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Introduction

The Periodic Unfolding Method was originally introduced in [4] and [5] (with applications in homogenization) and in [7] (for domains with holes).

The book [6] expanded upon its properties and included many applications to various homogenization problems. In particular, unfolding with parameters and iterated unfolding is presented in [6, Section 1.5], with an application to the homogenization of a diffusion problem with two microscopic scales in Section 3.14 therein (see also [6, Chapter 7]).

The purpose of this paper it to present the extensions of the unfolding method to finitely and countably many microscopic scales (in domains without as well as with perforations) and show how they can easily be used for the model diffusion problem. These generalizations are easily applied to many other linear and non-linear problems such as those covered in [6].

For clarity, we begin with the model diffusion problem.

Let Ω be a bounded domain in R N and denote by M pα, β, Ωq the set of measurable pNˆN q-matrix fields in Ω which are almost everywhere α-coercive and with inverse β ´1-coercive (where 0 ă α ď β ă `8).

For given f in the space H ´1pΩq, a straightforward application of the Lax-Milgram theorem implies that the standard Dirichlet problem

# ´div pA∇uq " f in Ω, u " 0 on BΩ (1.1)
has a unique solution u in the space H 1 0 pΩq. Moreover, its norm is bounded uniformly with respect to A by β α }f } H ´1pΩq .

(*) Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France, cioran@ljll.jussieu.fr, griso@ljll.jussieu.fr (**) LAMA, CNRS & Université Paris-Est Créteil, damla@u-pec.fr 1 Given a bounded sequence tf ε u ε in H ´1pΩq and a sequence tA ε u ε in M pα, β, Ωq, the corresponding problem gives rise to a bounded sequence tu ε u ε in H 1 0 pΩq (here, ε is an index parameter which traditionally belongs to a strictly positive sequence converging to 0). The corresponding variational formulation is:

ż Ω A ε ∇u ε ∇v dx " xf ε , vy H ´1 pΩq,H 1 0 pΩq , @v P H 1 0 pΩq. (1.2)
We first summarize some well-known convergence results concerning this sequence of problems: Proposition 1.1.

• If the sequence tf ε u ε converges weakly to f in H ´1pΩq and the sequence tA ε u ε converges almost everywhere (or in measure) to A in Ω, the sequence tu ε u ε converges weakly to the solution u of problem (1.1) in H 1 0 pΩq.

• Moreover, if the sequence tf ε u ε converges strongly to f in H ´1pΩq, then tu ε u ε converges strongly to u in H 1 0 pΩq.

The homogenization problem for (1.2) arises when the sequence tA ε u ε does not converge almost everywhere.

The classical example for periodic homogenization is A ε pxq " A ´x ε ¯for a given A in M pα, β, R N q which is assumed to be Y -periodic, where the periodicity cell Y has the "paving property" with respect to a given group G of periods in R N [START_REF] Allaire | Multiscale convergence and reiterated homogenization[END_REF] and ε represents the small scale in the problem. The whole theory of homogenization was devised to obtain answers to these type of questions, in the linear case but also in many non-linear situations. It is also closely related to obtaining efficient numerical schemes for solving partial differential problems with highly oscillating coefficients and for composite materials.

The main difficulty in (1.2) is to pass to the limit in the product sequence tA ε ∇u ε u ε of two sequences which both at most converge weakly (up to a subsequence, tu ε u ε converges weakly in H 1 0 pΩq while, as tA ε u ε , being bounded almost everywhere, converges weakly, up to a subsequence, in every L p pΩq for p in p1, 8q).

Many methods were introduced to overcome such a difficulty, even in the more general case where there is no periodicity at all (asymptotic expansions [2], G-convergence [8], H-convergence [10], 2-scale convergence [11], Periodic Unfolding [6], ...)

The crucial point of the unfolding method is to find a sequence of transformations (unfolding operators) depending on each ε which preserves the weak convergence of tu ε u ε while at the same time transforms the weak convergence of tA ε u ε into a convergence almost everywhere. In the case of a single periodicity scale this holds for A ε pxq " A ´x ε ¯or more generally for A ε pxq " A ´x, x ε ¯where A is a map in M pα, β, ΩˆR N q. [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF] For the case of multiple periodicities, the 2-scale convergence method was extended in [1]. The purpose of this paper is to extend the unfolding method to the same situation and to show how it can be applied up to the case of countably many scales.

The successive scales, pε 1 , . . . , ε n q in the finite case or pε 1 , . . . , ε n , . . .q in the countable case, will be denoted ε. The scales are supposed to be separated (see hypothesis (2.2) below); this is a natural hypothesis already used in [1].

As will become apparent, the main difficulty is to deal with boundary layers not only for Ω but for every periodicity cell. The devil is in the details of these boundary layers, except in the very particular case of Proposition 2.19.

We refer to [6, Chapter1] for the general notations and properties of the unfolding operators. We will indicate the main modifications required to adapt to the multi-scale case.

The plan is as follows. Section 2 presents an elementary situation with finitely many scales where the usual unfolding operators are used.

Section 3 introduces the notion of adjustments which is applied to the case of finitely many scales.

In Section 4, the previous results are extended to the case of domains with multiscale perforations (on which the homogeneous Neumann condition is applied).

Section 5 extends the method to countably many scales tε n u n .

In a forthcoming paper, the same approach will be applied to the case of the multi-periodic homogenization with small Dirichlet holes (generating so-called strange terms).

2 Unfolding for finitely many scales: a first example

In this section, we extend the results of Section 1.5 of [6] to n scales. We begin with a bounded domain Ω in R N , which is the macroscopic domain. For the case of n microscopic scales, n subgroups G 1 , . . . , G n of rank N are given in R N and the corresponding small scales ε . " pε 1 , . . . , ε n q in pR ˚qn . The case of subgroups of rank smaller than N can be handled by adding artificial periods as in Chapter 7 of [6]. [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF] It must satisfy some extra condition, such as be continuous almost everywhere in Ω with values in L p pR N q NˆN , for p finite (cf. Proposition 2.18, Corollary 3.17 and Proposition 5.18).

For each i " 1, . . . , n, a periodicity cell Y i (i.e., a domain having the paving property with respect to G i ) is chosen with a Lipschitz boundary and, without loss of generality, we assume the origin belongs to its closure. For simplicity, throughout this paper, Y i can be chosen as the parallelotope constructed on a basis of R N consisting of a set of generators of the group G i .

For 1 ď i ď n, set

Y i . " i ź j"1 Y j , with the convention that Y 0 . " ∅.
The points in Ω will be denoted by x, those in Y i as y i and the elements of Y n will be denoted as: y " py 1 , . . . , y n q.

The truncation of y at level i will be denoted by y |i :

y |i . " py 1 , . . . , y i q if i ě 1.
For simplicity, when only py 1 , . . . , y i q is given, we still denote it by y |i (this shorthand will simplify notations below).

The sets Y i and Y i are endowed with their respective Lebesgue measures.

Notation 2.1. For Z a finite measure space, the notation M Z will be used for the average operator over Z.

For p P r1, `8s, each space L p pY j q as well as L p pY j q can be considered as a closed subspace of L p pY n q.

For the purpose of homogenization, it is natural to assume that the scales are strictly decreasing. This implies that

δ . " ´δ1 " ε 1 , δ 2 " ε 2 ε 1 , . . . , δ n " ε n ε n´1 ¯(2.1)
belongs to the unit ball of 8 pR n q. For the limiting problem, we will suppose that δ Ñ 0 in R n .

(2.2)

Remark 2.2. The condition δ Ñ 0 is strictly stronger than ε Ñ 0, and corresponds to the fact that the scales are separated.

The n unfolding operators

We adapt the notations of [6, Chapter 1] to define n unfolding operators. To each Y i , are associated the integer part and fractional parts functions defined on R N :

rzs Yi P G i and tzu Yi P Y i , such that z " rzs Yi `tzu Yi . ( 3 
)
(3) As usual, these functions are defined in a unique way except for a null set.

Definition 2.3 (The first unfolding operator T 1 ε1 ). For the first operator, set

• Ξ 1,ε1 . " ξ P G 1 | ε 1 pξ `Y1 q Ă Ω ( , • p Ω ε1 . " interior ´ŤξPΞ1,ε 1 ε 1 pξ `Y 1 q ¯, • Λ ε1 . " Ωz p Ω ε1 . By [6, Remark 1.1] , lim ε1Ñ0 |Λ ε1 | " 0.
The first unfolding operator acts on a function φ defined on Ω as

T 1 ε1 pφqpx, y 1 q " $ & % φ ´ε1 " x ε 1 ı Y1
`ε1 y 1 ¯for a.e. px, y 1 q P p Ω ε1 ˆY1 , 0 for a.e. px, y 1 q P Λ ε1 ˆY1 .

The i th unfolding operator act on functions defined on Y i´1 to give functions on Y i´1 ˆYi . The associated small scale is δ i .

Definition 2.4 (The i th unfolding operator T i δi ). For i " 2, . . . , n, set

• Ξ i,δi . " ξ P G i | δ i `ξ `Yi ˘Ă Y i´1 ( , • p Y i´1,δi . " interior ´Ť ξPΞ i,δ i δ i pξ `Yi q ¯, • Λ i´1,δi . " Y i´1 z p Y i´1,δi . Note that |Λ i´1,δi | AE δ i diampY i q |BY i´1 |.
This unfolding operator acts on a function φ defined on Y i´1 as

T i δi pφqpy i´1 , y i q " $ & % φ ´δi " y i´1 δ i ı Yi
`δi y i ¯for a.e. py i´1 , y i q P p Y i´1,δi ˆYi , 0 for a.e. py i´1 , y i q P Λ i´1,δi ˆYi .

In the following, when the operator T i δi is applied to functions of the variables px, y |i´1 q to give a function of px, y |i q, the variables px, y |i´2 q (4) are treated as parameters.

The properties of the composed unfolding operators

The compounded unfolding operators, denoted T i ε operate on functions defined in Ω and are defined recursively by

T 1 ε . "T 1 ε1 , T i ε . "T i δi ˝T i´1
ε for i " 2, . . . , n. [START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF] For i " 2, the latter is just pxq.

For i " 2, . . . , n, introduce the notations

Y i . "Y 1 ˆ. . .ˆY i´1 ˆYi , p Y i ε . " p Y 1,δ2 ˆ. . .ˆp Y i´1,δi ˆYi , Λ i ε . "ΩˆY i z p p Ω ε1 ˆp Y i ε q.
For i " 1, . . . , n, define the map S i ε on pR N q i`1 (except on a null set) by

S 1 ε px, y |1 q . " ε 1 " x ε 1 ı Y1 `ε1 y 1 , S i ε px, y |i q . " ε 1 " x ε 1 ı Y1 `i ÿ j"2 ε j " y j´1 δ j ı Yj `εi y i " ε 1 " x ε 1 ı Y1 `i ÿ j"2 ε j´1 δ j " y j´1 δ j ı Yj `εi y i .
(2.

3)

The following formula for the expression of T i ε pφq is easily obtained by induction.

Proposition 2.5. For φ defined on Ω,

T i ε pφqpx, y |i q "
# φ ˝Si ε px, y |i q for a.e. px, y |i q P p Ω ε1 ˆp Y i ε , 0 for a.e. px, y |i q P Λ i ε .

(2.4)

The maps S i ε have remarkable properties which are stated in the next lemma.

Lemma 2.6. For px, y |i q P p Ω ε1 ˆp Y i ε and j " 1, . . . , i ´1, (i ě 2)

|S i ε px, y |i q ´Sj ε px, y |j q| ď ε j`1 diampY j`1 q |S i ε px, y |i q ´xq| ď ε 1 diampY 1 q.
(2.5)

Proof. For j " 1, . . . , i ´1, define p y j by

ε j p y j . " i ÿ k"j`1 ε k " y k´1 δ k ı Y k `εi y i ,
so that, S i ε px, y 1 , . . . , y i´2 , y i´1 , y i q " S j ε px, y 1 , . . . , y j´1 , p y j q.

(2.6) Note that

p y j " δ j`1 " y j δ j`1 ı Yj`1 `δj`1 p y j`1 .
In particular, for j " i ´1, p y i´1 is an element of the same small cell δ i

´" y i´1 δ i ı Yi `Yi ¯as y i´1 . Therefore, p y i´1 belongs to p Y i´1,δi Ă Y i´1 . By a similar argument and a reverse finite induction, p y j belongs to the same cell

δ j`1
´" y j δ j`1 ı Yj`1

`Yj`1 ¯as y j and belongs to p

Y j,δj`1 Ă Y j .
This implies |p y j ´yj | ď δ j`1 diampY j`1 q.

(2.7)

Now, by construction, S i ε px, y |i q ´Sj ε px, y 1 , . . . , y j´1 , y j q " S j ε px, y 1 , . . . , y j´1 , p y j q ´Sj ε px, y 1 , . . . , y j´1 , y j q " ε j pp y j ´yj q. This, together with (2.7) implies the first inequality in (2.5).

Similarly,

S i ε px, y |i q " S 1 ε px, p y 1 q . " ε 1 " x ε 1 ı Y1 `ε1 p y 1 ,
which belong to the same cell ε 1

´" x ε 1 ı Y1 `Y1 ¯as x. This implies the second inequality in (2.5).

The generalizations of the sets p Ω ε and their complements Λ ε in Ω are needed in order to extend all the properties of single scale unfolding operators to the compounded unfolding operators T i ε . For i " 1, . . . , n, let p Ω i ε be the image of p Ω ε1 ˆp Y i under the map S i ε . By the identity (2.6) above, the sequence of t p Ω i ε u i is decreasing:

@i " 1, . . . , n, p Ω i`1 ε Ă p Ω i ε .
The set p Ω i ε is the exact union of small cell homothetic to Y i . From there to p Ω i`1 ε , each of these cells is reduced to p Y i,δi`1 . Therefore, the Lebesgue measure of p Ω i`1 ε is connected to that of p Ω i ε by the following formula

| p Ω i`1 ε | " | p Ω i ε |ˆ| p Y i,δi`1 | |Y i | " | p Ω i ε |ˆ´1 ´|Λ i,δi`1 | |Y i | ¯. (2.8) 
It follows that

| p Ω i ε | " | r Ω ε1 |ˆ| p Y i´1 ε | |Y i´1 | " | r Ω ε1 |ˆ| p Y i ε | |Y i | .
(2.9)

Let Λ i ε denote the complement of p Ω i ε in Ω. It therefore satisfies |Λ i ε | ď |Λ ε1 |`|Ω| i´1 ÿ j"1 |Λ j,δj`1 | |Y j | AE |Λ ε1 |`|Ω| i´1 ÿ j"1 δ j`1 diampY j`1 q |BY j | |Y j | . (2.10)
The local average operators M i δi and averaging operators U i δi are associated with each scale i " 1, . . . , n as in [6, Sections 1.2 and 1.3].

Definition 2.7. The compounded averaging operators are defined as

U 1 ε . " U 1 ε1 , U i ε . " U i´1 ε ˝Ui δi for i " 2, . . . , n. By construction, U i ε is the adjoint of T i ε .
The properties of compounded unfolding operators can then be obtained by finite induction from those of each unfolding operator. For example, the multi-scale version of Proposition 1.8 of [6] becomes Proposition 2.8. Suppose p is in r1, `8s and i in t1, . . . , nu. The operator T i ε is linear and continuous from L p pΩq into L p pΩˆY i q.

For v and w defined on Ω, and for every continuous function F on R satisfying F p0q " 0

T i ε pvwq " T i ε pvq T i ε pwq a.e. in ΩˆY i , T i ε ˝F pvq " F ˝T i ε pvq a.e. in ΩˆY i .
and for every φ in L 1 pΩq and w in L p pΩq, piq 1

|Y i | ż ΩˆY i T i ε pφqpx, y |i q dxdy |i " ż p Ω i ε φpxq dx, piiq ˇˇż Ω φ dx ´1 |Y i | ż ΩˆY i T i ε pφq dxdy |i ˇˇď ż Ω z p Ω i ε |φ| dx, piiiq }T i ε pwq} L p pΩˆY i q ď |Y i | 1{p }w} L p pΩq .
(2.11)

Convergence properties are considered for a sequence tδu in pR ˚qn which converges to 0, written simply δ Ñ 0. The index for a sequence is therefore δ (even though the traditional notation in homogenization theory is ε). The sequences tεu and tδu are always related by (2.1).

The multi-scale version of Proposition 1.9 of [6] simply follows from (2.5), (2.11)piiiq and (2.10): Proposition 2.9. Suppose p P r1, `8q and δ Ñ 0. Let i be in t1, . . . , nu. (i) For w P L p pΩq T i ε pwq Ñ w strongly in L p pΩˆY i q.

(ii) Let tw ε u ε be a sequence in L p pΩq such that w ε Ñ w strongly in L p pΩq.

Then

T i ε pw ε q Ñ w strongly in L p pΩˆY i q.

Corollary 2.10. Let tw ε u ε be a sequence in L p pΩq and w in L p pΩ ˆYi q such that T i ε pw ε q Ñ w strongly in L p pΩˆY i q. Then T n ε pw ε q Ñ w strongly in L p pΩˆY n q.

A repeated application of Proposition 1.12 of [6] gives:

Proposition 2.11. Let p P p1, `8q and i be in t1, . . . , nu. Suppose that a sequence tw ε u ε is bounded in L p pΩq, then so is the sequence tT i ε pw ε qu ε in L p pΩˆY i q. Furthermore the following implications hold. (i) If

T i ε pw ε q á w weakly in L p pΩˆY i q, then w ε á M Y i pwq weakly in L p pΩq. [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF] (ii) If tw ε u ε converges weakly to some w in L p pΩq, then, up to a subsequence, there exists p w j in L p pΩˆY j q with M Y j p p w j q " 0 for j " 1, . . . , i such that

T i ε pw ε q á w . " w `i ÿ j"1 p w j weakly in L p pΩˆY i q and }w} L p pΩˆY i q ď |Y i | 1{p lim inf εÑ0 }w ε } L p pΩq .
The same results hold for p " `8 with weak topology replaced by weak-t opology in the corresponding spaces.

Proof. piq follows by duality and Proposition 2.9.

piiq is an equivalent way of writing piq after remarking that every element w in L p pΩˆY n q can be written, in a unique way as a sum

w " w `n ÿ i"1 p w i
where w " M Y n pwq belongs to L p pΩq and each p w i belongs to L p pΩˆY i q with M Y i p p w i q " 0. The p w i 's are given explicitely by p w j px, y |j q " M Yj`1ˆ...ˆYn pwqpx, y |j q ´MYjˆ...ˆYn pwqpx, y |j´1 q [START_REF] Cioranescu | The Periodic Unfolding Method[END_REF] for j " 2, . . . , n ´1, p w n px, yq " wpx, yq ´MYn pwqpx, y |n´1 q.

The equivalent of Proposition 1.39 of [6] is now Theorem 2.12. Suppose p P p1, `8q and δ Ñ 0.

Let tw ε u ε be a sequence in W 1,p pΩq such that w ε á w weakly in W 1,p pΩq.

(2.12) Then piq T n ε pw ε q á w weakly in L p pΩˆY n´1 ; W 1,p pY n qq, [START_REF] Cioranescu | The periodic unfolding method for perforated domains and Neumann sieve models[END_REF] (2.13) (ii) up to a subsequence, there exists p w 1 in L p pΩ; W 1,p per,0 pY 1 qq and, for every i P t2, . . . , nu, p w i in L p pΩˆY i´1 ; W 1,p per,0 pY i qq such that

T n ε p∇w ε q á ∇w `n ÿ i"1 ∇ yi p w i weakly in L p pΩˆY n q N . (2.14) Moreover, }∇w `i ÿ j"1 ∇ yj p w j } L p pΩˆY i q ď |Y i | 1{p lim inf δÑ0 }∇w ε } L p pΩq .
For p " 2, the left-hand side of this inequality is actually simplified since the average over Y j of ∇ yj p w j is zero:

› › ∇w `i ÿ j"1 ∇ yj p w j › › 2 L 2 pΩˆY i q " |Y i | 1{2 }∇w} 2 L 2 pΩq `i ÿ j"1 ´}∇ yj p w j } 2 L p pΩˆY i q i ź k"j`1 |Y k | ¯.
Proof. piq The convergence of T 1 ε pw ε q to w in L p pΩ; W 1,p pY 1 qq follows from Proposition 1.39 of [6]. Now the same argument applied to T 2 δ2 pT 1 ε pw ε qq implies that T 2 ε pw ε q converges to w in L p pΩˆY 1 ; W 1,p pY 2 qq. The argument can be repeated up to i " n.

piiq The proof goes by finite induction. Define W i ε , i P t1, . . . , nu as

W 1 ε " 1 ε 1 `T 1 ε1 pw ε q ´MY1 ˝T 1 ε1 pw ε q ˘, W i ε " 1 δ i ´T i δi `W i´1 ε ˘´M Yi ˝T i δi `W i´1 ε ˘¯, i P t2, . . . , nu.
Computing the gradient of W i ε one gets

∇ y1 W 1 ε " 1 ε 1 ∇ y1 T 1 ε1 `wε ˘" T 1 ε1 `∇w ε
˘, [START_REF] Cioranescu | The periodic unfolding method for perforated domains and Neumann sieve models[END_REF] This convergence is strong as soon as the sequence twεuε converges strongly in L p pΩq, which is the case, for example, when BΩ is Lipschitz, due to (2.12).

which, by the Poincaré-Wirtinger inequality in

Y 1 gives }W 1 ε } L p pΩ;W 1,p pY1qq ď C}∇w ε } L p pΩq .
More generally, using the Poincaré-Wirtinger inequality in Y i ,

∇ yi W i ε " 1 δ i ∇ yi T i δi `W i´1 ε ˘" T i δi `∇y1 W i´1 ε ˘" T i ε `∇w ε }W i ε } L p pΩˆY i´1 ;W 1,p pYiqq ď C}∇w ε } L p pΩq , i P t2, . . . , nu.
For i " 1, by Theorem 1.41 of [6], there exists p w 1 P L p pΩ; W 1,p per,0 pY 1 qq and a subsequence such that

W 1 ε á W 1 " ∇w ¨yc 1 `p w 1 weakly in L p pΩ; W 1,p pY qq, ∇ y1 W 1 ε " T 1 ε1 `∇w ε ˘á ∇ y1 W 1 " ∇w `∇y1 p w 1 weakly in L 2 pΩˆY q N .
Recall that y c 1 is just y 1 ´MY1 py 1 q in the formula above. The same theorem gives a subsequence and p w i P L p pΩˆY i´1 ; W 1,p per,0 pY i qq such that, with similar notation for y c i :

W i ε á W i "∇ yi´1 W i´1 ¨yc i `p w i weakly in L p pΩˆY i´1 ; W 1,p pY i qq, ∇ yi W i ε "T i ε `∇w ε ˘á ∇ yi W i " ∇ yi´1 W i´1 `∇yi p w i weakly in L 2 pΩˆY i q N .
By finite induction, this implies (2.14).

The connection between averaging and unfolding operators (not only as adjoints but as quasi inverse of each other, see Section 1.3 of [6]) can be extended to their compounded versions. In this direction, we state one proposition (the proof is the same as that of [6, Proposition 1.29]). Proposition 2.13. Suppose p P r1, `8q. (i) Let tΦ ε u ε be a sequence which converges strongly in L p pΩˆY n q to Φ.

Then T n ε ˝U n ε pΦ ε q Ñ Φ strongly in L p pΩˆY n q. In particular, for every Ψ in L p pΩˆY n q, T n ε ˝U n ε pΨq Ñ Ψ strongly in L p pΩˆY n q.
(ii) Let tw ε u ε be a sequence in L p pΩq and W be in L p pΩˆY n q. Then the following assertions are equivalent:

paq T n ε pw ε q Ñ W strongly in L p pΩˆY n q and ż Ω z p Ω n ε |w ε | p dx Ñ 0, pbq w ε ´U n ε pW q Ñ 0 strongly in L p pΩq.

The successive fractional parts F i ε pxq

The fractional parts F i ε pxq are defined recursively almost everywhere on

R N by F 1 ε pxq . " ! x ε 1 ) Y1 , F i`1 ε pxq . " " F i ε pxq δ i`1 * Yi`1 for i " 2, . . . , n ´1.
The fractional parts F i ε pxq can be seen as "normalized" versions of

! x ε i ) Yi .
They are adapted to the unfolding operators T i ε as shown in the following lemma.

Lemma 2.14. For every i " 1, . . . , n, the following convergences hold when δ goes to 0: @px,

y |i q P ΩˆY i , T i ε pF i ε qpx, y |i q Ñ y i , @px, yq P ΩˆY n , T n ε pF i ε qpx, yq Ñ y i .
(2.15)

Proof. For i " 1, the result is obvious. For px, y 1 , y

2 q P p Ω ε1 ˆp Y 2 ε , T 2 ε pF 2 ε qpx, y 1 , y 2 q " F 2 ε ´S2 ε px, y 1 , y 2 q ¯" F 2 ε ´ε1 " x ε 1 ı Y1 `ε2 " y 1 δ 2 ı Y2 `ε2 y 2 " ! 1 δ 2 F 1 ε ´ε1 " x ε 1 ı Y1 `ε2 " y 1 δ 2 ı Y2 `ε2 y 2 ¯)Y2 " ! 1 δ 2 ! δ 2 " y 1 δ 2 ı Y2 `δ2 y 2 ) Y1 ) Y2 . Since y 1 belongs to p Y 1,δ2 ! δ 2 " y 1 δ 2 ı Y2 `δ2 y 2 ) Y1 " δ 2 " y 1 δ 2 ı Y2 `δ2 y 2 , (2.16) so that T 2 ε pF 2 ε qpx, y 1 , y 2 q " y 2 .
Similarly, for every i " 3, . . . , n, for px,

y |i q in p Ω ε1 ˆp Y i ε , T i ε pF i ε qpx, y |i q " y i .
This implies the first convergence of (2.15) since for px, y |i q in Ω ˆYi , it belongs to p Ω ε1 ˆp Y i ε for δ small enough. The second convergence follows by Corollary 2.10. Proposition 2.15. Let Φ be in L 8 pΩ ˆYn q and assume that it is almost everywhere continuous as a map of ΩˆY n´1 to L 1 pY n q. For x in Ω, set

Φ ε pxq " Φ ´x, F 1 ε pxq, F 2 ε pxq, . . . , F n ε pxq ¯,
which is defined almost everywhere. Then, for every p P r1, `8q,

T n ε pΦ ε q Ñ Φ strongly in L p pΩˆY n q as δ goes to 0.

Proof. Clearly, }Φ ε } L 8 pΩq ď }Φ} L 8 pΩˆY n q . By Lemma 2.14, from the hypothesis, T n ε pΦ ε q converges to Φ almost everywhere on ΩˆY n´1 with values in the space L 1 pY n q. This implies convergence in L 1 pΩˆY n q by Lebesgue's theorem. Hence convergence in measure on Ω ˆYn as well as in every L p pΩˆY n q for p finite.

Homogenization with finitely many scales

At this point, one has all the tools to homogenize the model problem.

Proposition 2.16 (The unfolded limit of Problem (1.2)). With the notations and under the hypotheses of this section, consider Problem (1.2) (where ε is replaced by ε " pε 1 . . . . , ε n q).

Suppose that tf ε u ε converges strongly to f in H ´1pΩq and that there exists a map B in M pα, β, ΩˆYq such that

T n ε pA ε q converges in measure to B on ΩˆY n .
(2.17)

Then, there exist unique functions u 0 P H 1 0 pΩq, p u 1 P L 2 pΩ; H 1 per,0 pY 1 qq and

p u i P L 2 pΩˆY i´1 ; H 1 per,0 pY i qq, for i " 2, . . . , n, satisfying u ε á u 0 weakly in H 1 0 pΩq, T n ε pu ε q á u 0 weakly in L 2 pΩˆY n´1 ; H 1 0 pY n qq, T n ε `∇u ε ˘á ∇u 0 `n ÿ i"1 ∇ yi p u i weakly in L 2 pΩˆY n q N .
They are the (unique) solutions of the following variational system:

$ ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' % 1 |Y n | ż ż ΩˆY n Bpx, yq ´∇u 0 `∇y1 p u 1 `¨¨¨`∇ yn p u n ∇Φ 0 `∇y1 p Φ 1 `¨¨¨`∇ yn p Φ n ¯dxdy " xf, Ψy H ´1pΩq,H 1 0 pΩq @Φ 0 P H 1 0 pΩq, @ p Φ 1 P L 2 pΩ; H 1 per,0 pY 1 qq, . . . , @ p Φ n P L 2 pΩˆY n´1 ; H 1 per,0 pY n qq.
Proof. It is the same as that of Theorem 3.18 of [6], with the use of Proposition 2.15 for test functions

Φ ε i pxq " ε i Φ `x, F 1 ε pxq, F 2 ε pxq, . . . , F i´1 ε pxq ˘ψ`F i ε pxq ˘.
In a first step, pΦ, ψq are chosen in DpΩˆY i´1 qˆC 8 per pY i q.

2.4 Examples of sequences satisfying condition (2.17)

The result shows that the weak limit u 0 of the sequence tu ε u ε is the solution of the usual diffusion problem with the coefficient matrix A hom which is obtained via a backward iteration:

• first homogenize B with respect to its last variable y n to obtain the matrix field B n´1 , function of px, y |n´1 q (which are treated as parameters);

• next, homogenize B n´1 with respect to its last variable y n´1 , and so on;

• the last matrix field B 1 is a function of px, y 1 q and when homogenized with respect to y 1 yields A hom .

At each step, the homogenized matrix can be expressed in terms of cellproblems (nˆN cell problems in total).

Corollary 2.17. In the setting of Proposition 2.16,

T n ε `∇u ε ˘Ñ ∇u 0 `n ÿ i"1 ∇ yi p u i strongly in L 2 pΩˆY n q N .
Consequently, there is corrector:

∇u ε ´∇u 0 `n ÿ i"1 U i ε p∇ yi p u i q Ñ 0 in L 2 pΩq.
Proof. The last result is the only one to prove. By piiq of Proposition 2.13, there is a corrector given by

∇u ε ´U n ε `∇u 0 `n ÿ i"1 ∇ yi p u i ˘Ñ 0 in L 2 pΩq.
But p u i only depends upon y |i so that U n ε p∇ yi p u i q is just U i ε p∇ yi p u i q. Also, U n ε p∇u 0 q " U 1 ε1 p∇u 0 q " T 1 ε1 p∇u 0 q which converges strongly to ∇u 0 .

Examples of sequences satisfying condition (2.17)

The question remains to characterize the sequences A ε for which T n ε pA ε q converges almost everywhere or in measure in ΩˆY n . A partial answer is given below making use of Proposition 2.15. It is the exact extension to the case of n microscales of the result of section 3.1.4 of [6] which was for two micro-scales. Proposition 2.18. Let A be in M pα, β, ΩˆY n q and assume that it is almost everywhere continuous as a map of ΩˆY n´1 to L 1 pY n q NˆN . Set

A ε pxq " A ´x, F 1 ε pxq, F 2 ε pxq, . . . , F n ε pxq ¯. (2.18)
Then, T n ε pA ε q converges in measure to A in ΩˆY n when δ goes to 0.

One may object that the definition of A ε is overly complicated. However, it may be the proper definition in the case of multiscale composite material which are built from the smallest scale up (bottom-up construction).

It certainly differs from the "traditional" formula which we consider now:

r A ε " A ´x, x ε 1 , . . . , x ε n ¯,
for A in M pα, β, ΩˆY n q and extended to R N by Y n -periodicity. Equivalently, one can write

r A ε " A ´x, ! x ε 1 ) Y1 , . . . , ! x ε n ) Yn ¯; (2.19)
this notation does not require to extend A (this can be seen as a top-down construction).

Here is a very particular situation where the two definitions (2.18) and (2.19) coincide.

Proposition 2.19. Suppose that the subgroups G i 's are nested

G 1 Ă G 2 Ă . . . Ă G n
and that for i " 2, . . . , n, the successive ratios δ i " ε i {ε i´1 are inverse integers.

Then one can choose the unit cells as parallotopes such that, for i " 1 to n ´1, Y i is the exact union of cells of the type ξ i`1 `Yi`1 , ξ i`1 P G i`1 .

In this case formula (2.4) simplifies to 

T n ε pφqpx, yq " # φ ˝Sn ε px,
! x ε i ) Yi . (2.20)
Moreover, for a.e. px, yq P ΩˆY n and for i " 1, . . . , n

ˇˇˇ" S n ε px, yq ε i * Yi ´yi ˇˇˇď δ i`1 diamY i`1 .
(2.21)

Proof. Identity (2.20) is easily checked recursively. We now prove (2.21). We use the notations of Lemma 2.6 (where i is replaced by n).

For i " n and j " 1 formula (2.6) gives

" S n ε px, yq ε 1 * Y1 " " S 1 ε px, p y 1 q ε 1 * Y1 " p y 1 .
Inequality (2.21) follows from (2.7) for j " 1.

Unfolding with two microscopic scales

Similarly, for 2 ď j ď n, again by formula eqref (2.6) with i " n

S n ε px, yq ε j " 1 ε j S j ε px, y 1 , . . . , y j´1 , p y j q " ε 1 ε j " x ε 1 ı Y1 `j ÿ k"2 ε k ε j " y k´1 δ k ı Y k `p y j .
For every 1 ď k ď j, ε k {ε j is an integer and

" x ε 1 ı Y1 P G 1 Ă G j , " y k´1 δ k ı Y k P G k Ă G j .
Therefore,

" S n ε px, yq ε j * Yj " p y j .
One concludes with (2.7).

Unfolding with two microscopic scales

In the general situation, the choice of r A ε is at the very least problematic if one uses the unfolding operators T i ε 's. We show this for the simple case n " 2. The notations of the previous subsection are used (for n " 2). The map A is assumed to satisfy the hypothesis of Proposition 2.18 Proposition 2.20. Suppose the map A is smooth from Ω to M pα, β, Y 2 q but not independent of y 2 . For r A ε given by (2.19) the sequence T 2 ε p r A ε q does not in general contain a subsequence which converges a.e. in ΩˆY 2 .

Proof. The three arguments of A in the formula for T 2 ε p r A ε q are computed below outside of the set Λ 2 ε " pΩ ˆY2 q z p p Ω ε1 ˆp Y 2 ε q the measure of which goes to 0,

p1q . " ε 1 " x ε 1 ı Y1 `ε2 " y 1 δ 2 ı Y2 `ε2 y 2 , p2q . " !" x ε 1 ı Y1 `δ2 " y 1 δ 2 ı Y2 `δ2 y 2 ) Y1 , p3q . " ! 1 δ 2 " x ε 1 ı Y1 `" y 1 δ 2 ı Y2 `y2 ) Y2 .
Clearly, under the made assumptions, argument (1) converges uniformly to x almost everywhere in Ω as ε goes to 0.

From the Y 1 -periodicity of A with respect to its second variable, argument (2) can be replaced by

δ 2 " y 1 δ 2 ı Y2 `δ2 y 2 ,
which itself converges uniformly to y 1 in Y .

From the Y 2 -periodicity of A with respect to its third variable, argument (3) can be replaced by

! 1 δ 2 " x ε 1 ı Y1 `y2 ) Y2 .
The limit points of this last expression may very well happen to be dense in Y 2 . [START_REF] Giorgi | Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine[END_REF] Remark 2.21. A simple solution to overcome this difficulty: modify the second unfolding operator by substracting the vanishing term

ε 2 ! 1 δ 2 " x ε 1 ı Y1 ) Y2 .
Then the three arguments above become

p1q . " ε 1 " x ε 1 ı Y1 `ε2 " y 1 δ 2 ı Y2 `ε2 y 2 ´ε2 ! 1 δ 2 " x ε 1 ı Y1 ) Y2 , p2q . " !" x ε 1 ı Y1 `δ2 " y 1 δ 2 ı Y2 `δ2 y 2 ´δ2 ! 1 δ 2 " x ε 1 ı Y1 ) Y2 ) Y1 , p3q . " ! 1 δ 2 " x ε 1 ı Y1 ´! 1 δ 2 " x ε 1 ı Y1 ) Y2 `" y 1 δ 2 ı Y2 ` y2 
) Y2
.

The first two arguments converge as before. By Y 2 -periodicity, the third ar-

gument is simply y 2 since 1 δ 2 " x ε 1 ı Y1 ´! 1 δ 2 " x ε 1 ı Y1 ) Y2 and " y 1 δ 2 ı Y2 both belong to G 2 !
In the next section, we give the actual modifications of the unfolding operators T i δi to incorporate these adjustments while preserving their properties.

Multiple unfolding with adjustments

For coefficient matrices of the form (2.19) in the general case, one introduces "adjustments" in order to obtain convergence in measure.

The introduction of adjustments does not change the main properties of the operators (but requires some adaptation of the notations).

The idea of adjustments first appeared in [9] (under the name of microscopic translations) where it was applied for the homogenization with two microscopic scales of a non linear diffusion problem. [START_REF] Meunier | Periodic reiterated homogenization for elliptic functions[END_REF] Clearly, the case of Section Section 1 is a particular case of this section (with zero asdjustments).

Adjustments for the second unfolding operator

As seen in Remark 2.21, the first unfolding operator T 1 ε1 is unchanged. The second unfolding is adjusted as follows. ). An adjustment is a sequence of vectors tη 2,δ2 u δ2 in Y 2 . [START_REF] Giorgi | Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine[END_REF] It is known that for Y 2 " p0, 1q N and for the sequence tδ 2 u " t1{nu nPN ˚, the sequence tnzu Y 2 ( nPN ˚is equidistributed in Y 2 for a.e. z in R N . Thus, the convergence of

! 1 δ 2 " x ε 1 ı Y 1 `y2 ) Y 2
to y 2 for a.e. x cannot hold in general. [START_REF] Meunier | Periodic reiterated homogenization for elliptic functions[END_REF] But in [9] there is no extra boundary layer for periodicity cells. Consequently the "integral formula" (similar to (i) of Proposition 3.5) does not hold, due to overlaps. 

. , nq

The price to pay for the adjustment is the use of a strict subset r Y 1,δ2 of p Y 1,δ2 in order to avoid overlaps of neighboring cells in the integral formula. These subsets are the same for every possible adjustments (see Figure 1 with i " 2).

Recall that Ξ 1,ε1 , p Ω ε1 and Λ ε1 are given in Definition 2.3. [START_REF] Murat | H-Convergence[END_REF] ),

Definition 3.2. Set • r Ξ 2,δ2 . " ξ 2 P G 2 | δ 2 `ξ2 `pY 2 ´Y 2 q ˘Ă Y 1 ( (it is a subset of Ξ 2,δ2 ( 
• r Y 1,δ2 . " interior ´Ť ξ2P r Ξ 2,δ 2 δ 2 pξ 2 `Y2 q ¯(it is a subset of p Y 1,δ2 ) (11) , • r Λ 1,δ2 . " Y 1 z r Y 1,δ2 ; it contains Λ 1,δ2
and is included in the boundary layer

pBLq 2,2δ2 . " ty 1 P Y 1 | distpy 1 , BY 1 q ď 2δ 2 diampY 2 qu. Note that | r Λ 1,δ2 | ď |pBLq 2,δ2 | AE 2δ 2 diampY 2 q|BY 1 |. Definition 3.3 (Adjusted unfolding operator r T 2 δ2
). With the above definitions, the adjusted unfolding operator of a function φ defined on Y 1 is given [START_REF] Murat | H-Convergence[END_REF] Since Y 2 contains the origin, Y 2 ´Y2 " tz ´z1 | pz, z 1 q P Y 2 ˆY2 u contains Y 2 . [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] Actually, by construction, r

Y 1,δ 2 ´δ2 Y 2 equals p Y 1,δ 2 . by r T 2 δ2 pφqpy 1 , y 2 q " $ ' ' ' & ' ' ' % φ ˆδ2 " y 1 δ 2 ı Y2 ´δ2 η 2,δ2 `δ2 y 2 ḟor
a.e. py 1 , y 2 q P r Y 1,δ2 ˆY2 , 0 for a.e. py 1 , y 2 q P r Λ 1,δ2 ˆY2 .

Remark 3.4.

-The definition of r Y 1,δ2 implies that the argument of φ in the above formula belongs to p Y 1,δ2 for every possible adjustment.

-The definition of r T 2 δ2 depends on the choice of the adjustment η 2,δ2 , but, for simplicity, we suppress this dependance in the notation (the Ă indicates that the operator is with adjustment).

-When applied to functions depending on px, y 1 q (such as T 1 ε1 pφq for φ defined on Ω), the adjustments can also depend upon the variable x which is a parameter in the formula. In Remark 2.21, the adjustment is

! 1 δ 2 " x ε 1 ı Y1 ) Y2
.

The unfolding operator with adjustments share all the properties with the regular unfolding operator. Clearly, for v and w defined on Ω with values in R, and for every continuous function

F on R with F p0q " 0 r T 2 δ2 pvwq " r T 2 δ2 pvq r T 2 δ2 pwq, r T 2 δ2 ˝F pvq " F ˝r T 2 δ2 pvq.
Proposition 3.5. [Integral formula for the adjusted unfolding r T 2 δ2 ] Suppose p in r1, `8s. The operator r T 2 δ2 is linear and continuous from L p pY 1 q into L p pY 1 ˆY2 q.

For every φ in L 1 pY 1 q and w in L p pY 1 q, piq ˇˇż

Y1 φpy 1 q dy 1 ´1 |Y 2 | ż Y1ˆY2 r T 2 δ2 pφqpy 1 , y 2 q dy 1 dy 2 ˇˇď ż r Λ 1,δ 2 |φpxq| dx, piiq } r T 2 δ2 pwq} L p pY1ˆY2q ď |Y 2 | 1{p }w} L p pY1q .
Proof. By the definition of r

T 2 δ2 , 1 |Y 2 | ż Y1ˆY2 r T 2 δ2 pφqpy 1 , y 2 q dy 1 dy 2 " 1 |Y 2 | ÿ ξP r Ξ 2,δ 2 ż δ2pξ`Y2qˆY2 r T 2 δ2 pφqpy 1 , y 2 q dy 1 d y2 " δ N 2 ÿ ξP r Ξ 2,δ 2 ż Y2 φ `δ2 pξ `y2 ´η2,δ2 q ˘dy 2 " ÿ ξP r Ξ 2,δ 2 ż δ2pξ`Y2´η 2,δ 2 q φpy 1 qdy 1 " ż r Y 1,δ 2 ´δ2η2,δ 2
φpy 1 qdy 1 .

(3.1)

Then (i) follows since Y 1 zp r Y 1,δ2 ´δ2 η 2,δ2 q is included in r Λ 1,δ2
(it is so for all values of the adjustment). Inequality (ii) also follows as usual from (3.1).

From here on, the procedure is exactly the same as for the standard unfolding. We just state the corresponding results.

The version of Proposition 1.9 of [6] is Proposition 3.6. Suppose p P r1, `8q and δ 2 Ñ 0. Let η 2,δ2 be an adjustment. For tw δ2 u δ2 , a sequence converging strongly to some w in L p pY 1 q, the following holds: r T 2 δ2 pw δ2 q Ñ w strongly in L p pY 1 ˆY2 q.

The equivalent of Proposition 1.12 of [6] is Proposition 3.7. Let p P p1, `8q and η 2,δ2 be an adjustment. Suppose that a sequence tw δ2 u δ2 is bounded in L p pY 1 q, then so is the sequence t r T 2 δ2 pw δ2 qu δ2 in L p pY 1 ˆY2 q.

Furthermore the following implications hold:

(i) If r T 2
δ2 pw δ2 q á w weakly in L p pY 1 ˆY2 q then, w δ2 á M Y2 pwq weakly in L p pY 1 q.

(ii) If tw δ2 u δ2 converges to some w in L p pY 1 q, then, up to a subsequence, there exists p w in L p pY 1 ˆY2 q with M Y2 p p wq " 0 such that r T 2 δ2 pw δ2 q á w `p w weakly in L p pY 1 ˆY2 q, and }w `p w}

L p pY1ˆY2q ď |Y 2 | 1{p lim inf δ2Ñ0 }w δ2 } L p pY1q .
The same results hold for p " `8 with weak topology replaced by weak-t opology in the corresponding spaces.

Similarly, the equivalents of Theorems 1.36 and 1.41 of [6] hold. For example, the latter reads Theorem 3.8. Let p P p1, `8q and η 2,δ2 be a sequence of adjustments. Let tw δ2 u δ2 be a sequence in W 1,p pY 1 q such that w δ2 á w weakly in W 1,p pY 1 q.

Then up to a subsequence, there exists some p w in L p pY 1 ; W 1,p per,0 pY 2 qq such that piq 1 δ 2 ´r T 2 δ2 pw δ2 q ´MY2 `r T 2 δ2 pw δ2 q ˘á y c 2 ¨∇y1 w `p w weakly in L p pY 1 ; W 1,p pY 2 qq, piiq r T 2 δ2 p∇w δ2 q á ∇ y1 w `∇y2 p w weakly in L p pY 1 ˆY2 q N , where y c 2 " y 2 ´MY2 py 2 q. Moreover } p w} L p pY1;W 1,p per pY2qq ď C lim sup

δ2Ñ0 }w δ2 } W 1,p pY1q , }∇w `∇y p w} L p pY1ˆY2q ď |Y 2 | 1{p lim inf δ2Ñ0 }∇w δ2 } L p pY1q ,
where the constant C only depends on the Poincaré-Wirtinger constant of Y 2 . For p " `8, the same convergences hold for the weak-˚topologies.

We now return to the setting of Section 2.5, where

r A ε pxq " A ˆx, x ε 1 , x ε 2 ˙. (3.2)
A is defined on ΩˆR N ˆRN and is Y 1 -periodic in y 1 and Y 2 -periodic in y 2 as well as almost everywhere continuous. Adjustments can be introduced for the second operator (associated with the scale δ 2 . " ε 2 {ε 1 ). Making use of Theorem 3.8, the method used in [6, Section 3.1.4] of composing two unfolding operators applies to obtain the weak limit of the double unfolding of the gradient of the solution. The convergence almost everywhere of the double unfolding of the coefficients is given by Proposition 3.9. Set η 2,δ2 pxq

.

" ! 1 δ 2 " x ε 1 ı Y1 ) Y2
. Then, under the above hypotheses on A, with r A ε be given by (3.2), r T 2 δ2 ˝T 1 ε1 p r A ε q converges almost everywhere to A on ΩˆY 1 ˆY2 .

Proof. See Remark 2.21. Note that this η 2,δ2 does belong to Y 2 as required and is a function of the parameter x via " x ε 1 ı

Y1

, which belongs to G 1 .

From here on, the unfolding method proceeds exactly as in [6, Section 3.1.4].

The general case of finitely many scales

We now introduce the successive adjusted unfolding operators for i " 3 to n, using the notations of Section 2. Definition 3.10 (Adjustment for T i δi ). An adjustment is a sequence of vectors tη i,δi u δi in Y i . .

Definition 3.11. [See Figure 1] Set 1. r Ξ i,δi . " ξ i P G i | δ i `ξi `pY i ´Yi q ˘Ă Y i´1 ( (it is a subset of the usual Ξ i,δi (12) ), 2. r Y i´1,δi . " interior ´Ť ξiP r Ξ i,δ i δ i pξ i `Yi q ¯(it is a subset of p Y i´1,δi ) (13) , r Λ i´1,δi . " Y i´1 z r Y i´1,δi ; it contains Λ i´1,
"

ty i´1 P Y i´1 | distpy i´1 , BY i´1 q ď 2δ i diampY i qu. Note that | r Λ i´1,δi | ď |pBLq i,2δi | AE 2δ i diampY i q |BY i´1 |.
Definition 3.12 (Adjusted unfolding operator r T i δi ). With the above definitions, the adjusted unfolding operator applied to a function φ defined on Y i´1 is given by

r T i δi pφqpy i´1 , y i q " $ ' ' ' & ' ' ' % φ ˆδi " y i´1 δ i ı Yi ´δi η i,δi `δi y i ḟor
a.e. py i´1 , y i q P r Y i´1,δi ˆYi , 0 for a.e. py i´1 , y i q P r Λ i´1,δi ˆYi .

Remark 3.13. This operator depends on the choice of the adjustment tη i,δi u, but, for simplicity, we suppress this dependance in the notation (the r indicates that the operator is with adjustment).

When applied to functions depending on px, y |pi´1q q, the adjustments can also depend upon the variables px, y |pi´2q q which are parameters in the formula. This dependence will be made explicit only when necessary.

Figure 2 shows how the periodic array δ i pY i `Gi q generates diverse configurations for contiguous cells of type Y i´1 . The adjustments are needed to contend with all possible configurations. And it is to deal with these adjustments that the subsets r Y i´1,δi are introduced.

(12) Since Y i contains the origin, Y i ´Yi " tz ´z1 | pz, z 1 q P Y i ˆYi u contains Y i .

(13) Actually, by construction, r Y i´1,δ i ´δi Y i is equals p Y i´1,δ i (see Figure 1). The equivalents of Propositions 3.5, 3.6, 3.7 and Theorem 3.8 obviously hold also for i " 3, . . . , n.

Finally, the compounded unfolding operators, denoted r T i ε are defined recursively by

r T 1 ε . "T 1 ε1 , r T i ε . " r T i δi ˝r T i´1 ε for i " 2, . . . , n.
Similarly, for i " 2, . . . n, set

r Y i ε . " i´1 ź j"1 r Y j,δj`1 ˆYi .
For φ defined on Ω, the following formula for r T ε i pφqpx, yq (where px, yq is in ΩˆY) is easily obtained by induction (cf. ( 

where (cf. (2.3)) for i " 1, . . . , n,

r S 1 ε px, y |1 q . " S 1 ε px, y |1 q r S i ε px, y |i q . " ε 1 " x ε 1 ı Y1 `i ÿ j"2 ε j
´" y j´1 δ j ı Yj ´ηj,δj px, y |pj´2q q ¯`ε i y i .

(3.4)

In this setting, there is a version of Lemma 2.6 (here stated for i " n).

Lemma 3.14. For px, yq P p

Ω ε1 ˆp Y n ε and j " 1, . . . , n ´1, | r S n ε px, yq ´r S j ε px, y |j q| ď 2 ε j`1 diampY j`1 q |S n ε px, y |j q ´xq| ď ε 1 diampY 1 q. (3.5)
Proof. The proof is the same as that of Lemma 2.6 with the following changes. For j " 1, . . . , n ´1, define r y j by

ε j r y j . " n ÿ k"j`1 ε k ˆ" y k´1 δ k ı Y k ´ηk,δ k px, y |pk´2q q ˙`ε n y n .
so that r S n ε px, y 1 , . . . , y n q " r S j ε px, y 1 , ..., y j´1 , r ´" y j´1 δ j ı Yj `Yj ´Yj ¯which is included in p Y j´1,δn (see Figure 1).

y j q. ( 3 
Consequently, @j " 1, . . . , n ´1, |r y j ´yj | ď 2 δ j diamY j`1 which replaces (2.7) and proves the first inequality in (3.5). Finally,

r S n ε px, y 1 , . . . , y n q " r S 1 ε px, r y 1 q . " ε 1 " x ε 1 ı Y1 `ε1 r y 1 ,
which belong to the same cell ε 1

´" x ε 1 ı Y1 `Y1 ¯as x. This implies the second inequality in (3.5).

For i " 1, . . . , n define the sets r Ω i,ε by

r Ω i,ε . " r S i ε p p Ω ε1 ˆr Y i ε q. (3.7)
It then follows that

@i " 1, . . . , n ´1, r Ω i`1,ε Ă r Ω i,ε . (3.8)
As in (2.8) and (2.9), it is easy to get the following estimate for the measures of the r Ω i,ε :

| r Ω i`1 ε | " | r Ω i ε |ˆ| r Y i,δi`1 | |Y i | , and | r Ω i ε | " | r Ω ε1 |ˆ| r Y i ε | |Y i | . (3.9) Let r Λ i ε denote the complement of r Ω i ε in Ω. It is a simple calculation to show that, for i ě 2, | r Λ i ε | ď|Λ ε1 | `|Ω| i´1 ÿ j"1 | r Λ j,δj`1 | |Y j | AE|Λ ε1 | `|Ω| i´1 ÿ j"1 2δ j`1 diampY j`1 q |BY j | |Y j | . (3.10)
At this point, the whole procedure of Section 2 is repeated with similar results.

The adjusted averaging operators r U i εi and r U i ε are defined as the adjoints of the corresponding adjusted unfolding operators.

In particular, the equivalents of Propositions 2.12, 2.13 and 2.16 and Corollary 2.17 hold with these compounded adjusted operators.

The next paragraph shows that there exist adjustments which give the convergence in measure as well as in every L p pΩ ˆYn q for p finite for the unfolding of sequences of the type r A ε given by (2.19).

An example of convergence in measure

The notations are as above. For every Φ defined on ΩˆY n and bounded, set

r Φ ε pxq " Φ ´x, ! x ε 1 ) Y1 , ! x ε 2 ) Y2 , . . . , ! x ε n ) Yn ¯,
which is defined almost everywhere in Ω and bounded (with the same bound as Φ).

Definition 3.15. Consider the family of adjustments defined recursively for i " 2, . . . , n as follows:

η 2,δ2 pxq . " ! 1 δ 2 " x ε 1 ı Y1 ) Y2 , η i,δi px, y |pi´2q q . " " ε 1 ε i " x ε 1 ı Y1 `i´1 ÿ j"2 ε j ε i
´" y j´1 δ j ı Yj ´ηj,δj px, y |pj´2q q ¯*Yi .

(3.11) Proposition 3.16. Using the adjustments of Definition 3.15, for every Φ in L 8 pΩ ˆYn q which is almost everywhere continuous as a function from ΩˆY n´1 to L 1 pY n q, one has @p P r1, `8q, r T ε n p r Φ ε q Ñ Φ strongly in L p pΩˆY n q as δ goes to 0.

Proof. The proof is similar to that of Proposition 2.15.

It is enough to consider each of the n `1 arguments in the definition of r T ε n p r Φ ε q on the set p Ω ε1 ˆr Y n ε since the measure of the latter's complement goes to zero as δ goes to 0, and show that r S n ε px, yq Ñ x and

! 1 ε i r S n ε px, yq ) Yi Ñ y i for i " 1, . . . n.
Inequality (3.5) 2 proves that the first argument converges to x (this actually holds for whatever choice of adjustments). Consider the argument of rank i `1 pi " 1, . . . , n ´1q. By (3.6),

1 ε i r S n ε px, yq " 1 ε i r S i ε px, y 1 , . . . , y i´1 , r y i q " ε 1 ε i " x ε 1 ı Y1 `i´1 ÿ j"2 ε j ε i
´" y j´1 δ j ı Yj ´ηj,δj px, y |pj´2q q ¯´η i,δi px, y |pi´2q q `" y i´1 δ i ı Yi `r y i .

Note that " y i´1 δ i ı Yi is an element of G i , and so is the sum of the second line in the formula above by the choice of η i,δi px, y |pi´2q q (see (3.11)). Therefore,

! 1 ε i r S n ε px, yq ) Yi " r y i .
Then, inequality (3.5) 1 implies the required convergence for the argument of rank i For i " n, things are slightly simpler as the same computation shows that

! 1 ε n r S n ε px, yq ) Yn " y n .
Corollary 3.17. Let A be in M pα, β, ΩˆY n q and assume that it is almost everywhere continuous as a map of ΩˆY n´1 to L 1 pY n q NˆN . Set

r A ε pxq " A ´x, ! x ε 1 ) Y1 , ! x ε 2 ) Y2 , . . . , ! x ε n ) Yn ¯.
Then, r T ε n p r A ε q converges in measure to A in ΩˆY n when δ goes to 0.

Remark 3.18. The formula for the adjustment η i,δi with the explicit dependence upon the previous parameters can be now given through the normalized integer parts defined as

ξ n ε px, yq " ´" x ε 1 ı Y1 , " y 1 δ 2 ı Y2 , . . . , " y n´1 δ n ı Yn ¯P G 1 ˆ. . .ˆG n .
For i " 2, . . . , n, consider the maps p η i,δi , defined by the induction formulas

p η 2,δ2 : G 1 ÝÑ Y 2 , p η 2,δ2 pξ 1 q " ! 1 δ 2 ξ 1 ) Y2 , p η i,δi : G 1 ˆ. . .ˆG i´1 ÝÑ Y i , p η i,δi pξ 1 . . . , ξ i´1 q " " ε 1 ε i ξ 1 `i´1 ÿ j"2 ε j ε i `ξj ´p η j,ε pξ 1 , . . . , ξ j´1 ˘¯* Yi .
With these new functions, the i th adjustment (i " 2, . . . , n) is given by η i,δi px, y |pi´2q q " p η i,δi pξ i´1 ε px, yqq.

(3.12)

Using the equivalent of Proposition 3.5 for each level j and composing them gives the equivalent of Proposition 2.8, namely Proposition 3.19. [Integral formula for r T n ε ] Recall the definition of the set r Ω n,ε (formula (3.7)). Then, for every φ in L 1 pΩq and w in L p pΩq (p P r1, `8s),

piq 1 |Y n | ż ΩˆY n Ă T ε n pφqpx, yq dxdy " ż r Ωn,ε φpxq dx, piiq ˇˇż Ω φ dx ´1 |Y n | ż Ωˆr Y n r T ε n pφqpx, yq dxdy ˇˇď ż Ω z r Ωn,ε |φ| dx, piiiq } r T ε n pwq} L p pΩˆY n q ď |Y n | 1{p }w} L p pΩq .
In a similar fashion, Propositions 2.9, 2.11, 2.13 and Theorem 2.12 hold in the case of adjusted unfolding operators.

The following theorem summarizes the results obtained (equivalent of Proposition 2.16 and Corollary 2.17), making use of the adjustments defined above.

Theorem 3.20. Suppose that A in M pα, β, Ω ˆYn q is almost everywhere continuous as a map of ΩˆY n´1 to L 1 pY n q NˆN . Let r A ε be defined by (2.19). Consider the model problem (ε " pε 1 . . . . , ε n q and δ is given by (2.1)):

ż Ω r A ε ∇u ε ∇v dx " xf ε , vy H ´1 pΩq,H 1 0 pΩq , @v P H 1 0 pΩq.
Splitting the integral on Y n , one can see that the homogenized matrix can be obtained by a backward iteration of n successive single-scale homogenizations starting with the smallest scale y n , then y n´1 , etc, and finishing with y 1 .

The case of perforated periodicity cells

In this section we briefly explain how, making use of the results of [6, Chapter 4], the method of Section 3 can be extended to the case of perforated periodicity cells. Here again, we consider the case of finitely many separated scales (n denotes the number of scales). The notations are the same as in the previous section.

We start with the bounded domain Ω in R N and for each i 1, . . . , n, a discrete subgroup G i of rank N of R N as well as "normalized hole" S i which is a bounded closed (possibly empty) set in R N .

As in [6, Chapter 4], for i " 1, . . . , n, introduce perforated version of R N :

pR N q i . " R N z ď ξPGi pξ i `Si q,
which are assumed to be open and not empty in R N , as well as a periodicity cell Y i which has the paving property with respect to the discrete subgroup G i and is such that the hole S i is included in Y i . Then, the perforated periodicity cell is Y i . " Y i zS i . The hypotheses on the Y i are similar to those for Y in Chapter 4 of [6]: Geometrical Hypothesis (H p ): For i " 1, . . . , n, the open set Y i has the following properties: (i) the Poincaré-Wirtinger inequality holds for the exponent p, (14) (ii) there is a basis B i for the group G i such that for every vector b i,k of B i ,

(k P t1, . . . , N u), the interior of Y i Y pb i,k
`Y i q is connected.

The perforated domain at level i (i " 1, . . . , n) is given by:

Ω i,ε . " Ω X ε 1 pR N q 1 X ε 2 pR N q 2 X ¨¨¨X ε i pR N q i .
Equivalently (up to the usual null set due to definitions of fractional parts)

Ω i,ε " ! x P Ω | @j " 1, . . . , i, ! x ε j ) Yj R S j
) .

Using the characteristic function Ξ i of ΩˆY 1 ˆ. . .ˆY i , the characteristic function of Ω i,ε is defined (up to the usual null sets) as

x Þ Ñ 1 Ω i,ε pxq . " Ξ i ˆx, ! x ε 1 ) Y1 , . . . , ! x ε i ) Yi ˙.
( 14) This obviously implies that each Y i is connected.

Functions defined in Ω n,ε are easily extended by 0 in the whole of Ω. The operator of "extension by 0" is denoted by the superscript r ¨ε and preserves all L p norms (see [6, Definition 4.2]). Therefore, for sequences tu ε u ε such that for each ε, u ε belongs to L p pΩ n,ε q, pp P r1, 8sq, the sequence tr u ε ε u ε is in the fixed space L p pΩq. For such sequences, the results of the Section 3 can be applied.

However, to deal with sequences of functions u ε , each belonging to the corresponding W 1,p pΩ ε q, a variant of the definitions of Section 3 is needed.

To contend with the holes, the perforated versions p Y i ´1,δi of p Y i´1,δi are straightforward modifications of Definitions 2.4, while the perforated versions 

r Y i ´1,δi of r Y i´1,
• Ξ i,δi . " ξ P G i | δ i `ξ `Yi ˘Ă Y i ´1( , • p Y i ´1,δi . " interior ´Ť ξPΞ i,δ i δ i pξ `Yi q ¯, • Λ i´1,δi . " Y i ´1z p Y i ´1,δi , • r Ξ i,δi . " ξ i P G i | δ i `ξi `pY i ´Y i q ˘Ă Y i ´1( (it is a subset of Ξ i,δi ), • r Y i ´1,δi . " interior ´Ť ξiP r Ξ i,δ i δ i pξ i `Yi q ¯(it is a subset of p Y i ´1,δi ), • r Λ i´1,δi . " Y i ´1 z r Y i ´1
,δi ; it contains Λ i´1,δi and is included in the boundary layer pBLq i,2δi

.

" ty i´1 P Y i ´1 | distpy i´1 , BY i ´1q ď 2δ i diampY i qu.
Note that if S i has finite perimeter, then both |pBLq i,2δi | and | r Λ i´1,δi | are bounded above by a multiple of p1 `|BY i ´1|q δ i (where |BY i ´1| is the perimeter of Y i ´1). Even if S i does not have a finite perimeter,

|pBLq i,2δi | and | r Λ i´1,δi
| still go to zero with δ i (but in a less specifiable way). Now, the unfolding operators with the adjustment can be defined.

Definition 4.2 (Adjusted unfolding operator r

T iδ i ). The adjusted unfolding operator of a function φ defined on Y i ´1 is given by

r T iδ i pφqpy i´1 , y i q " $ ' ' ' ' & ' ' ' ' % φ ˆδi ´" y i´1 δ i ı Yi
´ηi,δi `yi ¯ḟor a.e. py i´1 , y i q P r Y i ´1,δi ˆYi , 0 for a.e. py i´1 , y i q P r Λ i´1,δi ˆYi . 

Y ˚i . " i ź j"1 Y ˚and r Y ˚i ε . " i´1 ź j"1 r Y j,δj`1 ˆYi .
It is straightforward that, like In this situation, formula (3.3) becomes for px, y |i q in ΩˆY ˚i and φ defined in Ω i,ε :

r T ε ˚ipφqpx, yq " $ & % φ ˝r S i ε px
, yq for a.e. px, yq P p Ω ε1 ˆr Y ˚i ε , 0 for a.e. px, yq P pΛ ε1 ˆY˚i q Y pΩˆpY ˚iz r Y ˚i ε qq.

Here r S i ε is the same as in (3.4), namely,

r S i ε px, y |i q . " ε 1 " x ε 1 ı Y1 `i ÿ j"2 ε j
´" y j´1 δ j ı Yj ´ηj,δj px, y |pj´2q q ¯`ε i y i .

Formula (3.7) becomes

r Ω i,ε . " r S i ε p p Ω ε1 ˆr Y ˚i ε q.
Remark 4.3. It is easy to see that, for i " 2, . . . , n,

r Ω i,ε Ă r Ω i´1,ε , r Ω i,ε Ă Ω i,ε .
The procedure is exactly the same as in Section 3. For instance, Proposition 3.19 takes the following form: Proposition 4.4. [Integral formula for r T ˚i ε ] Under the above assumptions, for every φ in L 1 pΩ i,ε q and w in L p pΩ i,ε q (p P r1, `8s), piq 1

|Y i | ż ΩˆY ˚i r T ε ˚ipφqpx, y |i q dxdy |i " ż r Ω i,ε φpxq dx, piiq ˇˇż Ω i,ε φ dx ´1 |Y i | ż ΩˆY ˚i ε r T ε ˚npφqpx, yq dxdy ˇˇď ż Ω i,ε z r Ω i,ε |φ| dx, piiiq } r T ε ˚ipwq} L p pΩˆY ˚iq ď |Y i | 1{p }w} L p pΩ i,ε q .
Theorem 2.12 takes the following form in the perforated case (which generalizes Theorem 4.43 of [6] to several scales): Theorem 4.5. Suppose p P p1, `8q and δ Ñ 0. Let tw ε u ε be a sequence with w ε in W 1,p pΩ n,ε q for each ε and such that }w ε } W 1,p pΩ n,ε q uniformly bounded.

Up to a subsequence, there exists w in W 1,p pΩq, p w 1 in L p pΩ; W 1,p per,0 pY 1 qq and, for every i P t2, . . . , nu, p w i in L p pΩˆY ˚pi´1q ; W 1,p per,0 pY i qqsuch that, piq r T ε ˚npw ε q á w weakly in L p pΩˆY ˚pn´1q ; W 1,p pY n qq, piiq r T ε n p∇w ε q á ∇w `n ÿ i"1

∇ yi p w i weakly in L p pΩˆY ˚nq N . Moreover, }∇w `n ÿ j"1 ∇ yj p w j } L p pΩˆY ˚n q ď |Y n | 1{p lim inf δÑ0 }∇w ε } L p pΩ n,ε q .
For p " 2, the left-hand side of this inequality is actually simplified since the average over Y j of ∇ p w j is zero:

› › ∇w `n ÿ j"1 ∇ yj p w j › › 2 L 2 pΩˆY ˚n q " |Y n | 1{2 }∇w} 2 L 2 pΩq `n ÿ j"1 ´}∇ yj p w j } 2 L p pΩˆY ˚iq i ź k"j`1 |Y k | ¯.
In this situation, there is also a corrector. The details of [6, Theorem 5.10] for the correctors in the single scale case can be adapted in a straightforward manner to the multiscale case.

5 The case of countable scales

The setting for countable scales

In this section we show how the unfolding method can be applied to countably many scales as an extension of Section 3. In this situation, G i and Y i are defined for i in N ˚, and y belongs to Y . " ś iPN ˚Yi . Functions defined on finite products of Y i 's can be considered as defined on Y.

The actual microscopic periods are the ε i G i . Thus, multiplying G i by a factor λ i ą 0 and replacing ε i by λ i ε i does not change the problem.

Consequently, for simplicity, we can make the following assumption.

Hypothesis 5.1. Every cell Y i is of Lebesgue measure 1.

Therefore the finite products Y n " ś n i"1 Y i are all of measure 1 and so is Y with the product measure. We introduce the notation

q Y n . " i"8 ź i"n`1 Y i , with the convention q Y 0 " Y.
The sequences ε and δ are given in 8 pN ˚q`. We consider the case of adjusted unfolding operators (that of the regular unfolding operators corresponds to adjustments which are 0). A sequence of adjustment tη n,δn u ně2 is therefore given satisfying the hypotheses of subsection 3.2 for each n. The set r Y ε is the infinite product ś iPN ˚r Y i,δi`1 and is a subset of Y. It measure is

8 ź i"1 | r Y i,δi`1 | " 8 ź i"1 p1 ´|r Λ i,δi`1 |q.
The measure of r Y ε is strictly positive if and only if

8 ÿ i"1 | r Λ i,δi`1 | ă 8. (5.1)
When the units cells are parallelotopes, in view of formula (3.10), is implied but the fact that a weighted 1 pN ˚q norm for δ is finite.

Proposition 5.2 (The countable scale unfolding operator r T ε ). Assume }δ} 8 pN ˚q ă 1, and (5.1) is satisfied. For φ in DpΩq, the sequence t r T ε n pφqu n converges in L p pΩˆYq. Its limit is denoted r T ε pφq.

For p in r1, `8q, r T ε extends by density to a map from L p pΩq to L p pΩˆYq. Consequently, @φ P L p pΩq, r T ε n pφq Ñ r T ε pφq strongly in L p pΩˆYq.

(5.2) By inequality piiiq of Proposition 3.19, the sequence t r T ε n u n is uniformly bounded by 1 in the space of continuous linear maps from L p pΩq to L p pΩˆYq, which implies (5.2).

Proof
Next, consider the limit of the decreasing sequence of sets r Ω n ε . It is denoted r Ω ε and is also obtained as

r Ω ε " r S ε p p Ω 1,ε1 ˆr Y ε q.
Due to formula (3.9) (simplified since

|Y i | " 1), | r Ω n ε | " | p Ω ε1 |ˆn ´1 ź i"1 | r Y i,δi`1 | " | p Ω ε1 |ˆn ´1 ź i"1 p1 ´|r Λ i,δi`1 |q. So | r Ω ε | " | p Ω ε1 |ˆ8 ź i"1 p1 ´|r Λ i,δi`1 |q. (5.3) 
Hence, r Ω ε is not a null set if and only if (5.1) is satisfied, condition which is assume from here on.

By going to the limit (n Ñ 8), Proposition 3.19 implies the following: The operator r T ε is linear and continuous from L p pΩq to L p pΩ ˆYq for p P r1, `8q.

Convergence results for countably many scales converging to zero

At this point, we let ε and δ go to 0 in 8 pN ˚q. This will be denoted below simply as δ Ñ 0. Without loss of generality, we assume }δ} 8 pN ˚q ă 1, which implies that }ε} is in 1 pN ˚q.

In order for the procedure to make sense, one needs that | r Ω ε | Ñ |Ω|. In view of (5.3) this condition is Condition pCq :

8 ÿ i"1 | r Λ i,δi`1 | Ñ 0.
From now on, condition pCq will be assumed to hold. This condition may seem quite restrictive. Indeed, if the scales are powers of a small parameter γ, ε n " γ kn , and the diameters and boundary measures of the Y i 's are bounded, the condition requires that the sequence tk n u n be sparse (i.e. pk n`1 ´kn q Ñ 8). For a different approach, see Remark 5.19.

Two graded space structures

The space L p pYq occurs naturally in the countable case. One of its wellknown definition for p P r1, `8q is the completion of the set of bounded functions of finitely many variables (among y) for the norm ϕ strongly in L p pYq. (15) (5.4)

piiq Every ϕ in L p pYq can be written as the sum of a strongly convergent series, namely

ϕ " M q Y 0 pϕq `8 ÿ n"1 ´M q Y n pϕq ´M q Y n´1 pϕq ¯.
(5.5)

Here, Q 0 pϕq . " M Y pϕq is in R while for each n ě 1, Q n pϕq . " M q Y n pϕq ´M q Y n´1 pϕq " M q Y n pϕq ´MYn pM q Y n pϕqq
belongs to the subspace L p 0 pY n q .

" tψ P L p pY n q | M Yn pψq " 0u .

Thus, the space L p pYq is the Banach direct sum of R and the countable family of subspaces L p 0 pY n q. The subspace of L p pYq consisting of elements with mean value 0 in Y is the Banach direct sum of the L p 0 pY n q's (since it is the kernel of Q 0 q. Proof. By Hölder's inequality (applied for the variables y n`1 , . . . ) }M q Y n pϕq} L p pYq ď }ϕ} L p pYq , so M q Y n as a map from L p pYq to itself is bounded by 1. On the other hand, for ϕ bounded and depending only on finitely many of variables y, it is clear the the sequence tM q Y n pϕqu n is stationary with limit ϕ. By density, this proves statement piq.

Convergence (5.5) is an immediate consequence of piq. It is straightforward that Q n pϕq is with mean value 0 on Y n . This proves piiq. Lemma 5.6 (Convergence criteria in L p pYq). Let tϕ k u kPN be a sequence in L p pYq. piq (Criterion for strong convergence) The following are equivalent: paq the sequence is strongly convergent in L p pYq; pbq for every n P N, the sequence tM q Y n pϕ k qu kPN converge strongly in L p pY n q and these convergences are uniform with respect to n.

Furthermore, if ϕ is the limit, then tM q Y n pϕ k qu kPN converges to M q Y n pϕq and tM q Y n pϕqu n converges to ϕ. piiq(Criterion for weak convergence) The following are equivalent:

(15) For M | Y n , see Notation 2.1.
pcq the sequence tϕ k u kPN is weakly convergent in L p pYq; pdq the sequence tϕ k u kPN is bounded in L p pYq and for every n P N, the sequence tQ n pϕ k qu kPN converges weakly in L p 0 pY n q. Furthermore, if ψ n denotes the weak limit of tQ n pϕ k qu kPN , then the series 8 ÿ n"0 ψ n converges strongly in L p pYq and its sum is the weak limit of tϕ k u kPN .

For p " 2, L 2 pYq is a Hilbert sum, the operator Q n is just the orthogonal projector on L 2 0 pY n q and the results above are simple consequences of this Hilbert structure.

Proof. The proof of piq follows by the interversion of double limits when one is uniform with respect to the other for tM q Y n pϕ k qu pk,nqPN 2 . Proof of piiq. It is clear that pcq implies pdq since the Q n 's are weakly continuous. Conversely by the same argument, ψ n " Q n pϕq for every weak limit point ϕ of tϕ k u kPN . This implies that there is only one weak limit point ϕ so the sequence converges weakly. Furthermore,

n ÿ i"0 ψ i " M q Y
n pϕq which converges strongly to ϕ by piq of Lemma 5.5. Another space will also play an essential role (p P r1, `8s). 

H p . " ! ϕ " pϕ 1 , . . . , ϕ n , . . . q P W 1,p per,0 pY 1 qˆ8 ź n"2 L p pY n´1 ; W
∇ yn ϕ n › › › L p pYq is a Banach space.
Proof. Let tϕ k u kPN be a Cauchy sequence in H p . Its image by D is a convergent sequence in L p pYq N . Let W be its limit. Lemma 5.5piiiq implies that Q n pW q " lim kÑ8 p∇ yn ϕ k n q. By the Poincaré-Wirtinger inequality in W 1,p 0 pY n q this in turn implies that the sequence tϕ k n u kPN converges strongly to some ψ n in L p pY n´1 ; W 1,p per,0 pY n qq and ∇ yn ψ n " Q n pW q. By Lemma 5.5piiq, this implies that W " ř 8 n"1 ∇ yn ψ n and ψ .

" pψ 1 , . . . q is the strong limit of tϕ k u kPN in H p . Remark 5.9. If the Poincaré-Wirtinger constants of the Y n 's are uniformly bounded, the space H p is a subspace of L p pYq. Otherwise, this inclusion is not satisfied.

5.2.2

Convergence properties of the sequence of unfolding operators t r T ε u ε By the integral formula for r T ε (Proposition 5.3), the equivalents of Propositions 2.11 and 2.12 as well as theorem 2.12 hold for the countable case.

Proposition 5.10. Suppose p P r1, `8q and condition pCq is satisfied. Then, the following hold true. (i) For w P L p pΩq r T ε pwq Ñ w strongly in L p pΩˆYq.

(ii) Let tw ε u ε be a sequence in L p pΩq such that w ε Ñ w strongly in L p pΩq. Then r T ε pw ε q Ñ w strongly in L p pΩˆYq. Proposition 5.11. Suppose p P r1, `8q and condition pCq is satisfied. Let tw ε u ε be a bounded sequence in L p pΩq. Then the sequence t r T ε pw ε qu ε is bounded in L p pΩˆYq. Moreover, the following implications hold.

(i) If r T ε pw ε q converges weakly to w in L p pΩˆYq, then w ε á w . " M Y pwq weakly in L p pΩq.

(5.6)

For every n P N ˚, r T ε n pw ε q á M q Y n pwq weakly in L p pΩˆY n q.

(5.7) Equivalently, set p w i " Q i pwq for i P N ˚. Then, @n P N ˚, r T ε n pw ε q á w `n ÿ i"1 p w i weakly in L p pΩˆY n q, and w " w `8 ÿ i"1 p w i .

(ii) If tw ε u ε converges to some w in L p pΩq, then, every weak limit point w of t r T ε pw ε qu ε in L p pΩˆYq is such that M Y pwq " w. The same results hold for p " `8 with weak topology replaced by weak-t opology in the corresponding spaces.

Proof. piq Convergence (5.6) follows by duality with Proposition 5.10 (as in the single scale unfolding).

For fixed n set w n ε . " r T ε n pw ε q and write r T ε pw ε q " weak-lim kÑ8 r T ε n`k pw ε q " weak-lim kÑ8 p r T n`k δ n`k ˝r T n`k´1 δ n`k´1 ˝¨¨¨˝r T n`1 δn`1 qpw n ε q. Now, (5.7) follows by applying convergence (5.6) for k Ñ 8 with Ω replaced by ΩˆY n , w ε replaced by w n ε and r T ε by its left-truncated version starting at level n `1, namely, r T n`k δ n`k ˝r T n`k´1 δ n`k´1 ˝¨¨¨˝r T n`1 δn`1 .

piiq follows directly form piq.

Theorem 5.12. Suppose p P p1, `8q and condition pCq is satisfied. Let tw ε u ε be a sequence in W 1,p pΩq such that w ε á w weakly in W 1,p pΩq.

piq Then, r T ε pw ε q á w weakly in L p pΩˆYq. (16) piiq Up to a subsequence, there exists x W in L p pΩ; H p q such that r T ε p∇w ε q á ∇w `Dp x W q weakly in L p pΩˆYq.

(5.8)

Moreover, › › ∇w `Dp x W q › › L p pΩˆYq ď lim inf εÑ0 }∇w ε } L p pΩq .

For p " 2,

› › ∇w `Dp x W q › › 2 L 2 pΩˆYq " }∇w} 2 L 2 pΩq `}Dp x W q} 2 L 2 pΩˆYq ď lim inf εÑ0 }∇w ε } 2 L 2 pΩq .
Proof. piq Suppose that w is a weak limit point of t r T ε pw ε qu ε in L p pΩˆYq. Then, by (2.13) and (5.7), M q Y n pwq " w for every n P N ˚. By (5.4), this implies w " w, hence piq by weak compactness of the sequence t r T ε pw ε qu ε .

(16) Due to Proposition 5.10, this convergence is strong as soon as the sequence twεuε converges strongly in L p pΩq, which is the case, for example, when BΩ is Lipschitz.

40 piiq Proposition 2.12(ii) gives rise to a sequence t p w n u nPN ˚such that, for every n P N, r T ε n p∇w ε q á ∇w `n ÿ i"1

∇ yi p w i weakly in L p pΩˆY n q N .

The sequence r T ε p∇w ε q´∇w ε ( ε is bounded in L p pΩˆY n q N by 2 sup }∇w ε } L p pΩq . Let x W be one of its weak limit points. Then, by Proposition 5.11 applied to ∇w ε in lieu of w ε , r T ε n p∇w ε q á ∇w `M q Y n p x W q weakly in L p pΩˆY n q N . By Lemma 5.6 (ii), this implies convergence (5.8).

Consequently,

M q Y n p x W q " n ÿ i"1
∇ yi p w i , and x W "

8 ÿ n"1 ∇ yn p w n .
The remaining statements follow by the weak lower semi-continuity of the norms.

Homogenization with countably many scales

In the setting of the preceding section, we now state an homogenization results with countably many scales, which extends Proposition 2.16 with a similar proof. The sequences tεu and tδu converge to 0 in 8 pN ˚q and are such that condition pCq is satisfied.

Introduce the space (here we write H for H 2 )

V . " H 1 0 pΩqˆL 2 pΩ; Hq.

The norm of Ψ . " tψ 0 , p ψu P V is given by

}Ψ} V " `}∇ψ 0 } 2 L 2 pΩq `}Dp p ψq} 2 L 2 pΩˆYq
˘1{2 .

Theorem 5.13 (The unfolded limit of problem (1.2)). Consider Problem (1.2) (where ε is replaced by ε " pε 1 , . . . , ε n , . . .q). Suppose that tf ε u ε converges strongly to f in H ´1pΩq and that there exists a map B in the set M pα, β, ΩˆYq such that B ε . " r T ε pA ε q converges in measure to B on ΩˆY when δ goes to 0.

Proposition 5.16 (Approximation by finitely many micro-scales). In the previous framework, set B n " M q Y n pBq, which depends only upon px, y |n q P ΩˆY n . Let A hom n denote the associated homogenized matrix field using the results of Section 3. Then, the sequence tA hom n u n converges a.e. in Ω to the homogenized matrix field A hom associated with B.

Proof. The problem with B n can be viewed as a problem with countably many scaled (only the first n scales are active), and formula (3.13) can be written in the form of (5. where, for every ξ in R N , η n ξ is the solution of the cell problem (5.10) associated to B n . (17) In view of (5.4), for a.e. x in Ω, the sequence tB n u n converges strongly to B in L p pYq N 2 for every p finite, hence in measure in Y. The standard convergence result stated in Proposition 1.1 applies here (in the periodic setting) and implies that for a.e. x in Ω and every ξ P R N , tη n ξ u n converges strongly in the space H to the solution η ξ of the cell problem associated to B. Consequently, in view of formula (5.11), the sequence tA hom n u n converges to A hom a.e. in Ω.

Note that instead of B n , one can use as an alternate approximation

B ε n " M q Y
n pB ε q. Remark 5.17. The same method readily applies to the case of perforated domains with a hypothesis similar to condition pCq.

An example of countable scale homogenization of a coefficient matrix field

For a coefficient matrix field A defined on ΩˆY, we consider the matrix field on Ω defined by

r A ε " A ´x, ! x ε 1 ) Y1 , . . . , ! x ε n ) Yn , . . .

¯.

The proof of the next proposition is similar to that of Proposition 3.16.

Proposition 5.18. Assume condition pCq is satisfied. There exists a sequence of adjustments η 1,ε1 , η 2,δ2 , . . . with the following property: for every A in M pα, β, ΩˆYq which is almost everywhere continuous, r T ε p r A ε q converges almost everywhere to A on ΩˆY.

The adjustments are given recursively by (3.12) of Remark 3.18.

(17) Since Bn only depends upon px, y |n q, so does η n ξ .

Definition 3 . 1 (

 31 Adjustment for T 2 δ2

Figure 1 :

 1 Figure 1: r Y i´1,δi and r Λ i´1,δi , pi " 2, . . . , nq

Figure 2 :

 2 Figure 2: Various configurations of contiguous cells of type Y i´1 i " 2, . . . , N

  δi are modifications of Definition 3.11. These are extensions of [6, Definition 4.1]. Definition 4.1. [See Figure 3] For i " 2, . . . , n, set

Figure 3 :

 3 Figure 3: r Y i ´1,δi and r Λ i´1,δi , pi " 2, . . . , nq

Proposition 5 . 3 (

 53 Integral formula for r T ε ). The assumptions are the same as in Proposition 3.19. For v and w defined on Ω, and for every continuous function F on R with F p0q " 0r T ε pvwq " r T ε pvq r T ε pwq, r T ε ˝F pvq " F ˝r T ε pvq.For every φ in L 1 pΩq and w in L p pΩq (p P r1, `8s), piq ż ΩˆY Ă T ε pφqpx, yq dxdy " Ωε |φ| dx, piiiq } r T ε pwq} L p pΩˆYq ď }w} L p pΩq .

Remark 5 . 4 . 8 ÿ j" 1 δ

 5481 For the case of parallelotopes, due to formula (3.10), Condition C follows when the weighted 1 pN ˚q norm j`1 diampY j`1 q |BY j | of δ goes to 0.

B

  n px, yq `ξ `Dpη n ξ qpx, yq ˘dy,

  . Since }δ} 8 pN ˚q ă 1, for every px, yq given in p Ω 1,ε1 ˆr Y ε , the sequence S ε px, yq ´x| ď 2 ε 1 diampY 1 q.

	t r S n ε px, yqu n is Cauchy sequence by (3.5) 1 . It converges uniformly in Ω. Its
	limit, denoted r S ε px, yq is therefore
		r S ε px, yq " ε 1	" x ε 1	ı Y1	`8 ÿ i"2	ε j	δ j ´" y i´1	Yi ı	´ηi,δi px, y |pi´2q q ¯.
	Inequality (3.5) 2 gives				
					| r		
	Now, formula (3.3) implies, when n goes to infinity, that t r T ε n pφqu n converges
	to	r T ε pφqpx, yq	. "	#	φ ˝r S ε px, yq for a.e. px, yq P p Ω ε1 ˆr Y ε , 0 for a.e. px, yq P Λ ε1 ˆpY z r Y ε q.

  Lemma 5.5. [Graded structure property for L p pYq]Let p be in r1, `8q. piq For every ϕ in L p pYq,

	M Y q	n pϕq Ñ nÑ8

}ϕ} L p pYq . " ´żY |ϕpyq| p dy ¯1{p , the latter being only a finite dimensional integral. It has a graded structure which plays an important role. 36

2.2 The properties of the composed unfolding operators

[START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF] For M Y i see Notation 2.1.[START_REF] Cioranescu | The Periodic Unfolding Method[END_REF] The integrals defining the p w j 's can be interpreted as successive differences of projections of w on the nested closed subspaces L p pY j q of L p pY i q. For p " 2, these are actually orthogonal projections.

Unfolding for finitely many scales: a first example

The case of perforated periodicity cells

The case of countable scales

Suppose that tf ε u ε converges strongly to f in H ´1pΩq when δ goes to 0. Then, there exist unique u 0 P H 1 0 pΩq and p u i P L 2 pΩˆY i´1 ; H 1 per,0 pY i qq, for i " 1, . . . , n, satisfying u ε á u 0 weakly in H 1 0 pΩq, r T ε n pu ε q á u 0 weakly in L 2 pΩˆY n´1 ; H 1 0 pY n qq,

∇ yi p u i weakly in L 2 pΩˆY n q N , which are the (unique) solutions of the following variational system:

and there is a corrector given by

Proof. The proof is identical to that of Proposition 2.16 and Corollary 2.17 with the adjusted unfoldings, and making use of Proposition 3.16.

The formula for the homogenized matrix field can be given in terms of the cell-problem. For almost every x P Ω and each ξ in R N for i " 1, . . . , n, let η ξ i px, yq in L 2 pΩˆY i´1 ; H 1 per,0 pY i qq be the unique solution of

This problem, with parameters x and ξ has a unique solution by the Lax-Milgram theorem.

Then, the homogenized matrix field is obtained by integration:

An homogenization result in the case of multiscales with holes

The setting and notations are as above. For simplicity, we consider the model problem in the homogeneous Neumann case, i.e., with a measurable zero-order term c in L 8 pΩq and uniformly bounded below away from zero. The matrix field defining the operator is r A ε given by (2.19) where A in M pα, β, ΩˆY ˚nq is almost everywhere continuous as a map of ΩˆY ˚pn´1q to L 1 pY n q NˆN . For each ε, let u ε be the solution in

where f is now given in L 2 pΩq.

Theorem 4.6. Under the above hypotheses, there exist unique u 0 P H 1 0 pΩq and p u i P L 2 pΩˆY ˚pi´1q ; H 1 per,0 pY i qq, for i " 1, . . . , n, satisfying, as δ goes to 0,

which are the (unique) solutions of the following variational system:

From (4.1), one can easily obtain the homogenized limit equation for u 0 (expressing as usual the p u i in terms of the solutions of the cell problems). Setting ż Ω f pxqvpxq dx, @v P H 1 pΩq.

Homogenization with countably many scales

Then, there exist unique pu 0 , p U q in V satisfying

which is the unique solution of the following infinite dimensional variational system:

(5.9)

There is a corrector given by

Remark 5.14. Problem (5.9) has a unique solution by the Lax-Milgram theorem.

To establish the formula for the homogenized matrix, let the so-called "cell problem" be defined on H as follows.

For almost every x P Ω and each ξ in R N let η ξ px, yq in H be the unique solution of ż Y Bpx, yq `ξ `Dpη ξ qpx, yq ˘¨Dp p Ψqpx, yq dy " 0, (

for all p Ψ in H. This problem, with parameters x and ξ has a unique solution in H by the Lax-Milgram theorem.

Then, the homogenized matrix field is obtained by integration as follows:

Bpx, yq `ξ `Dpη ξ qpx, yq ˘dy.

(5.11)

Remark 5.15. Contrary to the case of finitely many scales, this is not reiterated homogenization, due to the lack of a smallest scale. All the scales have to be dealt with at the same time, which could make the numerical approximation more difficult. There is, however, a solution to partially dispose of this difficulty as indicated in the next proposition (see also Remark 5.19 for a stronger condition which gives a uniform convergence).

Remark 5.19. For the case of countably many separated scales, a different approach is used in [1] which avoids condition pCq. In its place, it uses the following assumption: Hypothesis: The sequence }δ} 8 pN ˚q goes to 0 and the map A is the uniform limit in M pα, β, ΩˆYq of a sequence tA n u n , where each A n depends only on px, y |n q.

Then, for each n, there is an homogenized matrix field A hom n . Under the hypothesis and using a result in [3], the sequence tA hom n u n converges uniformly for n Ñ 8. Its uniform limit is the homogenized matrix for the full problem.

Obviously, this approach can also be used with unfolding.