of the interior saddle point converge towards the limit cycle, while the
stable separatrices (in green) of the interior saddle point each converge towards one of the two
unstable equilibria when t → −∞. For m = 0.2557, the system has one positive equilibrium
which is unstable, see Fig. 8(c).
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(a) m = 0.1 (b) m = 0.2528 (c) m = 0.2557

(d) m = 0.25864 (e) m = 0.25865

Figure 8. Some phase portraits of VT model with the parameter values given
in Line 2 of Table 10.

For m = 0.25864, the system has one positive equilibrium which is LES, in addition to the
big blue stable limit cycle. It is surrounded also by a small unstable limit cycle (in red) which
has been created by a subcritical PAH bifurcation for m = 0.2558, see Fig. 8(d).

When the value of m increases, the unstable limit cycle grows and approaches the stable one.
When m crosses a value between 0.25864 and 0.25865, see Fig. 8(d and e), the two limit cycles
disappeared when both meat each other by a saddle node bifurcation of cycles.

For m = 0.25167, the system has one positive equilibrium which is LES. The unstable positive
separatrix of E2(K, 0) converges towards this equilibrium.

The reader can find in [10] numerical illustrations for other sets of values of the numerical
parameters of the VT model.

Table 10. The parameter values used for the VT model. The value of m is
depicted on each figure.

Figure r K a c e α δ
Fig. 2(3) and 7 1.75 8 800 0.3 0.004 169.6 10−6

Fig. 8 4.97 2.4850 3.564 0.2 0.2525 40 80

5. Conclusion

We presented a modified Gause type model with non constant general mortality rate d(x, y).
We showed, under natural assumptions, that the solutions of our general model (2) are positive
and bounded (Proposition 1). The system (2) always admits the boundary equilibria E1(0, 0)
and E2(K, 0) and can admit positive equilibria. The necessary and sufficient condition for the
existence of a positive equilibrium is x1 < K, see Theorem 1. When a positive equilibrium
E∗ exists, the boundary equilibria E1 and E2 are saddle points. Moreover the determinant in
E∗ is positive if and only if condition (12) holds and the trace in E∗ is negative if and only
if condition (13) holds, see Theorem 2. The trace condition (13) is equivalent to the fact that
the equilibrium E∗ lies outside the subset A of the ascending branch of the prey isocline, see



PREDATOR-PREY MODEL WITH VARIABLE MORTALITY RATE 23

Proposition 4. Therefore, it could be attractive even if it is located on an ascending branch of
this isocline. This property never occurs for classical RMA type models for which d is constant,
nor for what we called Hsu model for which d(x, y) depends only on x. Geometrically, the
determinant condition (12) holds if and only if, at E∗, the slope of the non trivial x-isocline is
smaller than the one of the non-trivial y-isocline, see Proposition 3. In this case, E∗ is LES if
and only if E∗ /∈ A and is an unstable node or focus if E∗ ∈ intA. Finally, if condition (12)
is not satisfied, E∗ is a saddle point, in the hyperbolic case (Theorem 3). These geometrical
observations represent an extension of the well known Rosenzweig-MacArthur criterion stability
to models with variable mortality rate. We also examined the possibility of having a PAH
bifurcation for the general model (2) (Theorem 4), by choosing, for sake of simplicity, the
abscissa x∗ of E∗ as a bifurcation parameter. In particular, we were able to produce a general
formula of a real number ρ corresponding to the first Lyapunov coefficient (formula (23)). If
ρ ̸= 0, the model (2) undergoes a non degenerate PAH bifurcation when x∗ crosses a value
x̃ for which the hyperbolicity and transversality conditions are verified. This bifurcation is
supercritical if ρ < 0, and subcritical if ρ > 0.

We then turned our attention to some models in the literature (Table 1) : the Gause/RMA
model for which the mortality rate is constant, the Hsu model with prey-dependent mortality
rate, the Bazykin and CF models with predator-dependent mortality rates, and the modified
VT model with predator-prey dependent mortality rate. Actually, Bazykin, CF and VT models
in Table 1 are more general than their corresponding ones in the indicated references, since
they are expressed using the general functions g, p and q. Our goal was the application of the
results obtained for the general model which contains them all. For Gause and Hsu models,
the classical Rosenzweig-MacArthur criterion of stability of a positive equilibrium holds, i.e. a
positive equilibrium is LES if and only if it belongs to the decreasing branch of the prey isocline.
For the others, our extension of this criterion is applicable and the closed subset A, depending
on the constant α, is a proper arc of the ascending branch of the prey isocline which tends to
the whole ascending branch when α goes to zero. Hence, Theorem 3 gives us a practical reading
of the local stability properties by drawing the non-trivial isoclines of the models. Furthermore,
from formula (23), we choosed to deduce the expressions of the first Lyapunov coefficients for
the Gause-type, Hsu and Bazykin models. For the RMA/Gause type models, we have recovered,
in Proposition 5, the number ρ as given in the literature (see [28]). For the Hsu model, we were
able to provide a general formula which does not seem to be known in the literature (Proposition
6). For the Bazykin model, Proposition 7 gives an original general formula of ρ. When g, p and
q are given by equations (27), we have recovered the number ρ as given in [19].

Appendix A. Proof of Theorem 4.

First, by hypotheses (24) and (25) the necessary conditions (20) for a PAH Bifurcation are
satisfied. Secondly, we prove the transversality condition

d

dx∗
trJ (x∗, h(x∗))|x∗=x̃ ̸= 0.

From the expression of the trace given in the proof of Theorem 2, we have

trJ (x∗, h(x∗)) = h(x∗) (H(x∗)−G(x∗)) .

Therefore,

d

dx∗
trJ (x∗, h(x∗)) = h′(x∗) (H(x∗)−G(x∗)) + h(x∗)

(
H ′(x∗)−G′(x∗)

)
.

By hypothesis (25), we obtain

d

dx∗
trJ (x∗, y∗)|x∗=x̃ = h(x̃)

[
H ′(x̃)−G′(x̃)

]
.

From the assumption (26), the transversality condition is verified. Thirdly, in order to examine
the non-degeneracy condition and to compute the number ρ, the sign of which is that of the
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first Lyapunov coefficient (see [12], page 169), we introduce the following change of variables

(46) x = N, y = h′(x̃)N +
ω

p(x̃)
P,

where ω =
√

detJ (x̃, h(x̃)). The model (2) becomes

(47)

{
Ṅ = −ωP + F (N,P ),

Ṗ = ωN +G(N,P ),

with

F (N,P ) = p(N)
[
h(N)− h′(x̃)N

]
− ωP

[
p(N)

p(x̃)
− 1

]
,

and

G(N,P ) =
1

ω

[
q(N)−D

(
N,h′(x̃)N +

ω

p(x̃)
P
)
−m

]
[p(x̃)h′(x̃)N + ωP ]

− h′(x̃)p(N)

ω

[
p(x̃)h(N)− p(x̃)h′(x̃)N − ωP

]
− ωN.

The parameter ρ is given by

(48) ρ =
1

16
A1 +

1

16ω
[A2 −A3 −A4] ,

where, see [12], page 169 or [8], page 152

A1 = FNNN + FNPP +GNNP +GPPP , A2 = FNP (FNN + FPP ),

A3 = GNP (GNN +GPP ), A4 = FNNGNN − FPPGPP .

where FNN denotes ∂2F
∂N∂N (Ñ , P̃ ), FNP denotes ∂2F

∂N∂P (Ñ , P̃ ), and similarly for all other partial
derivatives. Since F is linear in P , we have FPP = FNPP = 0. Notice that from the change of

variables (46), we have Ñ = x̃ and P̃ = p(x̃)
ω (ỹ − h′ (x̃) x̃).

After calculations, and using the notations (21), we find that Ai, i = 1, · · · , 4 are given by
the following expressions

A1 =
1

p20

[
p20p2h1 + 3p20p1h2 + p30h3 + p20q2 − p20d11 − 4p20h1d12 − 3

(
ω2 + p20h

2
1

)
d22

− p20h0d112 −
(
ω2 + p20h

2
1

)
h0d222 − 2p20h0h1d122

]
,

A2 = −ωp1h2,

A3 =
1

p0ω

[
p1h1 + q1 − d1 − 2h1d2 − h0d12 − h0h1d22

][
p20q2h0 − p30h1h2 + 2p20q1h1

− 2p20h1d1 − 2
(
ω2 + p20h

2
1

)
d2 − p20h0d11 − 2p20h0h1d12 −

(
ω2 + p20h

2
1

)
h0d22

]
,

A4 =
p20h2
ω

[
q2h0 − p0h1h2 + 2q1h1 − 2h1d1 − 2h21d2 − h0d11 − 2h0h1d12 − h0h

2
1d22

]
.

Replacing these expressions in (48) we obtain the following formula for ρ

ρ =
1

16p20ω
2

(
a0 + a2ω

2 + a4ω
4
)
,

where a0, a2 and a4 do not depend on ω. Using MAPLE [20] now, we can replace ω2 by its
expression (22) and h1 by h1 = d2h0/p0, which follows from the condition H(x̃) = G(x̃). We
obtain the expression of ρ given by (23).

Under the assumption that ρ ̸= 0 we conclude that (2) undergoes a non degenerate PAH

bifurcation at Ẽ(x̃, ỹ), see Theorem 3.4.2 in [8].
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Appendix B. Biological explanations

It is not useless to give briefly some biological explanations for the models we used to illustrate
our results (see for example Table 1 in [25]). In RMA and Gause models, the prey density is
regulated only by food limitation (d(x, y) = m). In the Hsu model, the mortality rate is a
decreasing function of the prey density. In [11], Hsu indicates for example the case d(x) =
(ex+f)/(rx+s) with fe > se which can be written in the form m+α/(δ+x). In this reference,
there is no justification for this rate. However, it can be interpreted naturally by the fact that
the more the prey is available, the more the predator mortality rate is small. May be a better
justification is to consider d(x)y as an emigration term, in the sense that predators get out of
the ecosystem when the density of the prey is small. The Hsu model contains also a model due
to Minter et al. [21] where a detailed biological justification leads to a mortality rate of the form
d(x) = α/(δ + x) for which d(x) decreases to zero when x goes to infinity. Bazykin [2, 3, 19]
introduced the regulation by interspecific mechanisms, that is a competition among predators
for resources other than prey. To do this, he subtracted a quantity αy2 from the predator
equation (d(x, y) = m+αy). Even if not concerned by our study, it is also worth mentioning the
recent article [14] which deals with Bazykin model with ratio-dependent functional response of
Arditi-Ginzburg. If the predator density-dependence parameter α is made inversely proportional
to resource availability, the dynamics are described by the variable-territory model of Turchin-
Batzli [24, 25] (d(x, y) = m+αy/x, where α is called the prey/predator ratio at equilibrium). The
term d(x, y)y = αy2/x in the predator equation represents the self-limitation of the predator.
Nevertheless, a self-limitation should be biologically limited. It is not the case for Turchin-
Batzli model where αy2/x could become quite large in case of predators can subsist on few
prey (i.e. αy2/x → ∞ as x → 0). This leads to the well-defined modified VT model for which
d(x, y) = m + αy

δ+x where δ > 0 is fixed [13]. Not only the self limitation of predator becomes

less than αy2/d but also the singularity in x = 0 is avoided. Cavani and Farkas [5, 6] proposed
the modified RMA model for which the mortality of the predator in the absence of the prey is a
growing and bounded function of the predator quantity. More exactly d(x, y) = m+αy/(1+ y)
where, contrary to what we assumed for technical reasons, α = δ − m depends on m. Here,
m > 0 is the mortality at low density and is less than δ which is the limiting, maximal mortality.
Except for Gause, Hsu and Bazykin models, the theoretical study of these models is not, for
our knowledge, always exhaustive. Authors have sometimes directed their investigation to a
particular aspect, especially the appearance of periodic orbits. Indeed, all the mentioned models
can generically exhibit limit cycles that can appear or disappear by PAH bifurcation.
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