
HAL Id: hal-03792008
https://hal.science/hal-03792008v1

Preprint submitted on 29 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse tree-based initialization for neural networks
Patrick Lutz, Ludovic Arnould, Claire Boyer, Erwan Scornet

To cite this version:
Patrick Lutz, Ludovic Arnould, Claire Boyer, Erwan Scornet. Sparse tree-based initialization for
neural networks. 2022. �hal-03792008�

https://hal.science/hal-03792008v1
https://hal.archives-ouvertes.fr

Sparse Tree-based Initialization for Neural
Networks

Patrick Lutz1, Ludovic Arnould2, Claire Boyer2, and Erwan
Scornet3

1Department of Computer Science, Boston University
2Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université

3CMAP, Ecole Polytechnique

September 29, 2022

Abstract

Dedicated neural network (NN) architectures have been designed to
handle specific data types (such as CNN for images or RNN for text), which
ranks them among state-of-the-art methods for dealing with these data.
Unfortunately, no architecture has been found for dealing with tabular data
yet, for which tree ensemble methods (tree boosting, random forests) usu-
ally show the best predictive performances. In this work, we propose a
new sparse initialization technique for (potentially deep) multilayer per-
ceptrons (MLP): we first train a tree-based procedure to detect feature in-
teractions and use the resulting information to initialize the network, which
is subsequently trained via standard stochastic gradient strategies. Numer-
ical experiments on several tabular data sets show that this new, simple and
easy-to-use method is a solid concurrent, both in terms of generalization ca-
pacity and computation time, to default MLP initialization and even to ex-
isting complex deep learning solutions. In fact, this wise MLP initialization
raises the resulting NN methods to the level of a valid competitor to gradi-
ent boosting when dealing with tabular data. Besides, such initializations
are able to preserve the sparsity of weights introduced in the first layers of
the network through training. This fact suggests that this new initializer op-
erates an implicit regularization during the NN training, and emphasizes
that the first layers act as a sparse feature extractor (as for convolutional
layers in CNN).

1 Introduction
Neural networks have become hegemonic in machine learning in particular
when dealing with very structured data. They indeed provide state-of-the-art
performances for applications with images or text. However, they still perform

1

poorly on tabular inputs, for which tree ensemble methods remain the gold
standards (Grinsztajn et al., 2022).

Tree ensemble methods Tree-based methods are widely used in the ML com-
munity, especially for processing tabular data. Two main approaches exist de-
pending on whether the tree building process is parallel (e.g. Random Forest,
RF, see Breiman, 2001a) or sequential (e.g. Gradient Boosting Decision Trees,
GBDT, see Friedman, 2001). In these tree ensemble procedures, the final pre-
diction relies on averaging predictions of randomized decision trees, coding
for particular partitions of the input space. The two most successful and most
widely used implementations of these methods are XGBoost and LightGBM
(see Chen and Guestrin, 2016; Ke et al., 2017) which both rely on the sequential
GBDT approach.

Neural networks Neural Networks (NN) are efficient methods to unveil the
patterns of spatial or temporal data, such as images (Krizhevsky et al., 2012) or
texts (Liu et al., 2016). Their performance results notably from the fact that sev-
eral architectures directly encode relevant structures in the input: convolutional
neural networks (CNN, LeCun et al., 1995) use convolutions to detect spatially-
invariant patterns in images, and recurrent neural networks (RNN, Rumelhart
et al., 1985) use a hidden temporal state to leverage the natural order of a text.
However, a dedicated natural architecture has yet to be introduced to deal with
tabular data. Indeed, designing such an architecture would require to detect
and leverage the structure of the relations between variables, which is much
easier for images or text (spatial or temporal correlation) than for tabular data
(unconstrained covariance structure).

NN initialization and training In the absence of a suitable architecture for
handling tabular data, the Multi-Layer Perceptron (MLP) architecture (Rumel-
hart et al., 1986) remains the obvious choice due to its generalist nature. Apart
from the large number of parameters, one difficulty of MLP training arises from
the non-convexity of the loss function (see, e.g., Sun, 2020). In such situations,
the initialization of the network parameters (weights and biases) are of the ut-
most importance, since it can influence both the optimization stability and the
quality of the minimum found. Typically, such initializations are drawn accord-
ing to independent uniform distributions with a variance decreasing w.r.t. the
size of the layer (He et al., 2015). Therefore, one may wonder how to capitalize
on methods that are inherently capable of recognizing patterns in tabular data
(e.g., tree-based methods) to propose a new NN architecture suitable for tab-
ular data and an initialization procedure that leads to faster convergence and
better generalization performance.

2

1.1 Related works
How MLP can be used to handle tabular data remains unclear, especially since
a corresponding prior in the MLP architecture adapted to the correlations of the
input is not obvious, to say the least. Indeed, none of the existing NN architec-
tures can consistently match the performance of state-of-the-art tree-based pre-
dictors on tabular data (Shwartz-Ziv and Armon, 2022; Gorishniy et al., 2021;
and in particular Table 2 in Borisov et al., 2021).

Self-attention architectures Specific NN architectures have been proposed to
deal with tabular data. For example, TabNet (Arik and Pfister, 2021) uses a
sequential self-attention structure to detect relevant features and then applies
several networks for prediction. SAINT (Somepalli et al., 2021), on the other
hand, uses a two-dimensional attention structure (on both features and sam-
ples) organized in several layers to extract relevant information which is then
fed to a classical MLP. These methods typically require a large amount of data,
since the self-attention layers and the output network involve numerous MLP.

Trees and neural networks Several solutions have been proposed to lever-
age information from pre-trained tree-based methods to develop NN that are
capable of efficiently processing tabular data. For example, TabNN (Ke et al.,
2018) first trains a GBDT on the available data, then extracts a group of features
per individual tree, compresses the resulting groups, and uses a tailored Re-
cursive Encoder based on the structure of these groups (with an initialization
based on the tree leaves). Another approach consists in using pre-trained tree-
based methods to initialize MLP. Translating decision trees into MLP was first
achieved by Sethi (1990) and Brent (1991), and later exploited by Welbl (2014),
Richmond et al. (2015) and Biau et al. (2019). Such procedures can be seen
as a way to relax and generalize the partition geometry produced by trees and
their aggregation. However, these approaches are restricted to shallow NN, as
a decision tree is unfolded into a 3-layer neural network.

1.2 Contributions
In this work, we propose a new method to initialize a potentially deep MLP for
learning tasks with tabular data. Our initialization consists in first training a
tree-based method (RF, GBDT or Deep Forest, see Section 2.1) and then using its
translation into a MLP as initialization. This procedure is shown to outperform
the widely used uniform initialization of MLP (default initialization in Pytorch
Paszke et al., 2019) in the following manner.

1. Improved performances. For tabular data, the predictive performances
of the MLP after training are improved compared to MLP that use a ran-
dom initialization. Our procedure also outperforms more complex deep
learning procedures based on self-attention and is on par with classical
tree-based methods (such as XGBoost).

3

2. Faster optimization. The optimization following a tree-based initializa-
tion is boosted in the sense that it enjoys a faster convergence towards a
(better) empirical minimum: a tree-based initialization results in faster
training of the MLP.

Regarding deep MLP, we show that initializing the first layers with tree-based
methods is sufficient, other layers being randomly initialized in a conventional
way. This supports the idea that in our method, the (first) tree-based initialized
layers act as relevant embeddings that allow this standard NN architecture to
detect correlations in the inputs.

Outline In Section 2, we introduce the predictors in play and describe how
tree-based methods can be translated into MLP. The core of our analysis is
contained in Section 3, where we describe in detail the MLP initialization pro-
cess and provide extensive numerical evaluations showing the benefits of this
method.

2 Equivalence between trees and MLP
Consider the classical setting of supervised learning in which we are given a set
of input/output samples {(Xi, Yi)}ni=1 drawn i.i.d. from some unknown joint
distribution. Our goal is to construct a (MLP) function to predict the output
from the input. To do so, we leverage the translation of tree-based methods
into MLP.

2.1 Presentation of the predictors in play
Tree-based methods We consider three different tree ensemble methods: Ran-
dom Forests (RF), Gradient Boosting Decision Trees (GBDT) and Deep Forests
(DF). They all share the same base component: the Decision Tree (DT, for de-
tails see Breiman et al., 1984). We call its terminal nodes leaf nodes and the
other nodes the inner nodes. RF (Breiman, 2001b) is a predictor consisting of
a collection of M independently trained and randomized trees. Its final pre-
diction is made by averaging the predictions of all its DT in regression or by a
majority vote in classification. GBDT (Friedman, 2001) aims at minimizing a
prediction loss function by successively aggregating DT that approximate the
opposite gradient of that loss function (see Chen and Guestrin, 2016, for de-
tails on XGBoost). DF (Zhou and Feng, 2019) is a hybrid learning procedure
in which random forests are used as elementary components (neurons) of a
neural-network-like architecture (see Figure 5 and Appendix A for details).

Multilayer Perceptron (MLP) The multilayer perceptron is a predictor con-
sisting of a composition of multiple affine functions, with (potentially different)
nonlinear activation functions between them. Standard activation functions in-
clude, for instance, the rectified linear unit or the hyperbolic tangent. Deep MLP

4

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

Figure 1: Illustration of a decision tree, its induced feature space partition and
its corresponding MLP translation on a problem with two explanatory vari-
ables. Figure taken from Biau et al. (2019).

are a much richer class of predictors than tree-based methods which build sim-
ple partitions of the space and output piecewise constant predictions. There-
fore, any of the tree-based models presented above can be approximated and
in fact exactly rewritten as an MLP as follows.

2.2 An exact translation of tree-based methods into MLP
From decision tree to 3-layer MLP Recall that a decision tree codes for a par-
tition of the input space in as many parts as there are leaf nodes in the tree.
Given an input x, we can identify the leaf where x falls by examining for each
hyperplane of the partition whether x falls on the right or left side of the hyper-
plane. The prediction is then made by averaging the outputs of all the points
falling into the leaf of x. A DT can be thus translated into a two-hidden-layer
MLP:

1. the first layer contains a number of neurons equal to the number of hy-
perplanes in the partition, each neuron encoding by ±1 whether x falls
on the left or right side of the hyperplane,

2. the second layer contains a number of neurons equal to the number of
leaves in the DT. Based on the first layer, it identifies in which leaf x falls
and outputs a vector with a single 1 at the leaf position and−1 everywhere
else,

3. the last layer contains a single output neuron that returns the tree predic-
tion. Its weights encode the value stored in each leaf of the tree.

The translation procedure is explained in details (and formally written math-
ematically) in Biau et al. (2019) and in Appendix B for completeness.

From RF/GBDT to 3-layer MLP Although RF and GBDT are constructed in
different ways, they both average multiple DT predictions to give the final re-
sult. Thus, to translate a RF or a GBDT into an MLP, we simply turn each tree
into a 3-layer MLP as described above, and concatenate all the obtained net-
works to form a wider 3-layer MLP. When concatenating, we set all weights
between the MLP translations of the different trees to 0, since the trees do not

5

interact with each other in predicting the target value for a new feature vector.
Note that no additional layer is required in the MLP translation for averaging
the results of multiple decision trees, as this operation can directly be carried
out by the third layer. To this end, the last layer of the MLP translation uses an
identity activation function and can therefore include the averaging step across
trees, which is itself a linear transformation of the tree outputs.

From Deep Forests to deeper MLP As a Deep Forest is a cascade of Random
Forests, it can be therefore translated into an MLP containing the MLP transla-
tions of the different RF in cascade, resulting in a deeper and wider MLP (note
that the obtained MLP counts a number of hidden layers as a multiple of 3).
Furthermore, in the Deep Forest architecture, the input vector is concatenated
to the output of each intermediate layer, as shown in Figure 5. To mimic these
skip connections in the MLP, we add additional neurons to each layer, except
for the last three, which encode an identity mapping. Figure 6 illustrates this
concept. Note that recasting a deep forest into a deep MLP using this method
may suffer from numerical instabilities altering the predictive behaviour, see
Appendix C. This is due to a phenomenon of catastrophic cancellation, more
likely to occur with deep MLP translations. This does not impact the sequel of
the study, relying on the MLP approximations considered hereafter.

2.3 Relaxing tree-based translation to allow gradient descent
training

As shown in the previous section, one can construct an MLP that exactly repro-
duces a tree-based predictor. However this translation involves (i) piecewise
constant activation functions (sign) and (ii) different activation functions in a
same layer (sign and identity when translating DF). These constraints can hin-
der the MLP training, relying on stochastic gradient strategies (requiring differ-
entiability), as well as efficient implementation tricks, given that automatic dif-
ferentiation libraries only support one activation function per layer. Therefore,
given a pre-trained tree-based predictor (RF, GBDT or DF), we aim at relaxing
its translation into a MLP, mimicking its behavior as closely as possible but in a
compatible way with standard NN training.

From tree-based methods to differentiable MLP To do so, Welbl (2014); Biau
et al. (2019) consider the differentiable tanh activation, well suited for approx-
imating both the sign and identity functions. Indeed, this can be achieved by
multiplying or dividing the output of a neuron by a large constant before ap-
plying the function tanh and rescaling the result accordingly if necessary, i.e.
for a, c > 0 large enough, sign(x) ≈ tanh(ax) and x ≈ c tanh (xc

)
.

We cannot choose a arbitrarily large as this would make gradients vanish
during the network optimization (the function being flat on most of the space),
and hinder the training. We therefore introduce 4 hyper-parameters for the
MLP encoding of any tree-based method that regulate the degree of approxi-
mation for the activation functions after the first, second and third layers of a

6

decision tree translation, as well as for the identity mapping, respectively de-
noted by strength01, strength12, strength23 and strength id.

Hyperparameter choice The use of the tanh activation function involves ex-
tra hyper-parameters. We study the influence of each one, by making them
vary in some range (keeping the others fixed to 1010, resulting in an almost
perfect approximation of the sign and identity functions), see Appendix C.1
for details. Our analysis shows that increasing the hyperparameters beyond
some limit value is no longer beneficial (as the activation functions are already
perfectly approximated) and, across multiple data sets, these limit values are
similar. We also exhibit relevant search spaces that will allow us to find optimal
HP values for each application.

3 A new initialization method for MLP training
In this section, we study the impact of tree-based initialization methods for MLP
training when dealing with tabular data. The latter empirically proves to be
always preferable to standard random initialization and makes MLP a compet-
itive predictor for tabular data.

3.1 Our proposal
Random initialization is the most common technique for initializing MLP be-
fore stochastic gradient training. It consists in setting all layer parameters to
random values of small magnitude centered at 0. More precisely, all parameter
values of the j-th layer are uniformly drawn in [−1/

√
dj, 1/

√
dj] where dj is the

layer input dimension; this is the default behaviour of most MLP implementa-
tions such as nn.Linear in PyTorch (Paszke et al., 2019).

We introduce new ways of initializing an MLP for learning with tabular
data, by leveraging the recasting of tree-based methods in a neural network
fashion:

• RF/GBDT initialization. First, a RF/GBDT is fitted to the training data
and transformed into a 3-layer neural network, following the procedure
described in Section 2. The first two layers of this network are used to
initialize the first two layers of the network of interest. Thus, upon initial-
ization, these first two layers encode the RF partition. The parameters of
the third and all subsequent layers are randomly initialized as described
above.

• DF initialization. Similarly as above, a Deep Forest (DF) using ` forest
layers is first fitted to the training data. The first 3`− 1 layers of the MLP
are then initialized using the first 3`−1 layers of the MLP encoding of this
pre-trained DF. The parameters of the 3`-th and all subsequent layers are
randomly initialized as explained above.

7

The tree-based initialization techniques may seem far-fetched at first glance,
but they are actually consistent with recent approaches for adapting Deep Learn-
ing models for tabular data. The key to interpreting them is to think of the first
(tree-based initialized) layers of the MLP as a feature extractor that produces an
abstract representation of the input data (in fact, this is a vector encoding the
tree-based predictor space partition in which the observation lies). The sub-
sequent randomly initialized layers, once trained, then perform the prediction
task based on this abstract representation (see MLP sparsity in Section 3.5 for
details).

3.2 Experimental setup
Datasets & learning tasks We compare prediction performances on a total of
10 datasets: 3 regression datasets (Airbnb, Diamonds and Housing), 5 binary
classification datasets (Adult, Bank, Blastchar, Heloc, Higgs) and 2 multi-class
classification datasets (Covertype and Volkert). We mostly chose data sets that
are used for benchmarking in relevent literature: Adult, Heloc, Housing, Higgs
and Covertype are used by Borisov et al. (2021) and Bank, Blastchar and Volkert
are used by Somepalli et al. (2021). Moreover, we add Airbnb and Diamonds to
balance the different types of prediction tasks. The considered datasets are all
medium-sized (10–60k observations) except for Covertype and Higgs (approx.
500k observations). Details about the datasets are given in Appendix D.1.

Predictors We consider the following tree-based predictors: Random Forest
(RF), Deep Forest (DF, Zhou and Feng, 2017) and XGBoost (denoted by GBDT,
Chen and Guestrin, 2016). The latter usually achieves state-of-the-art perfor-
mances on tabular data sets (see, e.g., Shwartz-Ziv and Armon, 2022; Gorishniy
et al., 2021; Borisov et al., 2021). We also consider deep learning approaches:
MLP with default uniform initialization (MLP rand. init.) or tree-based ini-
tialization (resp. MLP RF init., MLP GBDT init. and MLP DF init.); and a
transformer architecture SAINT Somepalli et al. (2021). This complex archi-
tecture is specifically designed for applications on tabular data and includes
self-attention and inter-sample attention layers that extract feature correlations
that are then passed on to an MLP. For regression and classification tasks, we
use the mean-squared error (MSE) and cross-entropy loss for NN training, re-
spectively. We choose SAINT as a baseline model as it is reported to outper-
form all other NN predictors on most of our data sets (all except Airbnb and
Diamonds, see Borisov et al., 2021; Somepalli et al., 2021).

Parameter optimization All NN are trained using the Adam optimizer (see
Kingma and Ba, 2014, and details in Appendix D.5.2). The MLP hyper-parameters
(HP) are determined empirically using the optuna library (Akiba et al., 2019)
for Bayesian optimization.

8

(a) Housing (b) Airbnb

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

Lo
ss

1 20 40 60 80 100
Training epochs

4000

6000

8000

10000

12000

14000

16000

M
SE

Lo
ss

(c) Adult (d) Bank

0 5 10 15 20 25 30 35 40
Training epochs

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0.0 2.5 5.0
0.20

0.22

0.24

0.26

(e) Covertype* (f) Volkert

0 5 10 15 20 25 30
Training epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 2 4
1.0

1.1

1.2

1.3

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure 2: Optimization behaviour of ran-
domly, RF and GBDT initialized MLP eval-
uated over a 5 times repeated (statisfied) 5-
fold of each data set, according to Protocol
P1. The lines and shaded areas report the
mean and standard deviation. *evaluation
on a single 5-fold cross validation.

For most HP, we use the default
search spaces of Borisov et al. (2021),
and for all HP tuning the translation
between tree-base methods and MLP,
we have identified relevant search
spaces (see Appendix C.1). An
overview of all search spaces used
for each method can be found in Ap-
pendix D.5. The quantity minimized
during HP tuning is the model’s val-
idation loss, and the smallest valida-
tion loss that occurred during train-
ing for all MLP-based models.

3.3 A better MLP initializa-
tion for a better optimization
In this subsection, the optimization
of standard MLP is shown to benefit
from the proposed initialization tech-
nique. Experiments have been con-
ducted on 6 out of the 10 data sets.

Experimental protocol 1 (P1) To
obtain comparable optimization pro-
cesses, we ensure that all purely
MLP-related hyper-parameters, i.e.
the MLP width, depth and learning
rate, are identical for all MLP in play
regardless of the initialization technique. These HP are chosen to maximize the
predictive performance of the standard randomly initialized MLP. All HP re-
lated to the initialization technique (HP of the tree-based predictor, HP tuning
the translation between trees and MLP) are optimized independently for each
tree-based initialization method.

Results Figure 2 shows that for most data sets, the use of tree-based initial-
ization methods for MLP training provides a faster convergence towards a better
minimum (in terms of generalization) than random initialization. This is all the
more remarkable since Protocol P1 has been calibrated in favor of random ini-
tialization. Among tree-based initializers, GBDT initializations outperform or
are on par with RF initializations in terms of the optimization behavior on all
regression and binary classification problems. However, for multi-class classifi-
cation problems, the advantages of tree-based initialization seem to be limited.
This is probably due to the fact that the MLP architecture at play is tailored
for random initialization, being thus too restrictive for tree-based initializers.

9

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MSE ↓
MSE ↓
(x103)

MSE ↓
(x10-3)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

Acc. ↑
(in %)

Acc. ↑
(in %)

Random Forest 0.263±0.009 5.39±0.13 9.80±0.35 91.6±0.3 92.8±0.3 84.5±1.2 91.3±0.6 80.4±0.1 83.6±0.1 64.2±0.3
GBDT 0.208±0.010 4.71±0.15 7.38±0.28 92.7±0.3 93.3±0.3 84.7±1.0 92.1±0.4 82.8±0.1 97.0±0.0 71.3±0.4

Deep Forest 0.225±0.008 4.68±0.16 8.23±0.29 91.8±0.3 92.9±0.2 83.7±1.2 90.3±0.5 81.2±0.0* 92.4±0.1* 66.3±0.4

MLP rand. init. 0.258±0.011 5.07±0.16 15.5±12.5 90.5±0.4 91.0±0.3 81.4±1.2 80.1±0.1 83.2±0.3 96.7±0.0 72.2±0.4
MLP RF init. 0.222±0.009 4.66±0.16 7.93±0.22 92.1±0.3 92.4±0.4 84.4±1.2 91.7±0.4 83.6±0.1 96.7±0.0 74.1±0.4

MLP GBDT init. 0.206±0.007 4.70±0.09 8.15±0.35 92.2±0.3 92.5±0.3 84.6±1.2 91.5±0.6 83.0±0.0 96.2±0.0 73.5±0.5
MLP DF init. 0.234±0.016 4.81±0.13 8.28±0.24 91.9±0.4 92.2±0.3 84.2±1.0 91.4±0.6 83.3±0.1* 94.5±0.3* 71.3±0.5

SAINT 0.258±0.011 4.81±0.15 17.7±3.83 91.6±0.3 92.2±0.4 84.0±0.8 90.2±0.7 83.7±0.1* 96.6±0.1* 70.1±0.4

Table 1: Best scores for Protocol 2. For each data set, predictors performing at least as
well as the best (resp. DL) score up to its standard deviation are highlighted in bold
(resp. underlined). The scores are based on 5 times repeated (stratified) 5-fold cross
validation. For each model, HP have been chosen via the “optuna” library with 100
iterations. *score based on a simple 5-fold cross validation. See Appendix D.4.1 for a
comparison with literature results.

Experiments presented in Appendix D.3 with fixed arbitrary widths corrobo-
rate this idea: in this case, the RF initialization is beneficial for the optimization
process. For the Adult, Bank, and Volkert data sets, Figure 2 also shows the per-
formance of each method at initialization. None of these procedures leads to a
better MLP performance at initialization (due to both the non-exact translation
from trees to MLP and to the additional randomly initialized layers), but rather
help to guide the MLP in its learning process.

3.4 A better MLP initialization for a better generalization
In this subsection, tree-based initialization methods are shown to systemati-
cally improve the predictive power of neural networks compared to random
initialization.

Experimental protocol 2 (P2) Each MLP is trained on 100 epochs, but with
HP tuned depending on the initialization technique. For maximum compara-
bility, the optimization budget is strictly the same for all methods (100 “op-
tuna” iterations each, where one optuna iteration includes a hold-out valida-
tion). In particular, when using a tree-based initializer, we use 25 HP optimiza-
tion iterations to find optimal HP for the tree-based predictor, fix these HPs,
and then use the remaining 75 iterations to determine optimal HP for the MLP.
For all NN approaches, the model with the best performance on the valida-
tion set during training is kept (using the classical early-stopping procedure).
Performances are measured via the AUROC score for binary classification, ac-
curacy for multi-class classification and MSE for regression (using 5 runs of
5-fold cross-validation).

Results Table 1 shows that RF or GBDT initialization strictly outperform ran-
dom initialization, in terms of final generalization performance, for all data sets

10

except Covertype (for which performances are similar). Additionally, MLP
using both RF and GBDT initialization techniques outperform SAINT on all
medium-sized data sets and fall short on large data sets (Higgs and Covertype).
Despite its simplicity and the additional random/noisy layers, the proposed
methods (based on RF or GBDT) are on par with GBDT half of the data sets,
ranking MLP as relevant predictors for tabular data. Among the tree-based ini-
tializers, GBDT initialization performs better than the RF one on regression and
binary classification problems but not for multi-class classification, which may
result from how GBDT deals with multiclass labels (see Appendix D.3 for ex-
planation). DF initialization, for its part, cannot compete with RF and GBDT
initialization, despite showing some improvement over the random one (except
for Covertype and Volkert). This underlines that injecting prior information via
tree-based methods into the first layers of a MLP is sufficient to improve its per-
formance.

The interested reader may find a comparison of the optimization procedures
of all MLP methods and SAINT (Figure 11) and a table summarizing all HP
(Table 9) in Appendix D.5.2. We remark that tree-based initializers generally
bring into play wider networks with similar depths (fixed width of 2048 and an
optimized depth between 4 and 7) compared to MLP with default initialization.
But, for most data sets, the overall procedure is computationally more efficient
than state-of-the-art deep learning architectures such as SAINT. This hold for
the number of parameters, the training time and the test time (see Table 5-7 in
Appendix D.4).

3.5 Analyzing key elements of the new initialization methods

128 256 512 1024 2048
MLP width

0.21

0.22

0.23

0.24

0.25

0.26

M
SE

Lo
ss

MLP random init. MLP GBDT init.

Figure 3: Influence of
width on the final gener-
alization performance for
random and GBDT ini-
tializations. Mean val-
ues over 5 times repeated
5-fold cross-validation on
the housing data set.

Influence of the MLP width We mainly use stan-
dard search spaces from (Borisov et al., 2021) to
determine the optimal hyper-parameters for each
model. However, the MLP width is an exception to
this. The standard search spaces used in the literature
usually involve MLP with a few hundred neurons per
layer (e.g. up to 100 neurons in Borisov et al., 2021);
yet, in this work, we consider MLP with a width up
to 2048 neurons. Large MLP are actually very bene-
ficial for tree-based initialization methods as they al-
low the use of more expressive tree-based models in
the initialization step.

Figure 3 compares the performance of an MLP
with random/GDBT initializations and different
widths. There is no gain in prediction by using wider
(and therefore more complex) NN, when randomly
initialized. This is corroborated by the results of Ta-
ble 4: for all regression and binary classification data sets, the performance of
our (potentially much wider) MLP with random initialization is consistently
very close to the literature values, and only increases for multi-class classifica-

11

tion problems. However, an MLP initialized with GBDT significantly benefits
from enlarging the NN width (justifying a width of 2048 for tree-based initial-
ized MLP in Table D.4.1). This confirms the idea that tree-based initialization
helps revealing relevant features to the MLP, all the more as the NN width in-
creases, and by doing so, boost the MLP performance after training.

Performance of the initializer For the regression and binary classification
problems considered here, the GBDT model trained before the NN initializa-
tion always performs significantly better than the RF model; for the multi-class
classification problems, the differences are tenuous (see Figure 12 in Appendix
D.6). Note, however, that a better performance of the tree-based predictor used
for initialization does not always lead to a better performance after training (see
the examples of Airbnb and Volkert data sets in Figure 12). This observation
suggests that the predictive performance of the initializer (GBDT or RF) is not
sufficient in itself to explain the predictive power of the trained network: other
aspects, such as the expressiveness of the feature interactions captured by the
initializer or the structure it induces on the MLP, must also play a significant
role.

MLP sparsity Figure 4 shows the histograms of the weights of the three first
and last layers before and after MLP training, for random, RF and GBDT ini-
tializations on the Housing data set (see Appendix D.7 for the Adult data set).

0.5 0.0 0.5
0

50

100

150

200

La
ye

r
1

0.5 0.0 0.5
0

100

200

300

400

10000 0
100

101

102

103

104

10000 0
100

101

102

103

104

30000 20000 10000 0
100

101

102

103

104

30000 20000 10000 0
100

101

102

103

104

0.2 0.0 0.2
0

5000

10000

15000

20000

25000

La
ye

r
2

0.2 0.0 0.2
0

25000

50000

75000

100000

125000

150000

175000

200000

0.4 0.2 0.0
100

101

102

103

104

105

106

0.4 0.2 0.0
100

101

102

103

104

105

106

10 0

101

102

103

104

105

106

10 0

101

102

103

104

105

106

0.5 0.0 0.5
0

5000

10000

15000

20000

25000

La
ye

r
3

0.5 0.0 0.5
0

100000

200000

300000

400000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

100000

0.0 0.1

before training

0

5

10

15

20

25

30

35

La
st

 L
ay

er

0.0 0.1

after training

0

100

200

300

400

500

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

100

101

102

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

101

Random init. RF init. GBDT init.

Figure 4: Histograms of the first three
and the last layers’ weights before and af-
ter the MLP training on the Housing data
set. Comparison between random, RF and
GBDT initializations.

The weight distribution on the first
two layers changes significantly dur-
ing training when the MLP param-
eters are randomly initialized: the
weights are uniformly distributed at
epoch 0 but appears to be Gaussian
(closely centered around zero) after
training. When RF or GBDT initial-
izers are used instead, the weights
of the first two layers at epoch 0 are
sparsely distributed by construction,
and their distribution is preserved
during training (notice the logarith-
mic y-axis for these plots in Fig-
ure 4). Note that the (uniform) dis-
tribution of the weights in other lay-
ers is also preserved through train-
ing (third and last lines of Figure
4). This means that our initialization
technique, in combination with SGD
optimization strategies, introduces an implicit regularization of the NN optimiza-
tion: the obtained MLP is structured and consists of sparse feature extraction
layers (with a structure that is particularly suited for capturing features in tab-

12

ular data), followed by dense prediction layers. This is very similar to the archi-
tecture of CNN (constrained by design), a very successful class of NN designed
specifically for image processing.

It has been argued (see, e.g., Section 2.2 in Neal, 2012) that “with Gaus-
sian priors the contributions of individual hidden [neurons] are all negligible,
and consequently, these [neurons] do not represent ‘hidden features’ that cap-
ture important aspects of the data.” The argument further states that a layer
can only capture patterns in the data if it has a sufficient number of individ-
ual neurons with non-negligible weights. Indeed, empirical evaluations show
that MLP whose weights are tightly centered around zero have worse predic-
tive abilities than those that use a wider range of weights (Blundell et al., 2015).
In this line of reasoning, the sparse weight distribution of the first two layers we
observe before and after training of tree-based-initialized MLP shows how well
these layers are adapted to detect features in the data.

4 Conclusion and Future work
This work builds upon the permeability that can exist between tree methods
and neural networks, in particular how the former can help the latter during
training, especially with tabular inputs. More precisely, we have proposed new
methods for smartly initializing standard MLP using pre-trained tree-based
methods. The sparsity of this initialization is preserved during training which
shows that it encodes relevant correlations between the data features. Among
deep learning methods, such initializations (via GBDT or RF) of MLP always
improve the performance compared to the widely used random initialization,
and provide an easy-to-use and more efficient alternative to SAINT, the state-
of-the-art attention-based deep learning method for tabular data. Beyond deep
learning models, the performance of this wisely-initialized MLP is remarkably
approaching that of XGBoost, which so far reigns supreme for learning tasks
on tabular data.

There is still undoubtedly room for improvement to democratize such a
network initialization. For example, one could be interested in extending this
method to MLP with arbitrary activation functions (other than tanh). A first
step would be to code sign and identity functions, for instance using the ReLU
activation.

Our approach also yields a default method for choosing the MLP width,
which results from the number of trees and their depth used in the initialization
technique. Optimizing DF naturally leads to a default choice of MLP depth.
However DF performances are not sufficient to legitimate such procedures for
now. Other ways of translating tree structures into deep networks should be
considered to build upon our work and propose new data-driven choices of
MLP depth.

13

References
Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based

models still outperform deep learning on tabular data? arXiv preprint
arXiv:2207.08815, 2022.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001a.
Jerome H Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, pages 1189–1232, 2001.
Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems, 30, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for
text classification with multi-task learning. arXiv preprint arXiv:1605.05101,
2016.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks, 3361(10):
1995, 1995.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning inter-
nal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

David E Rumelhart, Geoffrey E Hinton, James L McClelland, et al. A general
framework for parallel distributed processing. Parallel distributed processing:
Explorations in the microstructure of cognition, 1(45-76):26, 1986.

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Oper-
ations Research Society of China, 8(2):249–294, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all
you need. Information Fusion, 81:84–90, 2022. ISSN 1566-2535. doi: https:
//doi.org/10.1016/j.inffus.2021.11.011. URL https://www.sciencedirect.

com/science/article/pii/S1566253521002360.

14

https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Re-
visiting deep learning models for tabular data, 2021. URL https://arxiv.

org/abs/2106.11959.
Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawel-

czyk, and Gjergji Kasneci. Deep neural networks and tabular data: A survey,
2021. URL https://arxiv.org/abs/2110.01889.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 6679–6687, 2021.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss,
and Tom Goldstein. Saint: Improved neural networks for tabular data via
row attention and contrastive pre-training, 2021. URL https://arxiv.org/

abs/2106.01342.
Guolin Ke, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. Tabnn: A uni-

versal neural network solution for tabular data. 2018.
Ishwar Krishnan Sethi. Entropy nets: from decision trees to neural networks.

Proceedings of the IEEE, 78(10):1605–1613, 1990.
Richard P Brent. Fast training algorithms for multilayer neural nets. IEEE Trans-

actions on Neural Networks, 2(3):346–354, 1991.
Johannes Welbl. Casting random forests as artificial neural networks (and prof-

iting from it). In German Conference on Pattern Recognition, pages 765–771.
Springer, 2014.

David L Richmond, Dagmar Kainmueller, Michael Y Yang, Eugene W Myers,
and Carsten Rother. Relating cascaded random forests to deep convolutional
neural networks for semantic segmentation. arXiv preprint arXiv:1507.07583,
2015.

Gérard Biau, Erwan Scornet, and Johannes Welbl. Neural random forests.
Sankhya A, 81(2):347–386, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

L Breiman, JH Friedman, R Olshen, and CJ Stone. Classification and regression
trees. 1984.

15

https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2106.01342
https://arxiv.org/abs/2106.01342

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001b. ISSN
1573-0565. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/

A:1010933404324.
Z. Zhou and J. Feng. Deep forest. National Science Review, 6(1):74–86, 2019.
Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neu-

ral networks. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 3553–3559, 2017. doi: 10.24963/ijcai.
2017/497. URL https://doi.org/10.24963/ijcai.2017/497.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network. In International conference on machine
learning, pages 1613–1622. PMLR, 2015.

Wei Fan, Haixun Wang, Philip S Yu, and Sheng Ma. Is random model better?
on its accuracy and efficiency. In Third IEEE International Conference on Data
Mining, pages 51–58. IEEE, 2003.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics &
Probability Letters, 33(3):291–297, 1997. ISSN 0167-7152. doi: https://doi.org/
10.1016/S0167-7152(96)00140-X. URL https://www.sciencedirect.com/

science/article/pii/S016771529600140X.
Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic parti-

cles in high-energy physics with deep learning. Nature communications, 5(1):
1–9, 2014.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper/2011/file/

86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

16

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.24963/ijcai.2017/497
http://archive.ics.uci.edu/ml
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen,
Zhen Xu, and Isabelle Guyon. Bayesian optimization is superior to random
search for machine learning hyperparameter tuning: Analysis of the black-
box optimization challenge 2020, 2021. URL https://arxiv.org/abs/2104.

10201.
C.M. Bishop, P.N.C.C.M. Bishop, G. Hinton, and Oxford University Press. Neu-

ral Networks for Pattern Recognition. Advanced Texts in Econometrics. Claren-
don Press, 1995. ISBN 9780198538646. URL https://books.google.fr/

books?id=T0S0BgAAQBAJ.

A Details on Deep Forest (DF) and its translation
The layers of DF are composed of an assortment of Breiman’s Random Forests
and Completely-Random Forests (CRF, Fan et al. (2003)) and are trained one
after another in a cascade manner. At a given layer, the outputs of all forests
are concatenated, together with the raw input data. This new vector serves as
input for the next DF layer. This process is repeated for each layer and the final
output is obtained by averaging the forest outputs of the best layer (without
raw data).

Figure 1: Illustration of the cascade forest structure. Sup-
pose each level of the cascade consists of two random forests
(black) and two completely-random tree forests (blue). Sup-
pose there are three classes to predict; thus, each forest will
output a three-dimensional class vector, which is then con-
catenated for re-representation of the original input.

neural networks.
We believe that in order to tackle complicated learning

tasks, it is likely that learning models have to go deep. Cur-
rent deep models, however, are always neural networks, mul-
tiple layers of parameterized differentiable nonlinear modules
that can be trained by backpropagation. It is interesting to
consider whether deep learning can be realized with other
modules, because they have their own advantages and may
exhibit great potentials if being able to go deep. This pa-
per devotes to addressing this fundamental question and il-
lustrates how to construct deep forest; this may open a door
towards alternative to deep neural networks for many tasks.

In the next sections we will introduce gcForest and report
on experiments, followed by related work and conclusion.

2 The Proposed Approach
In this section we will first introduce the cascade forest struc-
ture, and then the multi-grained scanning, followed by the
overall architecture and remarks on hyper-parameters.

2.1 Cascade Forest Structure
Representation learning in deep neural networks mostly re-
lies on the layer-by-layer processing of raw features. Inspired
by this recognition, gcForest employs a cascade structure, as
illustrated in Figure 1, where each level of cascade receives
feature information processed by its preceding level, and out-
puts its processing result to the next level.

Each level is an ensemble of decision tree forests, i.e., an
ensemble of ensembles. Here, we include different types
of forests to encourage the diversity, as it is well known
that diversity is crucial for ensemble construction [Zhou,
2012]. For simplicity, suppose that we use two completely-
random tree forests and two random forests [Breiman, 2001].
Each completely-random tree forest contains 500 completely-
random trees [Liu et al., 2008], generated by randomly select-
ing a feature for split at each node of the tree, and growing
tree until each leaf node contains only the same class of in-
stances. Similarly, each random forest contains 500 trees, by
randomly selecting

√
d number of features as candidate (d is

the number of input features) and choosing the one with the

Figure 2: Illustration of class vector generation. Different
marks in leaf nodes imply different classes.

best gini value for split. The number of trees in each forest is
a hyper-parameter, which will be discussed in Section 2.3.

Given an instance, each forest will produce an estimate
of class distribution, by counting the percentage of different
classes of training examples at the leaf node where the con-
cerned instance falls, and then averaging across all trees in the
same forest, as illustrated in Figure 2, where red color high-
lights paths along which the instance traverses to leaf nodes.

The estimated class distribution forms a class vector, which
is then concatenated with the original feature vector to be in-
put to the next level of cascade. For example, suppose there
are three classes, then each of the four forests will produce a
three-dimensional class vector; thus, the next level of cascade
will receive 12 (= 3× 4) augmented features.

To reduce the risk of overfitting, class vector produced by
each forest is generated by k-fold cross validation. In detail,
each instance will be used as training data for k − 1 times,
resulting in k − 1 class vectors, which are then averaged to
produce the final class vector as augmented features for the
next level of cascade. After expanding a new level, the perfor-
mance of the whole cascade will be estimated on validation
set, and the training procedure will terminate if there is no sig-
nificant performance gain; thus, the number of cascade levels
is automatically determined. In contrast to most deep neural
networks whose model complexity is fixed, gcForest adap-
tively decides its model complexity by terminating training
when adequate. This enables it to be applicable to different
scales of training data, not limited to large-scale ones.

2.2 Multi-Grained Scanning
Deep neural networks are powerful in handling feature rela-
tionships, e.g., convolutional neural networks are effective on
image data where spatial relationships among the raw pixels
are critical [LeCun et al., 1998; Krizhenvsky et al., 2012]; re-
current neural networks are effective on sequence data where
sequential relationships are critical [Graves et al., 2013;
Cho et al., 2014]. Inspired by this recognition, we enhance
cascade forest with a procedure of multi-grained scanning.

As Figure 3 illustrates, sliding windows are used to scan
the raw features. Suppose there are 400 raw features and a
window size of 100 features is used. For sequence data, a
100-dimensional feature vector will be generated by sliding
the window for one feature; in total 301 feature vectors are
produced. If the raw features are with spacial relationships,
such as a 20 × 20 panel of 400 image pixels, then a 10 × 10
window will produce 121 feature vectors (i.e., 121 10 × 10

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3554

Figure 5: Illustration of the Deep Forest cascade structure for a classification
problem with 3 classes. Each level of the cascade consists of two Breiman RFs
(black) and two completely random forests (blue). The original input feature
vector is concatenated to the output of each intermediate layer. Figure taken
from (Zhou and Feng, 2017).

B Details of the translation of a decision tree into an
MLP

Recall that a decision tree codes for a partition of the input space in as many
parts as there are leaf nodes in the tree. To know in which partition cell an
input feature vector x ∈ Rd falls into, we move in the tree from the root to the

17

https://arxiv.org/abs/2104.10201
https://arxiv.org/abs/2104.10201
https://books.google.fr/books?id=T0S0BgAAQBAJ
https://books.google.fr/books?id=T0S0BgAAQBAJ

Forest

First Deep Forest layerInput More Deep Forest layers

. . .

Output

Identity mapping

Figure 6: Illustration of the MLP translation of a Deep Forest. Yellow nodes
use the x 7→ 2.1{x>0} − 1 activation function and green nodes use the identity
activation function.

corresponding leaf using simple rules: at each m-th inner node, x is passed
onto the left child node if its im-th coordinate is less than or equal to some
threshold tm, and to the right child node otherwise. The decision rule at each
inner node of the tree introduces a split of the feature space into two subsets
H−m = {x ∈ Rd | x(im) ≤ tm} andH+

m = {x ∈ Rd | x(im) > tm}. Consistent with
how the MLP translation works, we intentionally defineH−m andH+

m such that
at each inner node m, H−m ∪ H+

m = Rd. Let N be the number of inner nodes of
the decision tree; note that the decision tree has exactly N + 1 leaf nodes, since
it is by definition a complete binary tree, see Figure 1 for an illustration. For a
leaf node ` ∈ {1, . . . , N + 1} of the tree, let P−` ⊂ {1, . . . , N} (respectively P+

`)
be the set of all inner nodes whose left (respectively right) subtree contains `,
that is, P+

` ∪ P−` is the set of all parent nodes of `. Then, the decision tree sorts
an observation x ∈ Rd into its leafR` if and only if

x ∈ R` =

 ⋂

m∈P−
`

H−m

 ∩

 ⋂

m∈P+
`

H+
m

 . (1)

In fact, {R`}`∈L is the feature space partition coded by the tree, see Figure 1
for an example. Finally, the tree returns the average response of all training
samples that fall into the same leaf as the input data; let us call a` the average
response of all training samples inR`. The final prediction of the decision tree
g can therefore be expressed as

g(x) =

N+1∑

`=1

a`1{x∈R`}.

Let us now explore how an MLP can be designed to reproduce the prediction
of a decision tree. Consider an MLP of depth 3 withN neurons on the first layer.
For each inner nodem ∈ {1, . . . , N}, them-th neuron of the first layer indicates
on which side of the split introduced by this inner node a given feature vector

18

lies: it equals−1 if the feature vector lies inH−m and +1 if it lies inH+
m. This can

be achieved applying the following affine transformation and a sign activation
function to the feature vector,

A1 : x ∈ Rd 7→ x(im) − tm and ϕ1 : x 7→
{
−1 if x ≤ 0

1 if x > 0.

The second layer of the 3-layer MLP has N + 1 neurons. For each leaf node
` ∈ {1, . . . , N + 1}, the `-th neuron of the second layer indicates whether a
given feature vector x ∈ Rd lies in R` or not: it equals +1 if x ∈ R` and −1
if x /∈ R`. Using equation (1), this can be achieved by applying the following
affine transformation and a sign activation function to the output of the first
layer,

A2 : x ∈ RN 7→
∑

m∈P+
`

x(m)−
∑

m∈P−
`

x(m)−
∣∣P+

` ∪P−`
∣∣+1

2
and ϕ2 : x 7→

{
−1 if x ≤ 0

1 if x > 0.

The last layer of the MLP contains a single output neuron that returns the
tree prediction. Using the output of the second layer, this can be achieved by
applying the following affine transformation and an identity activation func-
tion,

A3 : x ∈ RN+1 7→ 1

2

(
N+1∑

`=1

x(`)a` +

N+1∑

`=1

a`

)
and ϕ3 : x 7→ x (2)

where a` is the average response of all training samples inR`. Note that {a`}N+1
`=1

is a set of real numbers in regression problems and a set of probability vectors
representing class distributions in classification problems. An illustration of
the MLP translation of a decision tree is shown in Figure 1. This translation
procedure is explained, for example, in Biau et al. (2019) with more details.

C Detail on the MLP translation accuracy

C.1 On the choice of hyper-parameters
In Section 2.3, four hyper-parameters were introduced to approximate the sign
and identity functions through the layers of an elementary MLP. We address
here the choice of the HPs and propose an optimal range for these parameters
in the sense that they are as small as possible while guaranteeing a faithful MLP
translation.

We focus on the analysis of deep forest translation, as the structure of all
other tree-based methods can be seen as a truncated variant of a deep forest.
The deep forest is trained and translated into an MLP on each data set (see
Section 2) for different values of the HPs. To identify the influence of each HP,
we make them vary in some range while the other three HPs are fixed to 1010,

19

resulting in an almost perfect approximation of the respective sign and identity
functions. Figure 7 shows the predictive performance of a deep forest and its
MLP translation playing with different HPs.

100

101

102

103

104

M
SE

Lo
ss

H
ou

si
ng

MLP
Deep Forest

0.5

0.6

0.7

0.8

0.9
Au

ro
cS

co
re

Bi
na

ry
Ad

ul
t

0.5

0.6

0.7

0.8

0.9

Au
ro

cS
co

re
Bi

na
ry

Ba
nk

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Co
ve

rt
yp

e

100 101 102 103 104

strength01

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Vo
lk

er
t

10 1 100 101 102 103

strength12
10 1 100 101 102 103

strength23
10 1 100 101 102 103

strength_id

Figure 7: Comparison of the performance of a trained deep forest and its neural
network encoding. Deep forest architecture: maximal depth of 8 per tree, 8 trees
per forest, 1 forests per layer, 3 layers.

Figure 7 shows in particular that
(i) increasing the HPs beyond some limit value is no longer beneficial as the

activation functions are already perfectly approximated;
(ii) across multiple data sets, these limit values are similar.

One could note that the coefficients in the first layer of a decision tree trans-
lation should be of a larger order of magnitude than those corresponding to
the other activation functions to achieve an accurate translation. To give some
insight into why this is the case, recall that them-th neuron of the first layer de-
termines whether the input vector belongs to H−m or H+

m, and note that its out-
puts can be of arbitrarily small size because the vector can be arbitrarily close to
the decision boundaries. Note also that an MLP translation would better com-
promise on translation accuracy to ensure sufficient gradient flow. Based on
these observations, we remark that choosing the HP of the following orders al-
lows for maximum gradient flow while still providing an accurate translation:
strength01 ∈ [1, 104], strength12 ∈ [10−2, 102], strength23 ∈ [10−2, 102] and
strength id ∈ [10−2, 102]. This will actually help us later on to calibrate the
search spaces when empirically tuning these HPs for each data set.

20

C.2 A fundamental numerical instability of the neural network
encoding

The encoding of a decision tree by a neural network proposed in Section 2.3 is
numerically unstable, i.e., it does not necessarily yield the same result as the
tree itself, even when using the original, non-approximated activation func-
tions. This is the result of a catastrophic cancellation that occurs within the
MLP translation. The term catastrophic cancellation describes the remarkable
loss of precision that occurs when two nearly equal numbers are numerically
subtracted. For example, take the numbers a = 1 and b = 10−10, and perform
the computation (a + b) − a on a machine with limited precision, say to 8 sig-
nificant digits. The machine will return (a + b) − a = 1 − 1 = 0, although
this result is clearly not correct. This phenomenon occurs in the third layer of
the MLP encoding, see equation (2). The two sums calculated in this layer are
almost equal in magnitude but have opposite signs, resulting in a catastrophic
cancellation that has a greater impact the more partitions of the input space the
decision tree uses, i.e. the deeper it is.

Figure 8 illustrates the effect of this phenomenon, comparing the mean ap-
proximation error between a simple decision tree and its neural network encod-
ing on the airbnb data set. In Figure 8a, the result at the output layer of the tree
was replaced by the exact training mean of the corresponding decision tree par-
tition, compensating for the catastrophic cancellation. No such compensation
was done for Figure 8b. This shows the grave implications of this instability:
the mean error grows exponentially with the depth of an individual tree.

(a) replacing the output layer’s result with
the exact training mean of the corresp. tree
partition

(b) using the output layer’s result with
catastrophic cancellation

Figure 8: Illustration of the fundamental numerical instability of the decision
tree encoding.

Although the errors introduced by this phenomenon may not be large for
a given decision tree, they might accumulate when several such trees are com-
posed, for example in Random or Deep Forests. Figure 9 compares the mean
approximation error between Random/Deep Forests of different complexities
and their corresponding neural net encoding on the Airbnb data set. It shows

21

(a) Random Forest. (b) Deep Forest

Figure 9: Effects of numerical instabilities on more complex tree-based predic-
tors. Airbnb data set. Random Forests are composed of trees of depth 7. Deep
forest architecture: tree depth of 7, 5 trees per forest, 1 forest per layer and a
variable number of layers.

that the composition of several trees in a cascade manner, as performed by the
Deep Forest, leads to a stronger amplification of their individual inaccuracies
than the parallel composition of trees, as performed by the Random Forest. This
result is to be expected because decision trees composed in parallel do not in-
fluence each other’s predictions, whereas in a cascade architecture the results
of the first layer of decision trees affect the input of the subsequent layers and
inaccuracies can thus develop stronger effects.

We note that this catastrophic cancellation can be easily circumvented by
introducing an additional layer. If this maps the output of the second layer from
{−1, 1} to {0, 1}, the last layer could then simply multiply each of these outputs
by the average response of a partition set. However, Figure 9 also shows that
the error introduced by the catastrophic cancellation remains relatively small,
except for deep forests with many layers. Therefore, we did not immediately
address this issue and planned to fall back on this analysis if the MLP coding did
not produce the expected results later in our analysis. However, this somewhat
imprecise MLP coding worked well for all our purposes.

D Supplements to numerical evaluations

D.1 Data sets
Data sets description In the sequel, we run numerical experiments on 10 real-
world, heterogeneous, tabular data sets, all but two of which have already been
used to benchmark deep learning methods, see Borisov et al. (2021); Somepalli
et al. (2021). The chosen data sets represent a variety of different learning tasks
and sample sizes. Tables 2 & 3 respectively give links to the platforms storing
the data sets (four of them are available on the UCI Machine Learning Reposi-
tory, Dua and Graff, 2017) and an overview of their main properties.

22

Data set Link
Housing Scikit-learn
Airbnb Inside Airbnb

Diamond OpenML
Adult UCI Machine Learning Repository
Bank UCI Machine Learning Repository

Blastchar Kaggle
Heloc FICO
Higgs UCI Machine Learning Repository

Covertype UCI Machine Learning Repository
Volkert AutoML

Table 2: Links to data sets.

Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert
Dataset size 20 640 119 268 53 940 32 561 45 211 7 043 9 871 550 000 581 012 58 310

Num. features 8 10 6 6 7 3 21 27 44 147
Cat. features 0 3 3 8 9 17 2 1 10 0

Task Regr. Regr. Regr. Classif. Classif. Classif. Classif. Classif. Classif. Classif.
Classes - - - 2 2 2 2 2 7 10

Table 3: Main properties of the data sets.

The Housing data set contains U.S. Census household attributes and the
associated learning task is to predict the median house value for California dis-
tricts (Kelley Pace and Barry, 1997). The Airbnb data set is provided by the
company itself and holds attributes on different Airbnb listings in Berlin, such
as the location of the apartment, the number of reviews, etc. The goal is to
predict the price of each listing. Similarly, the diamond data set contains char-
acteristics of different diamonds (e.g., carat weight or cut quality), and the goal
is to predict the price of a diamond. The Adult data set contains Census in-
formation on adults (over 16-year olds) and its prediction task is to determine
whether a person earns over $50k a year. The Bank data set is related with di-
rect marketing campaigns (phone calls) of a Portuguese banking institution, the
classification goal is to predict whether the client will subscribe a term deposit.
The Blastchar data set features information on customers of a fictional company
that provides phone and internet services. The classification goal is to predict
whether a customer cancels their contract in the upcoming month. The Heloc
data set contains personal and credit record information on people that recently
took on a line of credit, the classification task being to predict whether they will
repay this credit within 2 years. On the Higgs data set (Baldi et al., 2014), the
classification problem is to distinguish between signal processes that produce
Higgs bosons and background processes that do not. For this purpose, it con-
tains kinematic properties measured by the particle detectors in the accelerator
that have been produced using Monte Carlo simulations. The Covertype data
set contains cartographic variables on forest cells and it’s task is to predict the

23

https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
http://insideairbnb.com/get-the-data/
https://www.openml.org/search?type=data&sort=runs&id=44059
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://community.fico.com/s/explainable-machine-learning-challenge
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/covertype
https://automl.chalearn.org/data

forest cover type. Finally, for the Volkert data set, different patches of the same
size have been cut from images that belong to 10 different landscape scenes
(coast, forest, mountain, plain, etc.). Each observation contains visual descrip-
tors of one patch, the goal of this classification problem is to find the landscape
type of the original picture.

D.2 Implementation details
RFs are implemented using sklearn’s RandomForestRegressor and RandomForestClassifier

classes with default configuration for all parameters that are not mentioned ex-
plicitly. DFs are implemented using the ForestLayer library (Zhou and Feng,
2017) and GBDTs are implemented using the XGBoost library (Chen and Guestrin,
2016). MLPs are implemented and trained with pytorch, using the mean-
squared error and the cross entropy as objective function for regression and
classification problems respectively. The SAINT model is implemented using
the library provided by Somepalli et al. (2021).

All methods are trained on a 32 GB RAM machine using 12 Intel Core i7-
8700K CPUs, and one NVIDIA GeForce RTX 2080 GPU when possible (only
the GDBT and MLP implementations including SAINT use the GPU). Hyper-
parameter searches are parallelized on up to 4 of these machines.

Hyper-parameter optimization We tune all hyper-parameters using the optuna
library (Akiba et al., 2019) with a fixed number of iterations for all models. In
this context, an iteration corresponds to a set of hyper-parameters whose per-
formance is evaluated with respect to a given method. The optuna library uses
Bayesian optimization and, in particular, the tree-structured Parzen estimator
model (Bergstra et al., 2011) to determine the parameters to be explored at each
iteration of hyper-parameter optimization. This approach has been reported
to outperform random search for hyper-parameter optimization (Turner et al.,
2021).

Data pre-processing Machine learning pipelines often include pre-processing
transformations of the input data before the training phase, a necessary step,
especially when using neural networks (Bishop et al., 1995). We follow the
pre-processing that is used in Borisov et al. (2021) and Somepalli et al. (2021).
Hence, we normalize all continuous input features to zero mean and unit vari-
ance. This corresponds to linearly transform the input features as follows

x̃:j =
x:j − µ
σ

where x:j is the j-th continuous feature of either train, validation or test obser-
vations, µ and σ are the mean and standard deviation calculated over the train
set only. This way we assure that no information from the validation or test sets
is used in the normalization step. Moreover, all categorical features are label
encoded, i.e. each level of a categorical variable is replaced with an integer in
{1, . . . , # levels}.

24

Covertype* Volkert

0 5 10 15 20 25 30
Training epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure 10: Optimization behaviour of randomly, RF and GBDT initialized MLP and
SAINT evaluated over a 5 times repeated (stratified) 5-fold of each data set, according
to Protocol P1, but where the MLP width is fixed to 2048 for all methods. The lines and
shaded areas report the mean and standard deviation. *evaluation on a single 5-fold
cross validation.

D.3 Working with an arbitrary width in P1 (optimization be-
haviour)

Figure 10 shows the optimization behaviour of the randomly, RF and GBDT
initialized MLP on the multi-class classification problems. Note that in con-
trast to Figure 2 in this setting, which is less restrictive for RF initialization, this
method does indeed lead to a faster convergence and a better minimum (in terms
of generalization).

However, for these multi-class classification problems, the GBDT initializa-
tion tends to deteriorate the optimization compared to RF or random initializa-
tion methods. Indeed, RF are genuinely multiclassification predictors whose
splits are built using all output classes simultaneously whereas splits in GBDT
are only built following a one-vs-all strategy. This implies that, with a fixed
budget of splits (and therefore of neurons), RF are likely to be more versatile
than GBDT.

D.4 Additional material for Protocol P2 (generalization behaviour)
D.4.1 Extension of Table 1 (best performances)

Table 4 provides a comparison of the performances obtained by ourselves and
the literature (where available) for each model. Notice that our results are
broadly consistent with those in the literature, with two exceptions. First, our
random initialized MLP tends to perform better than in the literature, which
can be explained by the fact that we use a much larger search space than usual
for the MLP width (see Section 3.5 for a discussion on this). Second, our per-
formance on Higgs is significantly lower than in the literature. This can be ex-

25

Model
Data set

Housing (†) Airbnb Diamonds Covertype (†) Volkert (§)

MSE ↓ MSE ↓ ×103 MSE ↓ ×10−3 Accuracy ↑ in % Accuracy ↑ in %
perf. in

literature
our

results
our

results
our

results
perf. in

literature
our

results
perf. in

literature
our

results
Random Forest 0.272±0.006 0.263±0.009 5.39±0.13 9.80±0.35 78.1±0.1 83.6±0.1 66.3±1.3 64.2±0.3

GBDT 0.206±0.005 0.208±0.010 4.71±0.15 7.38±0.28 97.3±0.0 97.0±0.0 69.0±0.5 71.3±0.4
Deep Forest - 0.225±0.008 4.68±0.16 8.23±0.29 - 92.4±0.1* - 66.3±0.4

MLP rand. init. 0.263±0.008 0.258±0.011 5.07±0.16 15.5±12.5 91.0±0.4 96.7±0.0 63.0±1.56 72.2±0.4
MLP RF init. - 0.222±0.009 4.66±0.16 7.93±0.22 - 96.7±0.0 - 74.1±0.4

MLP GBDT init. - 0.206±0.007 4.70±0.09 8.15±0.35 - 96.2±0.0 - 73.5±0.5
MLP DF init. - 0.234±0.016 4.81±0.13 8.28±0.24 - 94.5±0.3* - 71.3±0.5

SAINT 0.226±0.004 0.258±0.011 4.81±0.15 17.7±3.83 96.3±0.1 96.6±0.1* 70.1±0.6 70.1±0.4

Model
Data set

Adult (†) Bank (§) Blastchar (§) Heloc (†) Higgs (†)
AUC ↑ in % AUC ↑ in % AUC ↑ in % AUC ↑ in % AUC ↑ in %

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

Random Forest 91.7±0.2 91.6±0.3 89.1±0.3 92.8±0.3 80.6±0.7 84.5±1.2 90.0±0.2 91.3±0.6 79.7±0.0 80.4±0.1
GBDT 92.8±0.1 92.7±0.3 93.0±0.2 93.3±0.3 81.8±0.3 84.7±1.0 92.2±0.0 92.1±0.4 85.9±0.0 82.8±0.1

Deep Forest - 91.8±0.3 - 92.9±0.2 - 83.7±1.2 - 90.3±0.5 - 81.2±0.0*
MLP rand. init. 90.3±0.2 90.5±0.4 91.5±0.2 91.0±0.3 59.6±0.3 81.4±1.2 80.3±0.1 80.1±0.1 85.6±0.0 83.2±0.3

MLP RF init - 92.1±0.3 - 92.4±0.4 - 84.4±1.2 - 91.7±0.4 - 83.6±0.1
MLP GBDT init. - 92.2±0.3 - 92.5±0.3 - 84.6±1.2 - 91.5±0.6 - 83.0±0.0

MLP DF init. - 91.9±0.4 - 92.2±0.3 - 84.2±1.0 - 91.4±0.6 - 83.3±0.1*
SAINT 91.6±0.4 91.6±0.3 93.3±0.1 92.2±0.4 84.7±0.3 84.0±0.8 90.7±0.2 90.2±0.7 88.3±0.0 83.7±0.1*

Table 4: Best scores for Protocol P2. For each data set, our best overall score is highlighted in
bold and our best Deep Learning score is underlined. Our scores are based on 5 times repeated
(stratified) 5-fold cross validation. For each of our models, HP were selected via the optuna library
(100 iterations). Sources for literature values: Borisov et al. (2021) (†) and Somepalli et al. (2021)
(§). *score based on a single 5-fold cross validation.

plained by the fact that we only include 5% of the original data set’s observa-
tions in our analysis due to hardware limitations that do not allow us to train
large MLP on 11M samples.

D.4.2 Number of parameters of best neural networks

In Table 5, we compare the number of parameters of each NN method. Al-
though the tree-based initialised MLP contain more parameters than the ran-
domly initialized ones, the former are mostly sparse and the execution times are
close (see Table 6). Finally note that the number of parameters of the RF/GBDT
init. MLP is globally on par with that of SAINT (sometimes more, sometimes
less) but for a smaller execution times (Table 6) and mostly better performances
(Table 4).

D.4.3 Comparison of the execution times of the best neural networks

Table 6 presents a comparison of the execution times of the training of different
NN methods using the hyper-parameters determined by the protocol P2. For
each model, the total time during training is given up to the point where the best
validation loss is reached (“early stopping”). It shows that RF/GBDT initialized
MLP train faster than SAINT and a bit slower than randomly initialized MLP.

26

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 2.47M 1.86M 363k 1.09M 52.4K 13.1M 11.3M 11.6M 1.14M 9.03M
MLP RF init. 33.6M 12.6M 8.42M 29.4M 8.43M 25.2M 16.8M 4.26M 21.1M 17.1M

MLP GBDT init. 8.41M 12.6M 12.6M 33.6M 8.43M 16.8M 25.2M 8.46M 4.32M 21.3M
MLP DF init. 88.1M 34.0M 59.3M 42.0M 46.2M 34.36M 25.8M 43.2M 57.6M 34.1M

SAINT 56.8M 27.0M 53.1M 7.20M 6.12M 322M 98.2M 43.2M 6.44M 169M

Table 5: Comparison of number of parameters for each model.

Table 7 presents a comparison of the executions times of one model forward
pass on the whole data set.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 5.96 (32) 91.9 (98) 13.3 (31) 11.8 (37) 21.6 (62) 6.78 (34) 14.3 (60) 467 (32) 312 (69) 12.3 (31)
MLP RF init. 35.6 (29) 129 (44) 24.6 (25) 16.0 (19) 19.6 (23) 5.77 (18) 4.83 (15) 247 (39) 2040 (91) 24.6 (25)

MLP GBDT init. 17.5 (49) 276 (95) 48.9 (37) 32.2 (31) 3.20 (3) 1.69 (7) 3.89 (8) 58.8 (5) 435 (66) 48.9 (37)
MLP DF init. 218 (72) 355 (48) 175 (31) 91 (54) 96 (26) 22.3 (52) 9.04 (19) 3260 (76) 5570 (95) 175 (31)

SAINT 81.9 (37) 640 (83) 394 (84) 15.6 (11) 52.7 (32) 7.23 (2) 51.0 (31) 2310 (19) 6580 (97) 394 (84)

Table 6: Comparison of the execution time in seconds for model training until the best
validation lost is reached. The number of training epochs is indicated in parentheses.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 13.4 103 12.2 98.7 141 10.4 36.9 1060 1070 160
MLP RF init. 45.0 97.7 42.8 125 180 14.5 12.6 1020 1830 191

MLP GBDT init. 19.6 167 22.1 147 182 11.7 12.5 378 1170 218
MLP DF init. 102 227 105 200 415 28.5 13.4 4680 4060 330

SAINT 129 508 130 304 429 77.9 114 2870 3670 645

Table 7: Comparison of the execution time in milliseconds of one model forward pass
on the whole data set.

D.4.4 Optimization behaviour

For completeness, Figure 11 shows the optimization behaviour of the randomly,
RF and GBDT initialized MLP as well as SAINT.

D.5 Hyper-parameter setting
D.5.1 Search spaces

Table 8 shows the HP search spaces that were used to determine an optimal HP
setting. The same search spaces were used for the experimental protocols P1
and P2. Note that, in Table 8, n classes corresponds to the number of classes
for classification problems and is 1 for regression problems. Furthermore, the
different search spaces given for SAINT were used for smaller/larger data sets,
where a data set qualifies as smaller if it has less that 50 explanatory variables.

27

Housing Airbnb Diamonds Adult

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
SE

Lo
ss

0 20 40 60 80
Training epochs

5000

10000

15000

20000

25000

30000

35000

40000

M
SE

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

Lo
ss

0 10 20 30 40 50 60
Training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10
0.28

0.30

0.32

0.34

Bank Blastchar Heloc Higgs*

0 5 10 15 20 25 30 35 40
Training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10

0.20

0.25

0 5 10 15 20 25 30
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

Covertype* Volkert

0 20 40 60 80 100
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

MLP rand. init.
MLP RF init.

MLP GBDT init.
SAINT

Train set
Test set

Figure 11: Optimization behaviour of randomly, RF and GBDT initialized MLP and
SAINT evaluated over a 5 times repeated (statisfied) 5-fold of each data set, according
to Protocol P2. The lines and shaded areas report the mean and standard deviation.
*evaluation on a single 5-fold cross validation.

28

Method Parameter Search space Function

Random Forests
max depth {1, . . . , 12}

see heren estimators {1000}
max features [0, 1]

GBDT

max depth {1,. . . ,12}

see here
n estimators {1000}

reg alpha [10−8, 1]
reg lambda [10−8, 1]

learning rate [0.01, 0.3]

Deep Forest

forest depth {1, 2, 3} Number of Deep Forest layers
n forests {1} Number of forests per Deep Forest layer

n estimators {1000}
RF parameters, see heremax depth {1, . . . , 12}

max features [0, 1]

MLP random init.

learning rate [10−6, 10−1] learning rate of SGD training
depth {1, . . . , 10} number of layer
width {1, . . . , 2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training

MLP RF init.

max depth {1, . . . , 11}
Parameters of the RF initializer, see heren estimators 2048/2max depth

max features [0, 1]
learning rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training
strength01 [1, 104] MLP translation parameters, see Section 2.3strength12 [0.01, 100]

MLP GBDT init.

max depth {1,. . . ,11}

Parameters of the GBDT initializer, see here
n estimators 2048/(n classes · 2max depth)

reg alpha [10−8, 1]
reg lambda [10−8, 1]

learning rate GBDT [0.01, 0.3]
learning rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training
strength01 [1, 104] MLP translation parameters, see Section 2.3strength12 [0.01, 100]

MLP DF init.

forest depth {1, 2, 3} Number of Deep Forest layers
n forests {1} Number of forests per Deep Forest layer

n estimators 2048/2max depth

RF parameters, see heremax depth {1, . . . , 12}
max features [0, 1]
learning rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch size {256} batch size of SGD training
strength01 [1, 104]

MLP translation parameters, see Section 2.3strength12 [0.01, 100]
strength23 [0.01, 100]
strength id [0.01, 100]

SAINT

epochs {100} number of SGD training epochs
batch size {256}/{64} batch size of SGD training

dim [32, 64, 128]/[8, 16] number of neurons per layer in attention block
depth {1, 2, 3} number of layers in each attention block
heads {2, 4, 8} number of head in each attention layer

dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} dropout used during SGD training

Table 8: Hyper-parameter search spaces used for numerical evaluations.

29

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Housing
0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Lo
ss

Airbnb

4000

5000

6000

7000

8000

Adult
0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

Au
ro

cS
co

re
Bi

na
ry

Bank

0.910

0.915

0.920

0.925

0.930

0.935

0.940

Covertype
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Volkert

0.55

0.60

0.65

0.70

0.75

0.80

RF init.
GBDT init.

Tree-model used for init.
MLP after training

Figure 12: Comparison of the performance of the RF and GBDT models used for ini-
tialization and the final performance of the corresponding MLPs.

D.5.2 Experimental protocol P2

Tables 9 and 10 show the HP setting used for the experimental protocol P2. For
the search spaces and descriptions of the function of each HP see Table 8.

D.6 Performances of tree-based methods used for initialisa-
tion of MLP

Figure 12 compares the performance of RF and GBDT models and the perfor-
mance of optimized MLP, initialized with RF and GBDT respectively. We can
notice that the difference in performance between GBDT and RF does not sys-
tematically turn into the same difference in performance for the corresponding
trained networks. This suggests that beyong their respective performances, the
very structures of RF and GBDT predictors play an important role in the final
MLP performances.

30

Method Parameter Housing Airbnb Adult Bank Covertype Volkert

Random Forests
max depth 12 12 11 12 12 12

n estimators 1000 1000 1000 1000 1000 1000
max features 0.437 0.623 0.596 0.943 0.811 0.688

GBDT

max depth 12 9 6 7 11 10
n estimators 1000 1000 1000 1000 1000 1000

reg alpha 0.305 4.60×10−6 2.39×10−5 1.52×10−4 0.728 4.47×10−6
reg lambda 1.13×10−2 1.75×10−8 1.35×10−6 1.07×10−3 6.51×10−4 1.71×10−6

learning rate 3.82×10−2 0.238 1.08×10−2 1.34×10−2 0.181 0.107

Deep Forest

forest depth 4 9 2 2 9 3
n forests 1 1 1 1 1 1

n estimators 1000 1000 1000 1000 1000 1000
max depth 5 12 11 9 12 12

max features 0.361 0.410 0.166 0.206 0.218 0.134

MLP random init.

learning rate 9.01×10−4 4.21×10−4 2.07×10−4 1.1×10−4 1.15×10−4 2.29×10−4
depth 4 4 4 4 4 6
width 1100 959 1175 856 738 1482
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256

MLP RF init.

max depth 8 10 8 8 10 8
n estimators 8 2 8 8 2 8
max features 0.442 0.321 0.613 0.650 0.897 0.825
learning rate 1.04×10−4 1.72×10−4 1.55×10−5 1.01×10−4 1.04×10−5 1.45×10−4

depth 10 5 5 4 7 6
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256
strength01 1090 668 537 71.4 13.7 1.02
strength12 0.0749 1.09 62.7 34.5 1.05×10−2 5.53×10−2

MLP GBDT init.

max depth 3 4 4 4 8 4
n estimators 256 128 128 128 1 12

reg alpha 1.30×10−7 1.10×10−2 1.26×10−8 0.413 1.33×10−2 6.76×10−6
reg lambda 1.57×10−7 9.52×10−4 7.85×10−4 7.48×10−3 0.643 1.99 ×10−7

learning rate GBDT 0.211 0.297 0.202 0.285 0.112 0.272
learning rate 1.11×10−5 1.97×10−5 4.77×10−5 6.22×10−4 6.19×10−5 1.63×10−4

depth 4 5 6 4 3 7
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256
strength01 575 7830 132 20.5 7280 4.08
strength12 5.60 0.461 66.0 5.52 93.4 7.11×10−2

MLP DF init.

forest depth 6 3 3 2 3 2
n forests 1 1 1 1 1 1

n estimators 16 2 64 32 2 8
max depth 7 10 5 6 10 8

max features 0.350 0.598 0.992 0.322 0.633 0.342
learning rate 1.04×10−5 6.67×10−5 1.54×10−5 3.08×10−5 1.58×10−5 2.31×10−4

depth 23 10 9 13 15 9
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch size 256 256 256 256 256 256
strength01 515 36.6 41.0 15.5 51.6 1.41
strength12 0.162 0.242 10.6 0.213 0.124 0.154
strength23 1.94 10.4 47.8 1.94 4.26×10−2 0.149
strength id 3.63×10−2 6.34×10−2 7.44 2.75×10−2 5.09×10−2 3.69

SAINT

epochs 100 100 100 100 100 100
batch size 256 256 256 256 64 256

dim 128 64 32 32 8 16
depth 3 2 2 1 2 2
heads 2 8 2 8 4 8

dropout 0.2 0 0.4 0.8 0.5 0.8

Table 9: Hyper-parameters used for the experimental protocol P2.

31

Method Parameter Diamonds Blastchar Heloc Higgs

Random Forests
max depth 12 6 9 12

n estimators 1000 1000 1000 1000
max features 0.967 0.547 0.607 0.577

GBDT

max depth 7 1 1 11
n estimators 1000 1000 1000 1000

reg alpha 0.341 7.15×10−7 0.123 2.29×10−8
reg lambda 5.15×10−4 1.59×10−7 1.44×10−2 0.391

learning rate 9.17×10−2 1.48×10−2 0.282 2.46×10−2

Deep Forest

forest depth 4 7 10 3
n forests 1 1 1 1

n estimators 1000 1000 1000 1000
max depth 12 2 4 12

max features 0.454 0.641 0.196 0.163

MLP random init.

learning rate 2.35×10−4 1.05×10−4 1.14×10−6 2.26×10−5
depth 9 8 8 9
width 1011 1475 1369 1284
epochs 100 100 100 100

batch size 256 256 256 256

MLP RF init.

max depth 10 5 7 9
n estimators 2 64 16 4
max features 0.904 0.425 0.728 0.670
learning rate 6.67×10−5 5.07×10−6 7.33×10−6 2.17×10−5

depth 4 8 6 3
width 2048 2048 2048 2048
epochs 100 100 100 100

batch size 256 256 256 256
strength01 19.8 4500 331 1.43
strength12 0.420 42.9 1.06 0.329

MLP GBDT init.

max depth 3 1 3 5
n estimators 256 1024 256 64

reg alpha 4.56×10−2 1.63×10−5 6.21×10−7 2.58×10−6
reg lambda 6.17×10−4 2.19×10−4 3.03×10−4 3.20×10−6

learning rate GBDT 0.214 4.72×10−2 8.42×10−2 0.290
learning rate 8.94×10−5 5.60×10−6 4.54×10−4 1.36×10−4

depth 5 6 8 4
width 2048 2048 2048 2048
epochs 100 100 100 100

batch size 256 256 256 256
strength01 3870 4690 6550 4780
strength12 56.6 21.0 31.8 0.423

MLP DF init.

forest depth 3 2 2 3
n forests 1 1 1 1

n estimators 4 128 64 8
max depth 9 4 5 8

max features 0.695 0.516 0.280 0.572
learning rate 2.04×10−5 2.00×10−6 1.91×10−5 9.33×10−6

depth 16 10 8 12
width 2048 2048 2048 2048
epochs 100 100 100 100

batch size 256 256 256 256
strength01 21.0 93.0 97.8 1.12
strength12 0.119 20.0 0.987 9.22×10−2
strength23 5.34×10−2 0.283 27.1 0.207
strength id 0.358 0.475 9.70 0.152

SAINT

epochs 100 100 100 100
batch size 256 256 256 64

dim 64 128 64 16
depth 3 3 3 2
heads 4 8 2 8

dropout 0.2 0.5 0.8 0.8

Table 10: Hyper-parameters used for the experimental protocol P2.

32

D.7 Additional Figures to Section 3.5 (Analyzing key elements
of the new initialization methods)

Figures 13 and 14 show the same histograms as Figure 4 evaluated on the other
data set considered in protocol P2. Note the logarithmic y-axis for the first two
RF and GBDT initialized layers.

33

Airbnb Diamonds

2 0
0

50

100

150

200

250

300

La
ye

r
1

2 0
0

200

400

600

800

1000

1200

1400

1600

75000 50000 25000 0
100

101

102

103

104

75000 50000 25000 0
100

101

102

103

104

1.0 0.5 0.0
1e6

100

101

102

103

104

1.0 0.5 0.0
1e6

100

101

102

103

104

0.5 0.0 0.5
0

2500

5000

7500

10000

12500

15000

17500

La
ye

r
2

0.5 0.0 0.5
0

20000

40000

60000

80000

100000

120000

140000

160000

10 5 0
100

101

102

103

104

105

106

10 5 0
100

101

102

103

104

105

106

1 0
100

101

102

103

104

105

106

1 0
100

101

102

103

104

105

106

0.5 0.0 0.5
0

2500

5000

7500

10000

12500

15000

17500

La
ye

r
3

0.5 0.0 0.5
0

20000

40000

60000

80000

100000

120000

140000

0.2 0.0 0.2
0

10000

20000

30000

40000

50000

60000

70000

80000

0.2 0.0 0.2
0

100000

200000

300000

400000

500000

600000

700000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

25000

50000

75000

100000

125000

150000

175000

200000

1 0 1

before training

0

5

10

15

20

25

30

35

La
st

 L
ay

er

1 0 1

after training

0

10

20

30

40

50

60

70

0.2 0.0 0.2

before training

0

10

20

30

40

50

0.2 0.0 0.2

after training

100

101

102

0.2 0.0 0.2

before training

0

10

20

30

40

50

0.2 0.0 0.2

after training

102

0.5 0.0 0.5
0

20

40

60

80

100

La
ye

r
1

0.5 0.0 0.5
0

20

40

60

80

100

120

140

100 0
100

101

102

103

104

100 0
100

101

102

103

104

40000 20000 0 20000
100

101

102

103

104

40000 20000 0 20000
100

101

102

103

104

0.2 0.0 0.2
0

500

1000

1500

2000

2500

3000

3500

La
ye

r
2

0.2 0.0 0.2
0

5000

10000

15000

20000

25000

4 2 0
100

101

102

103

104

105

106

4 2 0
100

101

102

103

104

105

106

100 0
101

102

103

104

105

106

100 0
101

102

103

104

105

106

0.0 0.5
0

500

1000

1500

2000

2500

3000

3500

La
ye

r
3

0.0 0.5
0

5000

10000

15000

20000

25000

30000

35000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

0.05 0.00 0.05

before training

0

2

4

6

8

10

12

14

16

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

2

4

6

8

10

12

14

16

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

0.02 0.00 0.02

after training

101

2 × 101

3 × 101

4 × 101

6 × 101

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

101

102

Adult Bank

0.25 0.00 0.25
0

50

100

150

200

250

300

350

400

La
ye

r
1

0.25 0.00 0.25
0

100

200

300

400

500

20000 10000 0
100

101

102

103

104

20000 10000 0
100

101

102

103

104

4000 2000 0
100

101

102

103

104

4000 2000 0
100

101

102

103

104

0.1 0.0 0.1
0

5000

10000

15000

20000

25000

La
ye

r
2

0.1 0.0 0.1
0

20000

40000

60000

80000

100000

120000

400 200 0
100

101

102

103

104

105

106

400 200 0
100

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

La
ye

r
3

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

100000

120000

0.05 0.00 0.05

before training

0

10

20

30

40

50

60

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

20

40

60

80

100

120

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

100

101

102

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

101

102

0.25 0.00 0.25
0

50

100

150

200

250

300

350
La

ye
r

1

0.25 0.00 0.25
0

100

200

300

400

500

1000 500 0
100

101

102

103

104

1000 500 0
100

101

102

103

104

200 100 0
100

101

102

103

104

200 100 0
100

101

102

103

104

0.1 0.0 0.1
0

2000

4000

6000

8000

10000

12000

14000

La
ye

r
2

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

200 100 0
100

101

102

103

104

105

106

200 100 0
100

101

102

103

104

105

106

20 10 0
100

101

102

103

104

105

106

20 10 0
100

101

102

103

104

105

106

0.1 0.0 0.1
0

2000

4000

6000

8000

10000

12000

14000

La
ye

r
3

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.0 0.1
0

50000

100000

150000

200000

250000

300000

350000

0.05 0.00 0.05

before training

0

10

20

30

40

50

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

10

20

30

40

50

60

70

80

0.025 0.000 0.025

before training

0

20

40

60

80

100

0.025 0.000 0.025

after training

100

101

102

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

100

101

102

Blastchar

0.2 0.0 0.2
0

100

200

300

400

500

600

700

La
ye

r
1

0.2 0.0 0.2
0

200

400

600

800

3 2 1 0
1e7

100

101

102

103

104

3 2 1 0
1e7

100

101

102

103

104

3 2 1 0
1e7

101

102

103

104

3 2 1 0
1e7

101

102

103

104

0.05 0.00 0.05
0

10000

20000

30000

40000

La
ye

r
2

0.05 0.00 0.05
0

20000

40000

60000

80000

100000

120000

200 100 0

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

20 0 20
103

104

105

106

20 0 20
103

104

105

106

0.025 0.000 0.025
0

10000

20000

30000

40000

La
ye

r
3

0.025 0.000 0.025
0

10000

20000

30000

40000

50000

60000

70000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.02 0.00 0.02

after training

0

10

20

30

40

50

60

70

80

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

5 × 101

6 × 101

7 × 101

8 × 101

9 × 101

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

7 × 101

8 × 101

9 × 101

Figure 13: Histograms of the first three first and the last layers’ weights before
and after the MLP training on the Airbnb, Diamonds, Adult, Bank and Blastchar
data sets. Comparison between random, RF and GBDT initializations.

34

Heloc Higgs

0.2 0.0 0.2
0

100

200

300

400

500

600

700

La
ye

r
1

0.2 0.0 0.2
0

100

200

300

400

500

600

700

2000 1000 0 1000
100

101

102

103

104

2000 1000 0 1000
100

101

102

103

104

50000 25000 0 25000
100

101

102

103

104

50000 25000 0 25000
100

101

102

103

104

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
2

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

40000

5.0 2.5 0.0
100

101

102

103

104

105

106

5.0 2.5 0.0
100

101

102

103

104

105

106

50 0

102

103

104

105

106

50 0

102

103

104

105

106

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
3

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

40000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

300000

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.02 0.00 0.02

after training

0

10

20

30

40

50

60

70

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

4 × 101

6 × 101

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

101

102

0.2 0.0 0.2
0

100

200

300

400

500

600

700

800

La
ye

r
1

0.2 0.0 0.2
0

200

400

600

800

20 10 0
100

101

102

103

104

20 10 0
100

101

102

103

104

20000 0
100

101

102

103

104

20000 0
100

101

102

103

104

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

30000

La
ye

r
2

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
3

0.05 0.00 0.05
0

20000

40000

60000

80000

0.1 0.0 0.1
0

20

40

60

80

100

0.1 0.0 0.1
0

50

100

150

200

250

300

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

100000

200000

300000

400000

0.025 0.000 0.025

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.025 0.000 0.025

after training

0

20

40

60

80

0.1 0.0 0.1

before training

0

20

40

60

80

100

0.1 0.0 0.1

after training

100

101

102

0.025 0.000 0.025

before training

0

20

40

60

80

100

0.025 0.000 0.025

after training

100

101

102

Covertype Volkert

0.5 0.0 0.5
0

200

400

600

800

La
ye

r
1

0.5 0.0 0.5
0

500

1000

1500

2000

2500

3000

50 0 50
100

101

102

103

104

105

50 0 50
100

101

102

103

104

105

20000 0 20000
100

101

102

103

104

105

20000 0 20000
100

101

102

103

104

105

0.5 0.0 0.5
0

2000

4000

6000

8000

10000

La
ye

r
2

0.5 0.0 0.5
0

10000

20000

30000

40000

50000

60000

70000

0.10 0.05 0.00

101

102

103

104

105

106

0.10 0.05 0.00
100

101

102

103

104

105

106

500 250 0
100

101

102

103

104

105

106

500 250 0
100

101

102

103

104

105

106

0.25 0.00 0.25
0

2000

4000

6000

8000

10000

La
ye

r
3

0.25 0.00 0.25
0

10000

20000

30000

40000

50000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.5 0.0 0.5
0

50

100

150

200

250

300

0.5 0.0 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

0.5 0.0 0.5

before training

0

20

40

60

80

100

120

La
st

 L
ay

er

0.5 0.0 0.5

after training

0

100

200

300

400

0.1 0.0 0.1

before training

0

50

100

150

200

250

300

0.1 0.0 0.1

after training

100

101

102

103

0.5 0.0 0.5

before training

0

50

100

150

200

250

300

0.5 0.0 0.5

after training

100

101

102

103

0.2 0.0 0.2
0

1000

2000

3000

4000

La
ye

r
1

0.2 0.0 0.2
0

2000

4000

6000

8000

10000

20 10 0
100

101

102

103

104

105

20 10 0
100

101

102

103

104

105

40 20 0
100

101

102

103

104

105

40 20 0
100

101

102

103

104

105

0.1 0.0 0.1
0

10000

20000

30000

40000

La
ye

r
2

0.1 0.0 0.1
0

25000

50000

75000

100000

125000

150000

175000

200000

0.4 0.2 0.0

101

102

103

104

105

106

0.4 0.2 0.0
100

101

102

103

104

105

106

0.2 0.0
101

102

103

104

105

106

0.2 0.0
100

101

102

103

104

105

106

0.1 0.0 0.1
0

10000

20000

30000

40000

La
ye

r
3

0.1 0.0 0.1
0

50000

100000

150000

200000

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

50000

100000

150000

200000

250000

300000

350000

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

100000

200000

300000

400000

0.1 0.0 0.1

before training

0

50

100

150

200

250

300

350

La
st

 L
ay

er

0.1 0.0 0.1

after training

0

100

200

300

400

500

600

700

0.05 0.00 0.05

before training

0

100

200

300

400

0.05 0.00 0.05

after training

100

101

102

103

0.05 0.00 0.05

before training

0

100

200

300

400

0.05 0.00 0.05

after training

100

101

102

103

Figure 14: Histograms of the first three first and the last layers’ weights before
and after the MLP training on the Heloc, Higgs, Covertype and Volkert data
sets. Comparison between random, RF and GBDT initializations.

35

	Introduction
	Related works
	Contributions

	Equivalence between trees and MLP
	Presentation of the predictors in play
	An exact translation of tree-based methods into MLP
	Relaxing tree-based translation to allow gradient descent training

	A new initialization method for MLP training
	Our proposal
	Experimental setup
	A better MLP initialization for a better optimization
	A better MLP initialization for a better generalization
	Analyzing key elements of the new initialization methods

	Conclusion and Future work
	Details on Deep Forest (DF) and its translation
	Details of the translation of a decision tree into an MLP
	Detail on the MLP translation accuracy
	On the choice of hyper-parameters
	A fundamental numerical instability of the neural network encoding

	Supplements to numerical evaluations
	Data sets
	Implementation details
	Working with an arbitrary width in P1 (optimization behaviour)
	Additional material for Protocol P2 (generalization behaviour)
	Extension of Table 1 (best performances)
	Number of parameters of best neural networks
	Comparison of the execution times of the best neural networks
	Optimization behaviour

	Hyper-parameter setting
	Search spaces
	Experimental protocol P2

	Performances of tree-based methods used for initialisation of MLP
	Additional Figures to Section 3.5 (Analyzing key elements of the new initialization methods)

