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1. INTRODUCTION

We deal with the stability of time-periodic linear difference-
delay systems; i.e., dynamical systems of the form

y(t) =

N∑
j=1

Dj(t) y(t− τj) for t ≥ s , (1)

where s ∈ R is the initial time, d and N are positive
integers, Dj : R → Cd×d is a continuous T -periodic
matrix-valued function:

Dj(t+ T ) = Dj(t) , 1 ≤ j ≤ N . (2)

Without loss of generality, we order the delays and assume
that T is strictly larger than all of them:

0 < τ1 < · · · < τN < T (3)

(otherwise we may replace T by kT , with k > 0 the
smallest integer such that kT > τN ).

Plan of the paper. The present introduction reviews
motivation from engineering for the study of periodic
linear difference delay systems; it also introduces defini-
tions and basic facts about System (1), as well as well-
known results about time-invariant and periodic linear
delay system, along with a recent necessary and sufficient
condition for exponential stability obtained by the authors
in Baratchart et al. (2022). The next three sections contain
the contributions of the paper, all based on that result.
Section 2 contains an analog of the Hale-Silkowski The-
orem in the periodic case (see Theorem 3 below), when
the delays are rationally independent. This yields a simple
sufficient and necessary stability condition in that specific
case. Section 3 gives a sufficient stability condition in
terms of the norms of the matrices (Dj(.))j∈{1,...,N}, in
the special case where the columns of System (1) are
disjoint ; see definition at the begining of that section.
Since delay systems are often used to model transport
equations, Section 4 applies what precedes, in particular

Section 3, to stability criteria for this type of equations.
Section 5 concludes with some open questions.

1.1 Motivation from electronics

Delay systems arise naturally in electronic engineering;
see the pioneering works of Brayton (1967), for instance.
In particular, System (1) recurs in that field because it
models the behaviour at very high frequency of electronic
components. Indeed, circuits contain linear, passive com-
ponents as well as nonlinear, active ones, all of which
can be described using finitely many state variables; but
they also contain transmission lines, typically modelled
by simple hyperbolic Partial Differential Equations (PDE)
like the lossless telegrapher equations, that make the state
space of the circuit infinite-dimensional. Integrating the
telegrapher equations, one obtains a model comprised of
delay-difference as well as differential equations. Using
first order approximation, issues of stability for the cir-
cuit around a periodic trajectory reduce to investigating
the exponential stability of the time-periodic linear sys-
tem obtained by linearising around the periodic solution.
This yields a network of delay-difference equations with
boundary conditions coupled by differential equations, the
stability of which is intimately connected with the stability
of a periodic linear difference delay system of the form (1)
via a compact perturbation argument; cf. Fueyo (2020);
Hale and Verduyn Lunel (1993).

Due to the huge number of components in the circuit,
it is known from electronic engineering textbooks that
stability of the above-mentioned linearised system cannot
be tested efficiently in the time domain. Instead, one
considers a family of input-output systems, obtained by
perturbing the linearised system by a small current i
at some node of the circuit and observing the resulting
perturbation of the voltage v between two nodes. Using
Fourier expansions, stability is studied through the sin-



gularities of the harmonic transfer function (HTF) which
is a doubly-infinite matrix (no initial nor final index for
rows and columns) depending on a complex variable (see
Suárez (2009); Möllerstedt (2000); Louarroudi (2014))).
It is this electronic context that motivated our study;
in fact, (Baratchart et al., 2022, Thm. 3) on which we
base our analysis expresses that the HTF, when viewed
as an operator-valued function, is holomorphic in some
right half-plane with strictly negative abscissa. It has to
be pointed out that rational approximation techniques
used in electronic engineering, see for instance Jugo et al.
(2001); Cooman et al. (2018), might be adapted to inves-
tigate numerically the stability of this kind of systems.

1.2 Preliminaries

A solution to the difference delay system under examina-
tion is a map y(.) : [s − τN ,+∞) → Cd that satisfies (1).
It is uniquely determined by its restriction to [s − τN , s];
i.e. by requiring that y(s + θ) = φ(θ) for −τN ≤ θ ≤ 0,
where the initial data φ : [s − τN , s] → Cd may belong
to various functional spaces depending on the context.
For example, if we put C0([s,+∞),Cd) for the space of
continuous functions defined on [s,+∞) with values in
Cd, a necessary and sufficient condition for a continuous
map φ : [s − τN , s] → Cd to be the initial condition of a
continuous solution to (1) is that φ ∈ Cs where

Cs := {φ ∈ C0([−τN , 0],Cd)|φ(0) =

N∑
j=1

Dj(s)φ(−τj)}.(4)

Since the system is T -periodic, we have that Cs+T = Cs.
For φ ∈ Cs, an easy recursion shows that system (1) has
a unique continuous solution y with initial data φ. Thus,
we may define, for all t, s, t ≥ s, the solution operator:

U(t, s) : Cs → Ct
φ 7→ U(t, s)φ , the map θ 7→ y(t+ θ) .

(5)

For x ∈ Cd, let ‖x‖ denote its Euclidean norm. We endow
Cs with the familiar C0 (supremum) norm:

‖φ‖C0 = sup
θ∈[−τn,0]

‖φ(θ)‖. (6)

We may now formally define exponential stability:

Definition 1. System (1) is called C0-exponentially stable
if there exist γ,K > 0 such that :

‖U(t, s)φ‖C0 ≤ Ke−γ(t−s)‖φ‖C0 , (7)

for all s ∈ R, all t ≥ s and all φ ∈ Cs.

1.3 Stability results for time-invariant systems

We assume in this section that the maps t 7→ Dj(t)
are constant; i.e., Dj(·) ≡ Dj for j = 1, · · · , N , where
Dj ∈ Cd×d. In this case, System (1) reduces to

y(t) =

N∑
j=1

Dj y(t− τj) for all t ≥ s. (8)

There are classically two ways of studying the exponential
stability of such a system: one proceeds in the frequency
domain via Laplace transforms or one devises Lyapunov-
krasovskii functionals (see Gomez et al. (2019); Răsvan

and Niculescu (2002)). We focus here on the first one. As-
sumption (2) is true for any T > 0 while all considerations
and definitions above apply. The sets Cs do not depend on
s, the linear operator U(t, s) depends only on t − s, and
the system clearly defines a semigroup though we do not
elaborate on this. Let us simply recall the following char-
acterisation of exponential stability, first given in Cruz and
Hale (1970) when there are finitely many commensurate
delays, then generalised by Henry to the case of infinitely
many, not necessarily commensurate delays Henry (1974),
and subsequently carried over by Hale to distributed delay
systems, see (Hale and Verduyn Lunel, 1993, Ch. 9).

Theorem 2. (Henry-Hale). Assume that the matrices Dj

are constant, 1 ≤ j ≤ N . A necessary and sufficient
condition for System (8) to be C0-exponentially stable is
the existence of a real number β < 0 such that, for all p in
{z ∈ C|<(z) ≥ β}, one has:

Id −
N∑
j=1

e−p τj Dj is invertible in Cd×d . (9)

Another classical result, stated below as Theorem 3 and
due to Avellar and Hale (1980) (though originally in-
troduced in the PhD dissertation of Silkowski (1976)),
deals with the stability of System (8) when the delays
are rationally independent ; that is, if none of them can
be written as a linear combination of the others with
rational coefficients. In that case, there is a sufficient and
necessary criterion for stability, often called the Hale-
Silkowski criterion (cf Chitour et al. (2016)). It is simpler
to check because it depends on parameters that vary in
a compact set, whereas the condition given in the Henry-
Hale theorem must be satisfied in a right half plane. More-
over, when the Hale-Silkowski criterion is verified then
exponential stability holds whatever the delays (rationally
independent or not). The two main arguments in the proof,
which are not given here, are the Henry-Hale theorem and
Kronecker’s approximation theorem.

Theorem 3. (Hale-Silkowski). If the delays are rationally
independent then System (8) is exponentially stable if and
only if, for all θj ∈ [0, 2π] and j = 1, · · · , N , the following
operator has spectrum compactly included in the open
unit disk :

N∑
j=1

eiθj Dj . (10)

Furthermore, when this condition is satisfied, exponential
stability of System (8) holds for any set of positive delays.

The first part of Theorem 3 follows from the implication
(i) ⇒ (ii) in (Hale and Verduyn Lunel, 1993, Theorem
6.1, chapter 9). The second part is item (iii) of the same
reference.

1.4 Stability in the periodic case

Generally speaking, the stability of periodic systems is
studied through the monodromy operator; i.e., the oper-
ator U(T, 0), with U defined in (5). In fact, System (1)
is C0-exponentially stable if and only if the spectrum of
the monodromy operator is strictly included in the unit



disk. Because the spectrum of U(T, 0) needs not consist of
eigenvalues, the study of stability becomes complicated,
even though explicit representations of the monodromy
operator can be obtained in special cases when the period
and the delays of the system are rationally dependent.
Recently, a generalisation of the Henry-Hale theorem to
the periodic case was proven in Baratchart et al. (2022),
when the maps t 7→ Dj(t) are T -periodic with Hölder-
continuous derivative. In particular, this generalisation
requires no assumption on the ratio between the delays
and the period. As an extra piece of notation, let us put
Ďj(k), for k ∈ Z, to denote the k-th Fourier coefficient of
Dj :

Ďj(k) :=
1

T

∫ T

0

Dj(t)e
− i2πktT dt. (11)

We let LDj be the (doubly infinite) block Laurent matrix
associated with Dj(t), whose entries are(

LDj
)
k,n

:= Ďj(n− k), n, k ∈ Z. (12)

Since each Dj(t) is a bounded function, such Laurent
matrices act on the Hilbert space :

l2d(Z) := {z = (zj)j∈Z|zj ∈ Cd,
+∞∑
j=−∞

‖zj‖2 < +∞},(13)

equipped with the norm ‖.‖2 given by

‖z‖2 :=

( +∞∑
j=−∞

‖zj‖2
)1/2

. (14)

Note that ‖LDjz‖2 = ‖DjZ‖L2(T) where T = R/TZ is

the circle, while Z ∈ L2(T) is the function whose Fourier
coefficients are the zk.

For A : l2d(Z) → l2d(Z) a linear operator, we denote by
|||A|||2 its operator norm:

|||A|||2 := sup
z 6=0

‖Az‖2
‖z‖2

. (15)

Irrespectively of m ∈ N, we put I∞ for the identity
operator on l2m(Z) and, for 1 ≤ j ≤ N , we define the

(doubly infinite) block diagonal matrix D̃τj by

D̃τj := diag
{
· · · , e−4iπτj/T Id , e

−2iπτj/T Id , Id ,

e+2iπτj/T Id , e
+4iπτj/T Id , · · ·

}
,

(16)

where Id is the identity matrix of size d×d. We then define
a function R of the complex variable p with values in the
bounded operators l2d(Z) → l2d(Z) (identified with their
doubly infinite matrix in the Fourier basis):

R(p) := I∞ −
N∑
j=1

e−p τjLDj D̃τj . (17)

Theorem 4. (Baratchart et al. (2022), Theorem 3).

Assume that the Dj : R → Cd×d are periodic and
differentiable with Hölder continuous derivative for 1 ≤
j ≤ N . A necessary and sufficient condition for System
(1) to be exponentially stable is the existence of a real
number β < 0 such that :

(i) R(p) is invertible l2d(Z) → l2d(Z) for all p in {z ∈
C|<(z) ≥ β},

(ii) there is a positive number M such that
∣∣∣∣∣∣R(p)−1

∣∣∣∣∣∣
2
≤

M for all p in {z ∈ C|<(z) ≥ β}.

Properties of almost periodic function easily imply that
Theorem 4 is indeed a generalisation of the Henry-Hale
Theorem 2, meaning that in the time-invariant case The-
orem 4 reduces to Theorem 2.

We surmise that condition (ii) cannot be dispensed with.
As the results of the paper are based on Theorem 4, we as-
sume throughout that the matrices Dj(·) are differentiable
with Hölder continuous derivative

2. RATIONALLY INDEPENDENT DELAYS

As shown in Theorem 6, a simplification of Theorem 4
analogous to the Hale-Silkowski theorem of the time-
invariant case can be produced when the delays are ra-
tionally independent.

Let us first recall some classical definition and properties.
Let A : E → E a linear operator, where E is a Banach
endowed with a norm ‖ · ‖E . The operator A is said to be
bounded below if there exists c > 0 such that:

||Ax||E ≥ c||x||E . (18)

Equivalently, A is not bounded below if and only if there
exists a sequence (xk)k∈N ∈ EN with ‖xk‖E = 1 such that:

Axk −→
k→+∞

0. (19)

We are now in position to prove a generalisation of the
Hale-Silkowski theorem to the periodic case. For this, we
introduce the following map:

RHS(ρ, θ1, · · · , θN ) = I∞ −
N∑
j=1

e−ρτjLDj D̃τje
iθj , (20)

for ρ ∈ R, θj ∈ [0, 2π] and j = 1, · · · , N . We need a lemma.

Lemma 5. When the delays are rationally independent,
assertions (A) and (B) below are equivalent:

(A) there exists a real number β < 0 such that :
(i) R(p) is invertible l2d(Z) → l2d(Z) for all p in
{z ∈ C|<(z) ≥ β},

(ii) there exists a real number M such that∣∣∣∣∣∣R(p)−1
∣∣∣∣∣∣

2
≤M for all p in {z ∈ C|<(z) ≥ β}.

(B) RHS(ρ, θ1, · · · , θN ) is invertible l2d(Z) → l2d(Z) for
ρ ≥ 0 and θj ∈ [0, 2π], j = 1, · · · , N .

Proof. Note that (ii) in condition (A) amounts to require
that R(p) is bounded below on the set {p ∈ C| <(p) ≥ β},
uniformly with respect to p; i.e., there is M̃ > 0 such that:

M̃‖x‖2 ≤ ‖R(p)x‖2, x ∈ l2d(Z). (21)

If (A) does not hold, there is a sequence (pn) ∈ CN with
lim

n→+∞
<(pn) = 0 or <(pn) ≥ 0 for all n ∈ N verifying one

of the two assertions:

(a) R(pn) is not invertible for all n ∈ N.



(b) R(pn) is invertible for all n and R(pn)xn −→
n→+∞

0 for

some sequence (xn) ∈ (Cd)N with ‖xn‖ = 1.

Since R(p) is invertible for <(p) large enough by a Neu-
mann series argument, the sequence (pn)n∈N has bounded
real part. So, by compactness, there exists a subsequence
(still denoted with (pn)), ρ ≥ 0, and θj ∈ [0, 2π] for
j = 1, · · · , N such that

lim
n→+∞

R(pn) = RHS(ρ, θ1, · · · , θN ), (22)

where the convergence is understood in operator norm and
the θj are suitable accumulation points of the −= (pnτj)
modulo 2π. Using that invertible operators form an open
set (in case (a)) or picking a limit point 0 6= x ∈ Cd and
observing that RHS(ρ, θ1, · · · , θN )x = 0 (in case (b)), we
deduce from (22) that condition (B) cannot hold.

Conversely, if (B) is not verified then there exist ρ ≥ 0 and
θj ∈ [0, 2π], j = 1, · · · , N , such that RHS(ρ, θ1, · · · , θN )
is not invertible. By Kronecker’s approximation theorem,
there is a real sequence (µ{n}) comprised of integral
multiples of 2π such that

ei(θj−µ
{n}τj) −→

n→+∞
1, j = 1, · · · , N,

ensuing that

R(ρ+ iµ{n}) −→
n→+∞

RHS(ρ, θ1, · · · , θN ). (23)

Now, if (A) did hold, R(ρ+iµ{n}) would be invertible with∣∣∣∣∣∣R−1(ρ+ iµ{n})
∣∣∣∣∣∣

2
≤M for all n ∈ N, because ρ ≥ 0. For

φ : l2d(Z) −→ l2d(Z) a bounded operator and p ∈ C such
that R−1(p) exists, we have:

φ = R−1(p) (Id − (Id −R(p)φ)) . (24)

Hence, by a Neumann series argument, the ball of center
R−1(ρ + iµ{n}) and radius 1/M in the space of bounded
operators on l2d(Z) would consist entirely of invertible
elements, contradicting (23). This proves the lemma.

We are now in position to state a generalisation of the
Hale-Silkowski Theorem in the periodic case:

Theorem 6. If the delays are rationally independent, then
a necessary and sufficient condition for System (1) to be
exponentially stable is:

(1) I∞ −
N∑
j=1

e−ρτjLDj D̃τje
iθj is invertible l2d(Z)→ l2d(Z)

for ρ ≥ 0 and θj ∈ [0, 2π] for j = 1, · · · , N .

Proof. This follows from Lemma 5 and Theorem 4.

Theorem 6 allows us to relax condition (ii) in Theorem 4,
but we still incur a dependence on the real number ρ.
In the Hale-Silkowski theorem for the time-invariant case,
we can further eliminate ρ because, when the delays are
rationally independent, the system is exponentially stable
for all delays if it is for some. However, we surmise
this is not true for periodic difference delay system, and
believe that Theorem 6 cannot reduce to the classical Hale-
Silkowski Theorem 3. Still, Theorem 6 gives a criterion
for exponential stability of System (1) that needs only be
verified on a compact set, thanks to a Neumann series
argument.

3. THE CASE OF DISJOINT COLUMNS

In a special case, one can give a sufficient condition for
exponential stability of System (1) in terms of the Dj(·)
themselves, and not the Laurent matrices associated to
the Fourier series of the Dj(·) as is the case in Theorem 4.
Let us say that the columns of system (1) are disjoint if
whenever k ∈ {1, · · · , d} is such that the kth column of
Dj(t) is nonzero, then the kth column of Di(t) is zero for
every i 6= j. For A a d× d matrix, we denote by |||A||| the
operator norm induced by the norm ‖·‖ on Cd. The disjoint
column property is restrictive, and few difference delay
systems will enjoy it. However, this is the case for difference
delay systems coming from 1-D hyperbolic difference delay
equations; see Section 4.

Proposition 7. If the column of the periodic delay system
(1) are disjoint and there exists an invertible constant
diagonal matrix D such that∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣D

N∑
i=1

Di(t)D
−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ < 1 (25)

for all t in R, then System (1) is exponentially stable.

Proof. Writing LD for the Laurent matrix of D, we get
from properties of Laurent’s matrices (see Böttcher and
Silbermann (1999)) and since the column are disjoint that∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣LD

N∑
i=1

e−pτiLDiD̃iL
−1
D

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ sup
t∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣D

N∑
i=1

e−pτiDi(t)D
−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ < 1.

(26)

for some γ < 0 and p ∈ {p̃ ∈ C|Re(p̃) ≥ γ}. Hence,

I∞ −
N∑
j=1

e−pτjLDj D̃τj is invertible in l2d(Z) to l2d(Z) and

uniformly bounded for such p, by a Neumann series
argument. We now get the result from Theorem 4. 2

4. 1-D HYPERBOLIC SYSTEMS

Classically, delay systems are instrumental to give stability
conditions for 1-D hyperbolic PDEs, see for instance the
pioneering works Brayton (1967); Abolinia and Myshkis
(1960); Cooke and Krumme (1968) (see also Răsvan (2014)
for a more recent study) considering difference-differential
equations coming from such systems. The use of difference
delay systems arising from 1-D hyperbolic PDEs with
conservation laws is more recent (see Coron and Nguyen
(2015); Chitour et al. (2016); Baratchart et al. (2021)). Be-
low we prove that such systems are equivalent to a periodic
difference delay system with the disjoint column property.
We recast Theorem 4 and Theorem 6 in this framework,
and applying Proposition 7 will allow us to recover some
known stability results regarding linear time-varying 1-
D hyperbolic PDE (see Baratchart et al. (2021)). More
precisely, following the notation of (Bastin and Coron,
2016, Chapter 3), we consider the hyperbolic system

∂tR(t, x) + Λ∂xR(t, x) = 0, (t, x) ∈ Ω. (27)

The diagonal matrix Λ is defined as



Λ :=

(
Λ+ 0
0 −Λ−

)
(28)

with Λ+ = diag{λ1, · · · , λm}, Λ− = diag{λm+1, · · · , λn}
and λi > 0, i = 1, · · · , n. Let us put

Ω = {(t, x) ∈ R2, 0 < x < 1 and 0 < t < +∞}. (29)

and write R :=

(
R+

R−

)
, where

R+ =

R1

...
Rm

 and R− =

Rm+1

...
Rn

 . (30)

The (periodic time-varying) boundary conditions are :(
R+(t, 0)
R−(t, 1)

)
= K(t)

(
R+(t, 1)
R−(t, 0)

)
, (31)

where K : R→ Cn×n is assumed differentiable with Hölder
continuous derivative and T -periodic for T a strictly
positive real. First, let us make precise the meaning
of (27) and (31). Indeed, (27) a priori requires some
differentiability, while (31) requires that R+ and R−

extend to functions on the boundary of Ω (this boundary
is {0}×[0, 1] ∪ [0,+∞)×{0} ∪ [0,+∞)×{1}). We denote
by Ω the union of Ω and its boundary.

Concerning (27), it is understood in the sense of distribu-
tions; i.e. R(t, x) ∈ C0(Ω,R), is said to be a solution of
(27) if one has∫∫

Ω

(
∂tϕ
∗ + ∂xϕ

∗Λ
)
Rdtdx = 0 (32)

for any smooth functions ϕ : Ω → Rn with compact
support contained in Ω. By the characteristic method, it
is well known that if R is a continuous function meeting
equation (32), then there exist n functions x1, · · · , xn such
that

R+(t, x) =

 x1(x− λ1t)
...

xm(x− λmt)

 (33)

and

R−(t, x) =

xm+1(x+ λm+1t)
...

xn(x+ λnt)

 , (34)

where xk is continuous in (−∞, 1) for k = 1, · · · ,m
and xk is continuous in (0,+∞) for k = m + 1, · · · , n.
Considering their continuation in 1 and 0 respectively and
letting yk(t) = xk(−λkt) for k = 1, · · · ,m, as well as
yk(t) = xk(1 + λkt) for k = m + 1, · · · , n and τi = 1

λi
for i = 1, · · · , n, equation (31) becomes:y1(t)

...
yn(t)

 = K(t)

y1(t− τ1)
...

yn(t− τn)

 , (35)

which is a periodic delay system of the form (1), having
the nice property of being column disjoint as defined in

Section 3. We assume without loss of generality that the
period T of the matrix K(·) is greater than the largest
delay τmax = sup

i∈[|1,n|]
(τi).

Theorem 8. There is a unique map (t, x) 7→ R(t, x),
continuous Ω → Rn, which is a solution of (31)-(32)
satisfying R+(0, x) = f0(x) and R−(0, x) = g0(x) for 0 ≤
x ≤ 1, where f0 ∈ (C0([0, 1]))m and g0 ∈ (C0([0, 1]))n−m

are such that (
f0(0)
g0(1)

)
= K(0)

(
f0(1)
g0(0)

)
. (36)

Proof. System (31)-(32) leads to the difference delay
system (35). Since the latter admits a unique continuous
solution with initial conditions from Cs, we get the result
via equations (33)-(34). 2

Definition 9. System (31)-(32) is said to be exponentially
stable if there exists C > 0 and γ > 0 such that∣∣∣∣∣∣∣∣(R+(t, ·)

R−(t, ·)

)∣∣∣∣∣∣∣∣
∞
≤ C

∣∣∣∣∣∣∣∣(R+(0, ·)
R−(0, ·)

)∣∣∣∣∣∣∣∣
∞
e−γt, (37)

where:∣∣∣∣∣∣∣∣(R+(t, ·)
R−(t, ·)

)∣∣∣∣∣∣∣∣
∞

= sup
x∈Ω

(
‖R+(t, x)‖+ ‖R−(t, x))‖

)
, (38)

for all t ≥ 0.

For k = 1, · · · , n, we denote by Kk(·) the n × n matrix
having the same k-th column as K(·) while other columns
are zero. For p ∈ C let us introduce the operator Rhyp(p) :
l2n(Z)→ l2n(Z) as

Rhyp(p) := I∞ −
n∑
j=1

e−p τjLkj D̃τj . (39)

Theorem 4 leads to the following necessary and sufficient
condition for exponential stability of 1-D hyperbolic PDE
with periodic boundary conditions.

Theorem 10. A necessary and sufficient condition for Sys-
tem (31)-(32) to be exponentially stable is the existence of
a real number β < 0 such that :

(i) Rhyp(p) is invertible l2n(Z) → l2n(Z) for all p in
{z ∈ C|<(z) ≥ β},

(ii) there is a positive number M such that∣∣∣∣∣∣Rhyp(p)−1
∣∣∣∣∣∣

2
≤M for all p in {z ∈ C|<(z) ≥ β}.

Proof. A straightforward application of Theorem 4 gives
that conditions (i)-(ii) amount to exponential stability of
the system (35). Then, we obtain the exponential stability
of System (31)-(32) via the equations (33)-(34). 2

Theorem 11. If the delays are rationally independent, then
a necessary and sufficient condition for System (31)-(32)
to be exponentially stable is that

(1) I∞ −
N∑
j=1

e−ρτjLDj D̃τje
iθj is invertible l2n(Z)→ l2n(Z)

for ρ ≥ 0 and θj ∈ [0, 2π].

Proof. Applying Theorem 6 gives that condition (1)
is sufficient and necessary for exponential stability of



System (35). We deduce the result via the equivalence of
System (31)-(32) and the equations (33)-(34). 2

We finally mention a known result that applies to
non-necessarily Hölder-smooth coefficients, see Baratchart
et al. (2021)

Theorem 12. If there exists an invertible diagonal matrix
D such that ‖DK(t)D−1‖2 < 1 and K(t) is a differentiable
function with Hölder derivative, then exponential stability
of System (31)-(32) holds.

Proof. Since system (35) enjoys column-disjointness we
can apply Proposition 7 which gives us the exponential
stability. Again, we deduce the exponential stability of
System (31)-(32) from the equations (33)-(34). 2

Theorem 12 is a generalisation of Theorem 3.7 from the
book Bastin and Coron (2016), in the case of smooth linear
periodic boundaries for hyperbolic systems.

5. CONCLUSION

The paper gave stability criteria for periodic linear dif-
ference delay systems when the column are disjoint or
when the delay are rationally independent. Furthermore,
it stated sufficient and necessary stability conditions for
1-D hyperbolic PDEs with linear periodic boundary con-
ditions. Many interesting open questions are left here
for further study. For instance, is exponential stability a
continuous property in the delays and the period of the
system, at least locally? Or else, can we extend our nec-
essary and sufficient stability conditions to more general
1-D hyperbolic systems?
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