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Abstract: Stochastic discrete event systems play a steadily increasing role in 
reliability engineering and beyond in systems engineering. Designing stochastic 
discrete event systems presents however a well-known difficulty: models are 
hard to debug and to validate because of the existence of infinitely many 
possible executions, itself due to stochastic delays, which are possibly 
intertwined with deterministic ones. In this article, revisiting ideas introduced 
in the framework of model-checking of timed and hybrid systems, we show 
that it is possible to abstract the time in stochastic discrete event systems. More 
specifically, we show that schedules of transitions can be abstracted into 
systems of linear inequalities and that abstract and concrete executions are 
bisimilar. The result presented in this article represents thus a very important 
step forward in quality assurance of stochastic models of complex technical 
systems. We illustrate the potential of the proposed approach by means of 
AltaRica 3.0 models. 
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1 Introduction 

Stochastic discrete event systems (Cassandras and Lafortune, 2008; Zimmermann, 2010) 
play a steadily increasing role in reliability engineering and beyond in systems 
engineering. They encompass a large class of modeling formalisms such as stochastic 
Petri nets (Ajmone-Marsan et al., 1994) and stochastic automaton networks (Plateau and 
Stewart, 2000) as well as high-level modelling languages such as AltaRica 3.0 (Batteux 
et al., 2019). Their interest stands in their great expressive power that makes it possible to 
represent complex behaviours. 

Models designed within these formalisms can be assessed by means of various 
techniques, including the compilation into lower level modelling formalisms such as fault 
trees (Prosvirnova and Rauzy, 2015) or Markov chains (Brameret et al., 2015), as well as 
Monte-Carlo simulation, the swiss-knife of behavioural modelling, see e.g., Zio (2013). 
They are however hard to debug and to validate because of the infinite number of 
possible executions, itself due to the infinitely many possible choices of firing dates for 
transitions. This is probably the main limiting factor to their full scale deployment, 
especially in the context of performance assessment of life-critical systems. Most of the 
analysts have experienced this frustration of waiting long minutes, if not hours, for the 



results of a Monte-Carlo simulation to discover eventually that these results are 
meaningless because of a mistake somewhere in the model. 

In this article, revisiting ideas introduced in the framework of model-checking of 
timed and hybrid systems (Yi et al., 1994; Larsen et al., 1997), we show that it is possible 
to abstract the time in stochastic discrete event systems. Namely, we define an abstraction 
of transition schedules by means of systems of linear inequalities. These systems encode 
the conditions for a transition to be enabled at a given step of an execution: the transition 
is enabled if and only if the corresponding system has a solution. 

We show that abstract and concrete executions are bisimilar in the following sense 
[see e.g., Milner (1989) for a reference textbook on bisimulations]: any concrete 
execution can be simulated by a unique abstract execution and reciprocally any abstract 
execution corresponds to at least one concrete execution. This property is of a great 
interest because abstract models can be verified with techniques developed for non-timed 
discrete event systems, including model-checking techniques (Clarke et al., 2000; Baierm 
and Katoen, 2008). 

Even without entering into the model-checking framework, this property makes it 
possible to perform abstract interactive simulations, therefore alleviating considerably 
debugging and validation tasks. Interactive simulators allow the analyst to go forth and 
back, step by step, in sequences of events, enabling in this way to track modelling errors, 
unexpected behaviours and so on. With that respect, they play a similar role as debuggers 
like GDB or DDD (Matloff and Salzman, 2008) do for C++ programs. Without the 
technique we introduce here, the designers of interactive simulators face a quite 
unpleasant choice: either ignoring delays, which has the major drawback that some 
non-timed executions have no timed counterpart, or ask the analyst to enter by hand the 
delays associated with stochastic transitions, which is tedious and let the analyst 
pondering which out of the infinitely many possible delays are the most suitable for his 
purpose. The abstract semantics we introduce here solves this important issue. Although 
it ‘only’ makes it possible to look for qualitative properties (as opposed to probabilistic 
ones), it proves to be extremely useful to check various scenarios of interest for the 
validation of the model, e.g., that firing a given sequence of events is actually possible 
and ends up in a state with some expected properties. 

The technique presented in this article enters into the general framework of Cousot’s 
abstract interpretation (Cousot and Cousot, 1977). The problem at stake was to make it 
work for the particular case of stochastic discrete event systems. Moreover, algorithmic 
mechanisms implementing abstract executions had to be efficient, so to apply on-the-fly 
model-checking techniques (Holzmann, 2003), which are probably the best suited in an 
engineering context. Solving systems of linear inequalities requires in the general case 
linear programming methods such as the simplex algorithm or more specifically the 
Fourier-Motzkin elimination (Chvàtal, 1983; Schrijver, 1998). These methods are quite 
complex to implement and their execution is resource consuming. However, as pointed 
out by Yi et al. (1994), one can take advantage of the particular form of the inequalities 
involved to design an efficient algorithm to check for the existence of solutions. 

The framework presented in this article represents thus a very important step forward 
in quality assurance of stochastic discrete event systems. We illustrate its potential by 
means of AltaRica 3.0 models. To the best of authors’ knowledge, AltaRica Wizard, the 
AltaRica 3.0 integrated modelling environment is the first one to benefit of the techniques 
presented here. These techniques could however probably be implemented in other 



modeling environments with related objectives, e.g., Figaro (Bouissou et al., 1991), GRIF 
Workshop (Signoret and Leroy, 2021) or PRISM (Kwiatkowska et al., 2011). 

The remainder of this article is organised as follows. Section 2 gives a formal 
definition of stochastic discrete event systems and discusses their semantics. Section 3 
introduces their abstract semantics in terms of systems of linear inequalities, shows 
bisimulation theorems and explains how systems of linear inequalities can be solved 
efficiently. Section 4 presents an application of this framework to AltaRica 3.0 models. 
Finally, Section 5 concludes the article and gives some perspectives. 

2 Stochastic discrete event systems 

In this section, we propose a formal definition of stochastic discrete event systems. This 
definition is strongly inspired from the notion of guarded transition systems (Rauzy, 
2008), itself generalising formalisms like stochastic Petri nets (Ajmone-Marsan et al., 
1994). 

2.1 Formal definition 

A stochastic discrete event system is a triple <S, T, s0> where: 

• S is a set of states. S may be finite or infinite.

• T is a finite set of transitions. Each transition t of T is a triple <g, δ, a> where:
1 g is a Boolean condition, i.e., a function from S to {0, 1} (representing

respectively false and true). g is called the guard of the transition. We say that 
the transition t is enabled in the state s ∈ S if g(s) = 1. 

2 δ is a function from S × ℝ+ into CDF−1, where ℝ+ denotes the set of  
non-negative real numbers and CDF−1 denotes the set of inverse functions of 
cumulative distribution functions. δ is called the delay distribution of the 
transition. We shall explain in details this notion in Section 2.3. 

3 a is a function from S to S. a is called the action of the transition. Assume that at 
a given step i, the system is in the state si and the transition is enabled in that 
state. Then, firing the transition is making the system change from state si to 
state si + 1 = a(si). 

• s0 ∈ S is the initial state of the stochastic discrete event system.

The above definition is quite liberal regarding the definition of states. They can be 
virtually anything one wants, ranging from explicitly enumerated states to complex data 
structures. It is easy to verify that formalisms such as stochastic Petri nets 
(Ajmone-Marsan et al., 1994), stochastic automaton networks (Plateau and Stewart, 
2000), guarded transitions systems (Rauzy, 2008), and queuing systems (Trivedi, 2001) 
are special cases of stochastic discrete event systems as we defined them. 

Note that it is often the case that the action of a transition involves only a small subset 
of the variables or data structures representing the state. Firing the transition modifies 
thus only these variables or data structures, the other remaining unchanged. 

Note also that stochastic discrete event systems can be generated by compiling higher 
level descriptions. This is the principle of the AltaRica 3.0 language developed by the 



Batteux et al. (2019). AltaRica 3.0 results of the combination of guarded transition 
systems with S2ML, a versatile and unified set of object-oriented and prototype-oriented 
constructs to structure models (Batteux et al., 2018). 

Both stochastic discrete event systems and timed and hybrid automata (Alur and Dill, 
1994) define timed interpretations of state automata. In timed automata, state automata 
are extended with a finite set of real-valued clocks. During an execution of a timed 
automaton, all clock values increase at the same speed. Transitions of the automaton can 
be guarded (enabled or disabled) by comparisons of clock values with integers, therefore 
constraining its possible behaviours. Furthermore, clocks can be reset. The two classes of 
models are thus quite close, even though they do not emphasise the same things: 
stochastic behaviours for (stochastic) discrete event systems, time constraints in the 
design of controllers of reactive systems for timed and hybrid automata. More 
importantly, the objectives of these two classes of models are significantly different, 
which leads to very different tooling. Moreover, stochastic discrete event models daily 
used in industry tend to be much larger but in some sense simpler than timed and hybrid 
automata models proposed in the literature, which are more academic. This said, the 
technique we present in this article to abstract the semantics of discrete event systems is 
close to the one introduced by Wang, Pettersson and Daniels to perform reachability 
analyses in timed automaton (Yi et al., 1994). The latter is at the core of the model 
checker UPPAAL (Larsen et al., 1997), which is probably one of the most mature 
academic research tools in its domain. 

2.2 Abstract syntax 

It is convenient to give an abstract syntax to discrete event systems. In the sequel, we 

shall denote a transition <g, δ, a> as ,
δ

g a→  using Boolean formulas to describe guards 
and instructions (in pseudo-code) to describe actions. 

As an illustration, assume that we want to represent the queue for a given service. The 
state of this system can be described by a pair (q, s) of integer variables, where q 
represents the number of clients in the queue, and s represents the number of clients 
currently served. 

The set S of possible states of the system is thus (theoretically) ℕ × ℕ, i.e., the set of 
all possible pairs of integers. This set is indeed infinite. For practical reasons, we may 
assume however that there are never more than 10 clients waiting and that only one client 
is served at a time. In this case, S is reduced to product of integer ranges [0, 10] × [0, 1], 
which is indeed finite. 

The evolution of the system can be represented by means of three transitions: 

: 10 1
aδ

at q q q< → = +  

: 0 1 1, 1
bδ

bt q s q q s s> ∧ < → = − = +  

: 0 1,
cδ

ct s s s> → = −  



where the transition ta represents the arrival of a client in the queue, the transition tb 
represents the beginning of the service of a client, and the transition tc represents the 
completion of the service of a client. 

The initial state is (0, 0) as there is initially no client in the service. 

2.3 Delays 

Let M: <S, T, s0> be a stochastic discrete event system. The delay distribution δ 

associated with a transition :
δ

t g a→  of T associates the inverse of a cumulative 
distribution function with each state s ∈ S and each date φ ∈ ℝ+. 

Intuitively, the delay distributions are used as follows, typically when performing a 

Monte-Carlo simulation. If the transition 
δ

g a→  gets enabled at a date φ in a state s, then 
a number z is drawn at pseuso-random uniformly between 0 and 1, the corresponding 
delay d is calculated as d = δ(s, φ)(z). If the transition remains enabled from the date φ to 
the date φ + d, then it is fired at φ + d. 

In many practical applications, the delay distribution does not depend on the state s, 
nor on the date φ, i.e., δ(s1, φ1) = δ(s2, φ2) for all s1, s2 ∈ S and φ1, φ2 ∈ ℝ+. We shall 
assume this independence in the sequel. 

Recall that a cumulative distribution function is a function φ from ℝ+ into [0, 1] 
verifying the following condition. 

( ) ( )1 2 1 2 1 2,φ φ φ φ φ φφ φ+∀ ∈ ≤  ≤ (1)

In practice, the cumulative distribution functions that are used are either parametric 
distributions such as the negative exponential distribution, or empirical distributions 
described by means of a set of points between which the value of the distribution is 
interpolated. Kaplan-Meier (1958) estimators are typical examples of empirical 
distributions. 

Figure 1 shows several parametric distributions that are widely used: a Dirac 
distribution Figure 1(a), a uniform distribution Figure 1(b), an exponential distribution 
Figure 1(c), and a Weibull distribution Figure 1(d). 

Figure 1 Some widely used distributions, (a) Dirac distribution (b) uniform distribution 
(c) exponential distribution (d) Weibull distribution

(a) (b)



Figure 1 Some widely used distributions, (a) Dirac distribution (b) uniform distribution 
(c) exponential distribution (d) Weibull distribution (continued)

(c) (d)

Dirac distributions correspond to deterministic delay distributions. All other delay 
distributions are stochastic. 

In our example, the transition ta represents the arrival of a client in the queue. The 
transition tb represents the beginning of the service of a client. Finally, the transition tc 
represents the completion of the service of a client. As a reasonable approximation, we 
can consider that they do not depend on the state of the system, nor on the current time. 
In the sequel, we shall assume that the delay δa obeys an exponential distribution, that the 
delay δb is null (the client is served as soon as possible), and finally that the delay δc 
obeys a uniform distribution between two bounds. 

2.4 Semantics 

Let M: <S, T, s0> be a stochastic discrete event system. M encodes implicitly a set of 
possible executions. 

If we forget about delays, i.e., if we consider non-timed executions, the set of possible 
executions is the smallest set such that: 

• s0 is an (empty) execution.

• If 
11

0 1 1, 1,
ntt

nσ s s s n
−

−= → → ≥  is an execution, then so is ,
nt

nσ s→  where sn ∈ S and 

:
nδ

n n nt g a T→ ∈  under the conditions that tn verifies condition 1 and sn verifies 
condition 2 given below. 

Condition 1 (Fired transitions are enabled): The transition :
nδ

n n nt g a→  fired at step n 
was enabled at step n − 1: 

( )1 1n ng s − =  

Condition 2 (Next state calculation): The state sn at step n is obtained from the state sn−1 

at step n – 1 by applying the action of the fired transition : :
nδ

n n nt g a→  

( )1n n ns a s −=  



A timed execution of M is a non-timed execution of M with additional constraints due to 
delays. To define formally timed executions, we need to introduce the notion of schedule. 

A schedule φ of M is a function from transitions of T to ℝ+ ∪ {∞} that associates a 
firing date with each transition t of T such that: 

• φ(t) ∈ ℝ+ if t is enabled in the current state.

• φ(t) = ∞ otherwise.

The set of timed executions of M is the smallest set such that:

• <s0, 0, φ0> is a timed execution, namely the empty execution with the initial schedule
φ0 verifying the conditions 3 and 4 given below.

• If 
11

0 0 1 1 1 1 1 1,0, , , , , , 1,
ntt

n n nσ s φ s d φ s d φ n
−

− − −= → → ≥ is a timed execution, then

so is , , ,
nt

n n nσ s d φ→  where :
nδ

n n nt g a T→ ∈  verifies condition 1, sn ∈ S verifies 
condition 2, dn = φn–1(tn) is the date of the step n, and φn is a schedule verifying 
conditions 3 to 6 given below. 

Condition 3 (scheduled transitions): The transition t is scheduled at step n ≥ 0 if and only 

if it is enabled, i.e., : :
δ

t g a T∀ → ∈  

( )
( )

1 ( )
0 ( )

n n

n n

g s φ t
g s φ t

+=  ∈
=  = ∞



A consequence of condition 3 is that if a transition t that was scheduled at step n ≥ 0 is 
not enabled anymore at step n + 1, then it is ‘de-scheduled’, i.e., φn+1(t) = ∞. 

Condition 4 (newly enabled transitions): If the transition t gets enabled at step n ≥ 0, then 

it is scheduled, i.e., : :
δ

t g a T∀ → ∈  

( ) ( )
( )

1 0 1 ( ) ( )
[0,1] . . ( ) , ( )

n n n n n

n n n

g s g s φ t d δ t
z s t δ t δ s φ z

− = ∧ =  = +
∧ ∃ ∈ =

Condition 4 applies also: 

• To the initial state, i.e., with n = 0 and by posing g(s–1) = 0;

• To the transition tn (even though g(sn–1) = 1).

Condition 5 (earliest transitions firing): The transition tn fired at step n ≥ 1 is one of 
those with the earliest firing dates at step n – 1, i.e., ∀ t ∈ T: 

( )1 1( )n n n nd φ t φ t− −= ≤

Condition 6 (previously enabled transitions): Finally, if the transition t ≠ tn was enabled 
at step n – 1 and is still enabled at step n, n ≥ 1, then its schedule stays the same, i.e., 

: , :
δ

nt g a T t t∀ → ∈ ≠  

( ) ( )1 11 1 ( ) ( )n n n ng s g s φ t φ t− −= ∧ =  =



As an illustration consider again our queuing example. 
Initially, there is no client in the queue (and indeed no client served), so q0 = 0 and 

s0 = 0. In this state, only the transition ta is enabled. A delay δ0(ta) is thus calculated (i.e., 
drawn at random according to the delay of ta), e.g., δ0(ta) = 3. The firing date φ0(ta) of ta is 
defined as φ0(ta) = d0 + δ0(ta) = 3 (condition 4). Moreover, φ0(tb) = φ0(tc) = ∞. 

As ta is the only enabled transition at step 0, the first event that occurs in the system is 
the firing of this transition (t1 = ta), at the date d1 = φ0(ta) = 3. The state at step 1 is thus 
aa((q0, s0)) = (q1, s1) = (1, 0) (condition 2). 

In this state, both transitions ta and tb are enabled. A new delay is thus calculated for 
the transition ta, e.g., δ1(ta) = 4, and the delay δ1(tb) = 0 is calculated for the transition tb as 
this transition is deterministic and immediate. We have thus φ1(ta) = d1 + δ1(ta) = 7 and 
φ1(tb) = d1 + δ1(tb) = 3. Indeed, φ1(tc) = ∞. 

At this point, both ta and tb are enabled, but due to the condition 5, only tb can be 
fired, as φ1(tb) = 3 < φ1(ta) = 7. This illustrates the fact that some non-timed executions do 
not correspond to any timed executions. 

We have thus t2 = tb, d2 = φ1(tb) = 3, q2 = 0 and s2 = 1. In this state, both transitions ta 
and tc are enabled. As ta was already enabled in state (q1, s1), its firing date remains 
unchanged (condition 6), i.e., φ2(ta) = φ1(ta). The transition tc was not enabled in state 
(q1, s1), so a new delay δ2(tc) is calculated for this transition, e.g., δ2(tc) = 2, and its firing 
date is set to φ2(tc) = d2 + δ2(tc) = 5. 

Applying condition 5, we see that as φ2(tc) = 5 < φ2(ta) = 7, tc must be fired at step 3. 
And so on. 
It is worth noticing that the semantics of stochastic discrete event systems is fully 

deterministic, except for the calculation of delays and the choice of the transition to fire 
when several transitions are enabled at the same time. 

2.5 Interpretation in terms of timed automata 

Stochastic discrete event systems can be re-interpreted in terms of (stochastic) timed 
automata. 

The idea consists in associating a clock c with each transition : .
δ

t g a T→ ∈  c is reset 
when t gets logically enabled at step n ≥ 0. The guard g is extended into g′: g ˄ c = 
φn(t), where φn(t) is calculated as in condition 4. This makes the transition t enabled 
exactly at the date φn(t). 

In other words, stochastic discrete event systems can be seen as stochastic timed 
automata in which clocks are implicitly defined. The latter are thus strictly more 
expressive than the former. However, this gain in expressiveness comes with a significant 
price in terms of practical difficulty to design, to validate and to maintain models. This is 
probably the reason why timed automata remain, as of today, mostly used in academia, 
conversely to discrete event systems that are widely used in industry. 

2.6 Stochastic simulations 

Stochastic discrete event systems are in general assessed by means of Monte-Carlo 
simulations. The idea is fairly simple: one performs a large number of executions, 
drawing at pseudo-random delays of stochastic transitions. Executions are stepwisely 
expanded until a certain mission time is reached. Along each execution, the value of 



some indicators (random variables) are calculated. Then, one performs statistics on these 
values, over the different executions. 

The indicators that may be calculated belong to three categories. 
First, indicators regarding transitions (e.g., the number of transitions fired during the 

execution, the number of times a given transition has been fired during the execution, or 
the first date at which a given transition has been fired during the execution). 

Second, indicators relying on predicates over states. A predicate over states is a 
Boolean function over states (e.g., the first date at which a state satisfying the predicate 
has been reached during the execution, or the number of times a state satisfying the 
predicate has been reached during the execution). 

Third, indicators relying on reward over states. A reward over states is a real-valued 
function over states (e.g., the minimum, maximum or mean value the reward takes during 
the execution). 

The above list is indeed non-exhaustive, although it covers most of the needs. It can 
be extended at will. 

In our queuing example, we may be interested in: 

• The number of times the transition ta is fired, which gives an indicator on the number
of clients who joined the queue.

• The number of times the transition tc is fired, which gives an indicator on the number
of clients who have been served.

• The maximum and mean values of the reward q, which gives an indicator on the
maximum and mean numbers of waiting clients.

• The mean value of the reward that takes the value 1 when s = 0 and the value 0
otherwise, which gives an indicator on the time the operator at the counter remains
idle.

3 Abstract semantics 

3.1 Principle 

Let M: <S, T, s0> be a stochastic discrete event system and let 
1

0 0 0, ,
t

σ s d φ= →

, , , 1,
nt

n n ns d φ n→ ≥  be a timed execution of M. 
By conditions 3–6, for each firing date dj, j ≥ n, it exists a step i, 0 ≤ i < j, such that 

the transition tj fired at step j has been scheduled at step i, i.e. 

( ) ( )j i j i i jd φ t d δ t= = + (2)

This property can be graphically illustrated by timelines. Figure 2 shows the timeline 
describing a timed execution of our queuing system. 



 

Figure 2 A timeline describing an execution of the queuing system 

This timed execution is made of the following steps. 

0 Initially, i.e., at date d0 = 0, there is no client in the queue and no client served. The 
arrival of a first client (transition ta) is scheduled at date φ0(ta) = d0 + δ0(ta). 

1 At date d1 = φ0(ta), the first client arrives in the queue. A second client arrival is 
scheduled at date φ1(ta) = d1 + δ1(ta) and the beginning of the service of the first 
client is scheduled at date φ1(tb) = d1 + δ1(tb). 

2 At date d2 = φ1(tb), the first client starts to be served. The completion of the service 
of the first client is scheduled at date φ2(tc) = d2 + δ2(tc). 

3 At date d3 = φ2(tc), the service of the first client is completed. 

4 At date d4 = φ1(ta), the second client arrives in the queue. The start of the service of 
the second client is scheduled at date φ4(tb) = d4 + δ4(tb). Moreover, the arrival of a 
third client is scheduled at date φ4(ta) = d4 + δ4(ta). 

5 At date d5 = φ4(tb), the second client starts to be served. The completion of the 
service of the second client is scheduled at date φ5(tc) = d5 + δ5(tc). 

In Figure 2, we represent stochastic transitions (ta and tc) by thick arrows and 
deterministic ones (tb) by thin arrows. Moreover, transitions scheduled but not fired yet 
are represented with dashed arrows. We shall keep these conventions in the sequel. 

If we consider the di’s, the φi(t)’s and the δi(t)’s as real-valued variables, each 
execution generates three sets of constraints: 

• The equalities φi(t) = di + δi(t) which reflect the dates at which the transitions are
scheduled and fired. The difference between these two dates being the delay
calculated for the transition.

• The equalities dj = φi(tj) that indicates which transition is fired at step j.

• Finally, the inequalities di–1 ≤ di that reflect the chronological order of steps.

Table 1 summarises the constraints generated by the execution depicted in Figure 2.
The key idea behind the definition of an abstract semantics for stochastic discrete 

event systems is thus to step-wisely generate a system of inequations for each execution, 
rather than concrete values for the di’s, the φi(t)’s and the δi(t)’s. The abstract execution is 
valid if and only if the corresponding system of inequalities has a solution. This process 
starts by defining abstract delays. 



Table 1 Constraints generated by the execution pictured in Figure 2

Step Date Chronology Schedule
0 d0 = 0 φ0(ta) = d0 + δ0(ta) 
1 d1 = φ0(ta) d0 ≤ d1 φ1(ta) = d1 + δ1(ta), φ1(tb) = d1 + δ1(tb) 
2 d2 = φ1(tb) d1 ≤ d2 φ2(tc) = d2 + δ2(tc) 
3 d3 = φ2(tc) d2 ≤ d3

4 d4 = φ1(ta) d3 ≤ d4 φ4(ta) = d4 + δ4(ta), φ4(tb) = d4 + δ4(tb) 
5 d5 = φ4(tb) d4 ≤ d5 φ5(tc) = d5 + δ5(tc) 

3.2 Abstract delays 

If we do not put any constraint on the values of the delays, i.e., on variables δi(t)’s, the 
systems of linear inequalities are actually trivially satisfiable: it suffices to set δi(t) = 0 for 
all steps i and all transitions t. However, we do have information on the δi(t)’s as they are 
obtained by considering inverse functions of cumulative probability distributions. 

The second idea upon which the abstract semantics of stochastic discrete event 
systems relies, consists thus in abstracting possible values of delays δi(t) by means of 
intervals of + ∪ {∞}. Table 2 provides the intervals associated with widely used built-in 
delay functions as well as the corresponding scheduling constraints. 
Table 2 Intervals associated with delay functions 

Distribution Variation interval Scheduling constraints
Dirac(d) [d, d] φi(t) = di + d 
exponential(λ) ]0, +∞) φi(t) > di 
Weibull(α, β) ]0, +∞) φi(t) > di 
uniform(l, h) ]l, h[ φi(t) > di + l, φi(t) < di + h 

In other words, delays can be split into two categories: 

• Deterministic delays, represented by Dirac distributions, which can take a single
value d, d ≥ 0.

• Stochastic delays, represented by all other distributions, which can take any value in
an interval ]l, h[, 0 < l < h ≤ ∞, where l and h depend on the distribution.

There is however a subtlety that prevents to implement our two ideas directly. It is 
explained in the next Section 3.3. 

3.3 Causality chains and chronology constraints 

A stochastic transition can never be fired at exactly the same time as another transition. 
The reason is a well-known argument of the Kolmogorov axiomatic of probability theory 
(Kolmogorov, 1933): the Lebesgue’s measure of the probability of such an event is null. 
This has to be reflected in systems of inequalities. Namely, there are cases in which 
inequalities di–1 ≤ di, which reflect the chronology, must be strict: the date of the firing of 
the transition ti can be as close as one wants to the date of the firing of the transition ti–1, 
but not exactly the same. 



Figure 3 shows the timelines of nearly identical executions of some stochastic 
discrete event systems, involving both deterministic and stochastic transitions. The first 
execution, pictured in Figure 3(a), starts with a stochastic transition A, then continues 
with deterministic transitions b, c, d and e. The second execution, pictured in Figure 3(b), 
is similar to the first one, except that now B is a stochastic transition. In the first 
execution, steps 4 and 5 can take place at the same date, i.e., d4 ≤ d5, providing that d1(b) 
+ d2(d) = d1(c) + d3(e); even though the execution starts with a stochastic transition. In the
second execution, steps 4 and 5 cannot take place at the same date, i.e., d4 < d5, even
though both transitions d and e are deterministic. The reason is that the transition B
prevents the two dates to be equal.

Figure 3 Timelines of two executions involving both deterministic and stochastic transitions,  
(a) execution 1 (b) execution 2

(a) 

(b) 

To decide about the chronology constraint between dates di–1 and di, we need to introduce 
the notion of causality chain. Let M: <S, T> be a stochastic discrete event system and let 

1

0 0 0, , , , , 1,
ntt

n n nσ s d φ s d φ n= → → ≥  be a timed execution of M. The causality chain 
of the transition tn is the sub-sequence of transitions of σ such that: 
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By construction, the causality chain of the transition tn exists and is unique. 
In the execution pictured in Figure 3(a), the causality chains of transitions d and e are 

as follows: 

0 0 0 1 1 0 1 2 2 1 2 4 4 2 4, , , ( ), , ( ), , ( ),
A b d

s d φ s d φ A φ s d φ b φ s d φ d φ→ = → = → =



0 0 0 1 1 0 1 3 3 1 3 5 5 3 5, , , ( ), , ( ), , ( ),
A c e

s d φ s d φ A φ s d φ c φ s d φ e φ→ = → = → =

Now, any two causality chains σ1 and σ2 extracted from an execution σ have a largest 
common prefix, i.e., can be written as σ1 = πτ1 and σ2 = πτ2, where the suffixes τ1 and τ2 
share no transition. 

In the above example, the largest common prefix of causality chains of d and e is 
made of the transition A, while their respective suffixes consist of the transitions b, d in 
one case and c and e in the other case. 

The rule to decide whether the chronology constraint between dates di–1 and di is strict 
or not can be stated as follow. Let σi–1 = πτi–1 and σi = πτi be the causality chains of the 
transitions ti–1 and ti, where π is their largest common prefix. Then, the chronology 
inequality between di–1 and di is strict if and only if at least one of the suffix sequences 
τi–1 and τi involves a stochastic transition. 

In our example, the chronology inequality between d4 and d5 is thus not strict in the 
first execution (as transitions b, c, d and e are all deterministic), and strict in the second 
one (as the transition B is stochastic). 

Now, we can define formally the abstract semantics of stochastic discrete event 
systems. 

3.4 Formal definition 

Let M: <S, T, s0> be a stochastic discrete event system. M encodes implicitly a set of 
possible abstract executions. The set of abstract executions of M is the smallest set such 
that: 

• <s0, Γ0> is an abstract execution, namely the empty execution starting in the initial
state s0 ∈ S with the initial system of inequalities Γ0 containing:
1 the equality d0 = 0
2 the scheduling constraints defined by the condition 7 given below.

• If 
11

0 0 1 1 1 1,Γ ,Γ ,Γ , 1,
ntt

n nσ s s s n
−

− −= → → ≥  is an abstract execution, then so is

,Γ ,
nt

n nσ s→  where :
nδ

n n nt g a T→ ∈  verifies condition 1, sn ∈ S verifies condition 2, 
and Γn is obtained by adding to Γn–1 the constraints: 
1 dn = φi(tn), where i is the step at which tn has been scheduled 
2 dn–1 < dn or dn–1 ≤ dn according to the rule on causality chains defined in the 

previous section. 
3 the scheduling constraints defined by the condition 7 given below. 

Condition 7 (Abstract Scheduling) If the transition :
δ

t g a→  gets enabled at step n ≥ 0, 
then Γn contains the constraints: 

• φn(t) = dn + d, if δ(sn) is a deterministic delay d.

• φn(t) > dn + l and φn(t) < dn + h, if δ(sn) is a stochastic delay with a lower bound l and
an upper bound h.



An abstract execution 
2

0 0 1 1,Γ ,Γ ,Γ , 0,
ntt

n ns s s n→ → ≥  is valid if all the Γi are 
satisfiable, for 1 .i n=   

Note that the satisfiability of Γn implies, by construction, the satisfiability of Γ0, Γ1, 
…, Γn–1. 

3.5 Bisimulation 

The key mathematical property in our case is that abstract and concrete executions are 
bisimilar: any concrete execution can be simulated by an abstract execution and 
reciprocally any abstract execution corresponds to at least one concrete execution. 

The following two theorems capture this property. 

Theorem 1. Let M: <S, T, s0> be a stochastic discrete event system and let 
1

0 0 0 1 1 1, , , , , , , 0,
ntt

n n nσ s d φ s d φ s d φ n= → → ≥  be a timed execution of M. 

Then, the abstract execution 
1

0 0 1 1,Γ ,Γ ,Γ
ntt

n ns s s→ →  built as described above 
is valid. 

Proof. By construction. 

Theorem 2. Let M: <S, T, s0> be a stochastic discrete event system and let 
1

0 0 1 1,Γ ,Γ ,Γ , 0,
ntt

n ns s s n→ → ≥  be a valid abstract execution of M. 

Then, there exists at least one timed execution 
1

0 0 0 1 1 1, , , ,
t

σ s d φ s d φ= → 

, ,
nt

n n ns d φ→ of M. 

Proof. If the abstract execution is valid, then by definition, Γn is satisfiable. Let σn be a 
solution of Γn, i.e., a valuation of each of variables that satisfies all constraints of Γn. 
Using σn, we can then define concrete delays and firing dates. As concrete delays and 
firing dates defined in this way verify by construction conditions 3–6, we obtain a valid 
concrete execution. 

The two above theorems have important practical consequences: it is possible to 
verify properties of infinitely many concrete executions by means of finitely many 
abstract executions. Furthermore some applications will be discussed in Section 4. But 
before entering into this discussion, we need to show that abstract executions can be 
implemented efficiently. 

3.6 Constraint solving algorithm 

Let M: <S, T, s0> be a stochastic discrete event system and let 
1

0 0 1 1: ,Γ ,Γ
t

σ s s→   

,Γ , 0,
nt

n ns n→ ≥  be an abstract execution of M. σ is constructed step by step, so we can 
assume that the validity of all prefix executions of σ has been checked. It remains thus to 
check the satisfiability of Γn, or more precisely to check that the constraints introduced at 
step n are compatible with the constraints of Γn–1. 



A first remark here is that variables dj’s, j = 1… n, are essentially renaming of 
variables φj(ti), for some 0 ≤ i < j. We can thus eliminate them when building the Γi’s. 
Actually, we introduced them in the above developments only for the sake of clarity of 
the presentation. 

We are thus left with three types of equations: 

• Equations of the form φi–1(t) < φi(t′) or φi–1(t) ≤ φi(t′) describing chronology
constraints. We can normalise these equations respectively as, φi(t′) > φi–1(t) + 0 and
φi(t′) ≥ φi–1(t) + 0.

• Equations of the form φj(t) = φi(t′) + d, j > i describing the abstract scheduling of
deterministic transitions. We can normalise these equations by introducing two
inequalities: φj(t) ≤ φi(t′) + d and φj(t) ≥ φi(t′) + d.

• Equations of the form φj(t) > φi(t′) + l, and φj(t) < φi(t′) + h, j > i describing the
abstract scheduling of stochastic transitions.

Eventually, we end up with inequalities of the form: 

• Yj < Xi + c or Yj ≤ Xi + c, j > i

• Yj > Xi + c or Yj ≥ Xi + c, j > i.

The idea is thus to perform the Fourier-Motzkin elimination backward, i.e., starting from 
the φn(t)’s: 

• from Zk < Yj + d and Yj < Xi + c, one can deduces Zk < Xi + d + c

• from Zk ≤ Yj + d and Yj ≤ Xi + c, one can deduces Zk ≤ Xi + d + c

• and so on.

Three important remarks here.
First, the form of inequalities produced by the Fourier-Motzkin elimination is the 

same as the form of the original inequalities. This makes it possible to optimise data 
structures and operations on system of inequalities. 

Second, if the system contains two inequalities Yj < Xi + c and Yj < Xi + d, then one is 
necessarily useless: the first one if c > d, the second otherwise. This applies indeed for all 
pairs of inequalities going in the same direction, e.g., < and ≤, ≤ and ≤, etc. Again, this 
makes it possible to optimise data structures and operations on system of inequalities. 

In particular, AVL trees or similar structures can be used to store inequalities in order 
to be able to retrieve efficiently inequalities involving any two variables (in (log m), 
where m is the number of pairs of variables involved in inequalities of the system). 

Third, the system is unsatisfiable if and only if, at some point of the Fourier-Motzkin 
process, the system contains two inequalities Yj < Xi + c and Yj > Xi + d such that c ≤ d. 
Indeed, this applies for all pairs of inequalities (strict or not), except in the case Yj ≤ Xi + c 
and Yj ≥ Xi + c. 

This means that to check the satisfiability of Γn, given that Γn–1 is satisfiable, it 
suffices to apply the Fourier-Motzkin elimination keeping only variables introduced at 
step n as left members of inequalities. 

In our implementation, we used a few other optimisations, but the description of 
which goes beyond the scope of this article. 



As the result of the above developments, the greedy algorithm that checks whether a 
given transition can be fired at step n is very efficient, i.e., of nearly constant complexity 
in all practical cases we have dealt with. 

4 Application to AltaRica 3.0 models 

4.1 The AltaRica 3.0 modelling language 

AltaRica 3.0 is an object-oriented modelling language dedicated to probabilistic risk and 
safety analyses of complex technical systems (Batteux et al., 2019). It combines guarded 
transition systems (Rauzy, 2008; Batteux et al., 2017) with the structuring paradigm 
S2ML (Batteux et al., 2018). Guarded transition systems are a specific implementation of 
stochastic discrete event systems, as we defined them in this article. S2ML, which stands 
for system structure modelling language, gathers, in a unified way, structuring constructs 
stemmed from object-oriented programming and prototype-oriented programming. 

Several assessment tools have been developed for AltaRica 3.0, including a stepwise 
simulator, compilers to fault trees and Markov chains, and a stochastic simulator. These 
tools are provided with the freely available OpenAltaRica Platform. The stepwise 
simulator makes it possible to perform interactive simulations of AltaRica 3.0 models. It 
proves to be of great interest for stakeholders to discuss the behaviours of the systems 
under study. It is also very useful to debug and to validate models, as we shall see in this 
section. The original version of the stepwise simulator did not take into account delays 
associated to transitions. As a consequence, it was possible to fire sequences of 
transitions that were impossible according to the timed semantics. 

The new version of this simulator, which implements the abstract semantics presented 
in the previous sections, makes it fully compliant with the timed semantics of AltaRica 
3.0. Furthermore, results coming from both stochastic and stepwise simulators can be 
compared: any simulation played in the stepwise simulator could have been generated by 
the stochastic simulator, and vice versa. 

4.2 Illustrative example 

As an illustration, we shall consider the simplified power-supply system of a farm of 
servers pictured in Figure 4. 

Figure 4 A power supply system 



The power is delivered to the busbar via three redundant channels. The main supply 
channel consists of the grid G and a circuit breaker CB. The two backup supply channels 
consist of a battery (actually a group of batteries) Bi, i = 1, 2, and a circuit breaker CBi, 
i = 1, 2. All these components may fail. 

In the initial state (and more generally when the main supply is working), CB is 
closed, while CB1 and CB2 are open. If the main supply is lost, the network is configured 
in order to use the first backup supply, i.e., CB1 is closed, while CB and CB2 are opened. 
If the first backup supply is also lost, the network is configured in order to use the second 
backup supply, i.e., CB2 is closed, while CB and CB1 are opened. Network 
reconfigurations are assumed to be instantaneous, i.e., the corresponding transitions are 
associated with Dirac(0) delays. 

The loss of the grid is assumed to be exponentially distributed, with a failure rate 
λG = 5.0 × 10–4 h–1. Moreover, it is assumed that it is recovered after at most 12 hours, 
i.e., to be uniformly distributed between αG = 0h and βG = 12h. The guarded transition
system representing the behaviour of the grid is pictured in Figure 5(a).

The batteries are normally in the standby mode. They may fail in this mode. This 
failure is assumed to be dormant, i.e., to remain unnoticed until the battery is actually 
used, and exponentially distributed with a failure rate λB = 2.5 × 10–5 h–1. In reality, 
periodic tests make it possible to detect these failures. However, we shall not include 
maintenance policies in the model presented here, in order not to overload it. When the 
battery is in use, it discharges. The time to a full discharge of the battery is assumed to be 
uniformly distributed between αB = 8h and βB = 10h. The guarded transition system 
representing the behaviour of batteries is pictured in Figure 5(b). As for timeline, 
deterministic (here immediate) transitions are represented with thin arrows, while 
stochastic transitions are represented with thick ones. Transitions can be guarded not only 
by their source state, here encoded by the variable _state, but also by some other 
variables, here the Boolean variable active that indicates whether the battery is 
currently required to provide power to the busbar. 

Finally, the circuit breakers may be either free to open and to close, or stuck in one of 
these positions. This failure is again assumed to be dormant and exponentially 
distributed, with a failure rate λCB = 1.0 × 10–6 h–1. As we do not take into account 
maintenance policies here, circuit breakers are assumed to be non-repairable. The 
guarded transition system representing the behaviour of circuit breakers is pictured in 
Figure 5(c). 

Table 3 summarises the probability distributions associated with failures and repairs. 
Table 3 Reliability parameters of the power supply system 

Component Transition Distribution Parameters
Grid Failure Exponential Failure rate λG = 5.0 × 10–4 h–1 

Repair Uniform Lower bound αG = 0 h, 
upper bound βG = 12 h 

Batteries Dormant failure Exponential Failure rate λB = 2.5 × 10–5 h–1 
Discharge Uniform Lower bound αB = 8 h, 

upper bound βB = 10 h 
Circuit breakers Dormant failure Exponential Failure rate λCB = 1.0 × 10–6 h–1 



4.3 AltaRica model 

The first step in designing an AltaRica model consists usually in designing classes that 
encode the behaviours of the components of the system under study. Alternatively, these 
classes can be picked-up in libraries of on-the-shelf reusable modelling components. 

To describe (from scratch) our example, we have thus to design classes for the grid, 
the batteries and the circuit breakers. These classes are direct encoding of the guarded 
transition systems pictured in Figure 5. 

Figure 5 State automata representing components of the power supply system, (a) grid (b) battery 
(c) circuit breaker

(a) 

(b) 

(c) 

For instance, Figure 6 shows the code for the guarded transition system pictured in 
Figure 5(b) that represents the behaviour of batteries. This class involves one state 
variable, _state, and two Boolean flow variables, active and outPower. The 
variable outPower represents whether the battery actually provides power. The class 



Battery involves also four transitions, labelled respectively by events start, stop, 
dormantFailure and discharge. Probability distributions associated with these 
events are declared with parameters, to be able to change easily their values when the 
class is instantiated. In AltaRica 3.0, the values of state variables are modified via 
transitions, while the values of flow variables, that depend functionally on the former, are 
modified via assertions. The assertions are executed after each transition firing, in order 
to update the values of flow variables. In the code given in Figure 6, the assertion defines 
the value of outPower. The value of active is set up outside the component. 

Figure 6 AltaRica 3.0 code for the class representing batteries 

Figure 7 AltaRica 3.0 code for the power supply system 



Once the behaviours of basic components described by means of classes, it is possible to 
describe the system under study as a whole, in a top-down way. AltaRica 3.0 provides the 
notion of block—prototypes in the sense of object-oriented theory—to do so. The 
different components of the system are then connected via assertions (or 
synchronisations). The reader interested in more details can refer to authors’ article 
presenting AltaRica 3.0 (Batteux et al., 2019). 

Figure 7 shows the code for the power supply system. 
Models such as the one presented above are usually assessed by means of 

Monte-Carlo simulations: their highly dynamic nature prevents to assess them via the 
compilation into combinatorial models such as fault trees. Moreover, it is not possible to 
compile them into Markov chains, as they mix deterministic and stochastic transitions, 
the latter not always obeying Markovian hypotheses. 

4.4 A tricky scenario 

As just pointed out, the AltaRica 3.0 model presented in the previous section makes 
possible a fine grain analysis of the safety and the availability of the power supply 
system. In the actual model, maintenance policies are also taken into account, making the 
analysis even more accurate. 

The expressive power of AltaRica 3.0 comes, however, with a price (when used 
fully): models must be carefully checked, so to verify that they actually encode the 
expected behaviour of the system under study. The stepwise simulator plays a very 
important role to do so. We shall now illustrate our point by unwinding a tricky scenario. 

In the initial state, six stochastic transitions are enabled (all exponentially distributed): 

• MainSupply.G.failure, MainSupply.CB.dormantFailure

• BackupSupply1.B.dormantFailure,
BackupSupply1.CB.dormantFailure

• BackupSupply2.B.dormantFailure,
BackupSupply2.CB.dormantFailure.

In the full model, a few additional deterministic transitions representing periodic 
maintenance operations come in addition of the above ones. 

If MainSupply.G.failure is fired, then the whole network needs to be 
reconfigured. The guards of the other failure transitions remain satisfied, but these 
transitions cannot be fired because of the three immediate reconfiguration transitions that 
are newly enabled: 

• MainSupply.CB.Open

• BackupSupply1.B.start, BackupSupply1.CB.close.

These immediate transitions must thus be fired prior to the firing of any other transition.
In the previous version of the stepwise simulator (that did not take into account the 

timed semantics), it was however possible for the analyst to fire both failure and 
reconfiguration transitions, making the debugging task tedious, to say the least. 

After the firing of these immediate transitions, the busbar is powered by the first 
backup train. The following transitions are enabled: 



• MainSupply.G.repair, MainSupply.CB.dormantFailure

• BackupSupply1.B.discharge,
BackupSupply1.CB.dormantFailure

• BackupSupply2.B.dormantFailure,
BackupSupply2.CB.dormantFailure.

If the transition BackupSupply1.B.discharge is fired, then three immediate 
reconfiguration transitions become enabled: 

• BackupSupply1.CB.open

• BackupSupply2.B.start, BackupSupply2.CB2.close.

As previously, these immediate transitions must be fired prior to the firing of any other 
transition. After the firing of these immediate transitions, the busbar is powered by the 
second backup train. 

Now, five transitions have their guards satisfied: 

• MainSupply.G.repair, MainSupply.CB.dormantFailure

• BackupSupply1.CB.dormantFailure

• BackupSupply2.B.discharge,
BackupSupply2.CB.dormantFailure.

However, the transition BackupSupply2.B.discharge is not enabled. The reason 
is that the battery of the second backup supply has been activated after the discharge of 
the battery of the first backup supply. According to our reliability parameters, 
discharging both batteries takes at least 8 + 8 = 16 hours. But the transition 
MainSupply.G.repair, which has been scheduled at the same date as the activation 
of the battery of the first supply, cannot take more than 12 hours. It follows that 
MainSupply.G.repair must be fired before BackupSupply2.B.discharge. 

Table 4 gives a possible concrete execution corresponding to our scenario. 
Table 4 A possible concrete execution of the power supply system 

Step Transition Firing date
1 MainSupply.G.failure 0 + 1234.5 = 1234.5 
2 MainSupply.CB.Open 1234.5 + 0 = 1234.5 
3 BackupSupply1.B.start 1234.5 + 0 = 1234.5 
4 BackupSupply1.CB.close 1234.5 + 0 = 1234.5 
5 BackupSupply1.B.discharge 1234.5 + 9.2 = 1243.7 
6 BackupSupply1.CB.open 1243.7 + 0 = 1243.7 
7 BackupSupply2.B.start 1234.5 + 0 = 1234.5 
8 BackupSupply2.CB.close 1243.7 + 0 = 1243.7 
9 MainSupply.G.repair 1234.5 + 11.6 = 1246.1 

Figure 8 shows a timeline representing this execution (for the sake of simplicity, we did 
not represent dormant failures of circuit breakers). 



 

Figure 8 Timeline of the execution of the power supply system 

Note that in case the transition BackupSupply1.CB.dormantFailure is fired 
before MainSupply.G.failure, the scenario changes completely. Now, the first 
backup supply cannot be activated. Consequently, the second one is. Moreover, the 
discharge of its battery can occur before the grid is repaired. 

On a small example, like the one presented here, it is still possible to do some book-
keeping of delays by hand. But when the model gets large, this is clearly impossible. This 
is the reason why, the introduction of the abstract semantics is of tremendous practical 
interest. 

5 Conclusions 

In this article, we introduced the notion of abstract execution of stochastic discrete event 
systems—taking a very general definition of the latter—that consists in abstracting 
(stochastic) delays associated with transitions into systems of linear inequalities. We 
showed that abstract and concrete executions are bisimilar: any concrete execution can be 
simulated by an abstract execution and reciprocally any abstract execution corresponds to 
at least one concrete execution. We introduced also the concept of timeline which proves 
to be very useful to reason on timed executions. Finally, we showed how to solve 
efficiently the generated systems of linear inequalities. 

We illustrated the proposed approach via its implementation in the stepwise simulator 
of AltaRica 3.0. This latter tool makes it possible to debug and to validate complex 
behavioural models. The notion of abstract execution reconciles stochastic and stepwise 
simulations of AltaRica 3.0 models. We showed its practical interest by looking at tricky 
scenarios of an industrial case study mixing stochastic and deterministic transitions. 

The introduction of abstract executions, already interesting on its own, paves the way 
to the design of efficient model-checking algorithms. In particular, we designed the 
prototype of a generator of full fledged sequences of events leading to a failure state, 
based on this abstract semantics. We plan to enhance this prototype, which is already 
available within the OpenAltaRica Platform, with model-checking functionalities. 
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