
Abstract executions of stochastic discrete
event systems

Michel Batteux
IRT SystemX,
2 Boulevard Thomas Gobert,
91120 Palaiseau, France
Email: michel.batteux@irt-systemx.fr

Tatiana Prosvirnova*
ONERA/DTIS,
Université de Toulouse,
F-31055 Toulouse, France
Email: tatiana.prosvirnova@onera.fr
*Corresponding author

Antoine Rauzy
Norwegian University of Science and Technology,
Department of Mechanical and Industrial Engineering,
Richard Birkelands vei 2B (Office P307),
7491 Trondheim, Norway
Email: antoine.rauzy@ntnu.no

Abstract: Stochastic discrete event systems play a steadily increasing role in
reliability engineering and beyond in systems engineering. Designing stochastic
discrete event systems presents however a well-known difficulty: models are
hard to debug and to validate because of the existence of infinitely many
possible executions, itself due to stochastic delays, which are possibly
intertwined with deterministic ones. In this article, revisiting ideas introduced
in the framework of model-checking of timed and hybrid systems, we show
that it is possible to abstract the time in stochastic discrete event systems. More
specifically, we show that schedules of transitions can be abstracted into
systems of linear inequalities and that abstract and concrete executions are
bisimilar. The result presented in this article represents thus a very important
step forward in quality assurance of stochastic models of complex technical
systems. We illustrate the potential of the proposed approach by means of
AltaRica 3.0 models.

Keywords: stochastic discrete event systems; timed and hybrid automata;
abstract intepretation; AltaRica 3.0.

Reference to this paper should be made as follows: Batteux, M.,
Prosvirnova, T. and Rauzy, A. (xxxx) ‘Abstract executions of stochastic
discrete event systems’, Int. J. Critical Computer-Based Systems, Vol. X,
No. Y, pp.xxx–xxx.

Biographical notes: Michel Batteux is currently a Research Engineer at the

M. Batteux et al.

Technological Research Institute SystemX, France. After a Master degree in
Mathematics and Computer Science at the Paris Diderot University, and a PhD
in Computer Science at the Paris-Sud University, he had several research
engineer positions in different academic or industrial research laboratories: the
Laboratory of Model Driven Engineering for Embedded Systems of CEA, the
Computer Science Laboratory of the Ecole Polytechnique, Thales Research and
Technology. His topics of interest are around the model-based design and
assessment of complex technical systems, with a special focus on the
performance assessment.

Tatiana Prosvirnova currently works as a Research Engineer at ONERA, the
French Aerospace Lab (Toulouse, France). She has a PhD in Computer
Science. She graduated from Ecole Polytechnique. She has MS of Science of
Ecole Polytechnique in Systems Engineering. She has been working as a
Software Developer at Dassault Systemes (the largest French software editor)
for three years. Her research interests are model based safety assessment,
systems engineering, formal methods, software development, system
architecture modelling and model synchronisation.

Antoine B. Rauzy is currently a Full Professor at Norwegian University of
Science and Technology (NTNU, Trondheim, Norway). He is also the Head of
the chair Blériot-Fabre, sponsored by the group SAFRAN, at CentraleSupélec,
Paris, France. During his career, he was a Researcher at French National
Centrer for Scientific Research, a CEO of the start-up company ARBoost
Technologies and the Director of the R&D Department on Systems
Engineering at Dassault Systemes. He works in the reliability engineering and
system safety field for more than 20 years. He extended his research topics to
systems engineering since about ten years. He published over 200 articles in
international conferences and journals. He developed state-of-the-art algorithms
and software for probabilistic safety analyses.

1 Introduction

Stochastic discrete event systems (Cassandras and Lafortune, 2008; Zimmermann, 2010)
play a steadily increasing role in reliability engineering and beyond in systems
engineering. They encompass a large class of modeling formalisms such as stochastic
Petri nets (Ajmone-Marsan et al., 1994) and stochastic automaton networks (Plateau and
Stewart, 2000) as well as high-level modelling languages such as AltaRica 3.0 (Batteux
et al., 2019). Their interest stands in their great expressive power that makes it possible to
represent complex behaviours.

Models designed within these formalisms can be assessed by means of various
techniques, including the compilation into lower level modelling formalisms such as fault
trees (Prosvirnova and Rauzy, 2015) or Markov chains (Brameret et al., 2015), as well as
Monte-Carlo simulation, the swiss-knife of behavioural modelling, see e.g., Zio (2013).
They are however hard to debug and to validate because of the infinite number of
possible executions, itself due to the infinitely many possible choices of firing dates for
transitions. This is probably the main limiting factor to their full scale deployment,
especially in the context of performance assessment of life-critical systems. Most of the
analysts have experienced this frustration of waiting long minutes, if not hours, for the

results of a Monte-Carlo simulation to discover eventually that these results are
meaningless because of a mistake somewhere in the model.

In this article, revisiting ideas introduced in the framework of model-checking of
timed and hybrid systems (Yi et al., 1994; Larsen et al., 1997), we show that it is possible
to abstract the time in stochastic discrete event systems. Namely, we define an abstraction
of transition schedules by means of systems of linear inequalities. These systems encode
the conditions for a transition to be enabled at a given step of an execution: the transition
is enabled if and only if the corresponding system has a solution.

We show that abstract and concrete executions are bisimilar in the following sense
[see e.g., Milner (1989) for a reference textbook on bisimulations]: any concrete
execution can be simulated by a unique abstract execution and reciprocally any abstract
execution corresponds to at least one concrete execution. This property is of a great
interest because abstract models can be verified with techniques developed for non-timed
discrete event systems, including model-checking techniques (Clarke et al., 2000; Baierm
and Katoen, 2008).

Even without entering into the model-checking framework, this property makes it
possible to perform abstract interactive simulations, therefore alleviating considerably
debugging and validation tasks. Interactive simulators allow the analyst to go forth and
back, step by step, in sequences of events, enabling in this way to track modelling errors,
unexpected behaviours and so on. With that respect, they play a similar role as debuggers
like GDB or DDD (Matloff and Salzman, 2008) do for C++ programs. Without the
technique we introduce here, the designers of interactive simulators face a quite
unpleasant choice: either ignoring delays, which has the major drawback that some
non-timed executions have no timed counterpart, or ask the analyst to enter by hand the
delays associated with stochastic transitions, which is tedious and let the analyst
pondering which out of the infinitely many possible delays are the most suitable for his
purpose. The abstract semantics we introduce here solves this important issue. Although
it ‘only’ makes it possible to look for qualitative properties (as opposed to probabilistic
ones), it proves to be extremely useful to check various scenarios of interest for the
validation of the model, e.g., that firing a given sequence of events is actually possible
and ends up in a state with some expected properties.

The technique presented in this article enters into the general framework of Cousot’s
abstract interpretation (Cousot and Cousot, 1977). The problem at stake was to make it
work for the particular case of stochastic discrete event systems. Moreover, algorithmic
mechanisms implementing abstract executions had to be efficient, so to apply on-the-fly
model-checking techniques (Holzmann, 2003), which are probably the best suited in an
engineering context. Solving systems of linear inequalities requires in the general case
linear programming methods such as the simplex algorithm or more specifically the
Fourier-Motzkin elimination (Chvàtal, 1983; Schrijver, 1998). These methods are quite
complex to implement and their execution is resource consuming. However, as pointed
out by Yi et al. (1994), one can take advantage of the particular form of the inequalities
involved to design an efficient algorithm to check for the existence of solutions.

The framework presented in this article represents thus a very important step forward
in quality assurance of stochastic discrete event systems. We illustrate its potential by
means of AltaRica 3.0 models. To the best of authors’ knowledge, AltaRica Wizard, the
AltaRica 3.0 integrated modelling environment is the first one to benefit of the techniques
presented here. These techniques could however probably be implemented in other

modeling environments with related objectives, e.g., Figaro (Bouissou et al., 1991), GRIF
Workshop (Signoret and Leroy, 2021) or PRISM (Kwiatkowska et al., 2011).

The remainder of this article is organised as follows. Section 2 gives a formal
definition of stochastic discrete event systems and discusses their semantics. Section 3
introduces their abstract semantics in terms of systems of linear inequalities, shows
bisimulation theorems and explains how systems of linear inequalities can be solved
efficiently. Section 4 presents an application of this framework to AltaRica 3.0 models.
Finally, Section 5 concludes the article and gives some perspectives.

2 Stochastic discrete event systems

In this section, we propose a formal definition of stochastic discrete event systems. This
definition is strongly inspired from the notion of guarded transition systems (Rauzy,
2008), itself generalising formalisms like stochastic Petri nets (Ajmone-Marsan et al.,
1994).

2.1 Formal definition

A stochastic discrete event system is a triple <S, T, s0> where:

• S is a set of states. S may be finite or infinite.

• T is a finite set of transitions. Each transition t of T is a triple <g, δ, a> where:
1 g is a Boolean condition, i.e., a function from S to {0, 1} (representing

respectively false and true). g is called the guard of the transition. We say that
the transition t is enabled in the state s ∈ S if g(s) = 1.

2 δ is a function from S × ℝ+ into CDF−1, where ℝ+ denotes the set of
non-negative real numbers and CDF−1 denotes the set of inverse functions of
cumulative distribution functions. δ is called the delay distribution of the
transition. We shall explain in details this notion in Section 2.3.

3 a is a function from S to S. a is called the action of the transition. Assume that at
a given step i, the system is in the state si and the transition is enabled in that
state. Then, firing the transition is making the system change from state si to
state si + 1 = a(si).

• s0 ∈ S is the initial state of the stochastic discrete event system.

The above definition is quite liberal regarding the definition of states. They can be
virtually anything one wants, ranging from explicitly enumerated states to complex data
structures. It is easy to verify that formalisms such as stochastic Petri nets
(Ajmone-Marsan et al., 1994), stochastic automaton networks (Plateau and Stewart,
2000), guarded transitions systems (Rauzy, 2008), and queuing systems (Trivedi, 2001)
are special cases of stochastic discrete event systems as we defined them.

Note that it is often the case that the action of a transition involves only a small subset
of the variables or data structures representing the state. Firing the transition modifies
thus only these variables or data structures, the other remaining unchanged.

Note also that stochastic discrete event systems can be generated by compiling higher
level descriptions. This is the principle of the AltaRica 3.0 language developed by the

Batteux et al. (2019). AltaRica 3.0 results of the combination of guarded transition
systems with S2ML, a versatile and unified set of object-oriented and prototype-oriented
constructs to structure models (Batteux et al., 2018).

Both stochastic discrete event systems and timed and hybrid automata (Alur and Dill,
1994) define timed interpretations of state automata. In timed automata, state automata
are extended with a finite set of real-valued clocks. During an execution of a timed
automaton, all clock values increase at the same speed. Transitions of the automaton can
be guarded (enabled or disabled) by comparisons of clock values with integers, therefore
constraining its possible behaviours. Furthermore, clocks can be reset. The two classes of
models are thus quite close, even though they do not emphasise the same things:
stochastic behaviours for (stochastic) discrete event systems, time constraints in the
design of controllers of reactive systems for timed and hybrid automata. More
importantly, the objectives of these two classes of models are significantly different,
which leads to very different tooling. Moreover, stochastic discrete event models daily
used in industry tend to be much larger but in some sense simpler than timed and hybrid
automata models proposed in the literature, which are more academic. This said, the
technique we present in this article to abstract the semantics of discrete event systems is
close to the one introduced by Wang, Pettersson and Daniels to perform reachability
analyses in timed automaton (Yi et al., 1994). The latter is at the core of the model
checker UPPAAL (Larsen et al., 1997), which is probably one of the most mature
academic research tools in its domain.

2.2 Abstract syntax

It is convenient to give an abstract syntax to discrete event systems. In the sequel, we

shall denote a transition <g, δ, a> as ,
δ

g a→ using Boolean formulas to describe guards
and instructions (in pseudo-code) to describe actions.

As an illustration, assume that we want to represent the queue for a given service. The
state of this system can be described by a pair (q, s) of integer variables, where q
represents the number of clients in the queue, and s represents the number of clients
currently served.

The set S of possible states of the system is thus (theoretically) ℕ × ℕ, i.e., the set of
all possible pairs of integers. This set is indeed infinite. For practical reasons, we may
assume however that there are never more than 10 clients waiting and that only one client
is served at a time. In this case, S is reduced to product of integer ranges [0, 10] × [0, 1],
which is indeed finite.

The evolution of the system can be represented by means of three transitions:

: 10 1
aδ

at q q q< → = +

: 0 1 1, 1
bδ

bt q s q q s s> ∧ < → = − = +

: 0 1,
cδ

ct s s s> → = −

where the transition ta represents the arrival of a client in the queue, the transition tb
represents the beginning of the service of a client, and the transition tc represents the
completion of the service of a client.

The initial state is (0, 0) as there is initially no client in the service.

2.3 Delays

Let M: <S, T, s0> be a stochastic discrete event system. The delay distribution δ

associated with a transition :
δ

t g a→ of T associates the inverse of a cumulative
distribution function with each state s ∈ S and each date φ ∈ ℝ+.

Intuitively, the delay distributions are used as follows, typically when performing a

Monte-Carlo simulation. If the transition
δ

g a→ gets enabled at a date φ in a state s, then
a number z is drawn at pseuso-random uniformly between 0 and 1, the corresponding
delay d is calculated as d = δ(s, φ)(z). If the transition remains enabled from the date φ to
the date φ + d, then it is fired at φ + d.

In many practical applications, the delay distribution does not depend on the state s,
nor on the date φ, i.e., δ(s1, φ1) = δ(s2, φ2) for all s1, s2 ∈ S and φ1, φ2 ∈ ℝ+. We shall
assume this independence in the sequel.

Recall that a cumulative distribution function is a function φ from ℝ+ into [0, 1]
verifying the following condition.

() ()1 2 1 2 1 2,φ φ φ φ φ φφ φ+∀ ∈ ≤ ≤ (1)

In practice, the cumulative distribution functions that are used are either parametric
distributions such as the negative exponential distribution, or empirical distributions
described by means of a set of points between which the value of the distribution is
interpolated. Kaplan-Meier (1958) estimators are typical examples of empirical
distributions.

Figure 1 shows several parametric distributions that are widely used: a Dirac
distribution Figure 1(a), a uniform distribution Figure 1(b), an exponential distribution
Figure 1(c), and a Weibull distribution Figure 1(d).

Figure 1 Some widely used distributions, (a) Dirac distribution (b) uniform distribution
(c) exponential distribution (d) Weibull distribution

(a) (b)

Figure 1 Some widely used distributions, (a) Dirac distribution (b) uniform distribution
(c) exponential distribution (d) Weibull distribution (continued)

(c) (d)

Dirac distributions correspond to deterministic delay distributions. All other delay
distributions are stochastic.

In our example, the transition ta represents the arrival of a client in the queue. The
transition tb represents the beginning of the service of a client. Finally, the transition tc
represents the completion of the service of a client. As a reasonable approximation, we
can consider that they do not depend on the state of the system, nor on the current time.
In the sequel, we shall assume that the delay δa obeys an exponential distribution, that the
delay δb is null (the client is served as soon as possible), and finally that the delay δc
obeys a uniform distribution between two bounds.

2.4 Semantics

Let M: <S, T, s0> be a stochastic discrete event system. M encodes implicitly a set of
possible executions.

If we forget about delays, i.e., if we consider non-timed executions, the set of possible
executions is the smallest set such that:

• s0 is an (empty) execution.

• If
11

0 1 1, 1,
ntt

nσ s s s n
−

−= → → ≥ is an execution, then so is ,
nt

nσ s→ where sn ∈ S and

:
nδ

n n nt g a T→ ∈ under the conditions that tn verifies condition 1 and sn verifies
condition 2 given below.

Condition 1 (Fired transitions are enabled): The transition :
nδ

n n nt g a→ fired at step n
was enabled at step n − 1:

()1 1n ng s − =

Condition 2 (Next state calculation): The state sn at step n is obtained from the state sn−1

at step n – 1 by applying the action of the fired transition : :
nδ

n n nt g a→

()1n n ns a s −=

A timed execution of M is a non-timed execution of M with additional constraints due to
delays. To define formally timed executions, we need to introduce the notion of schedule.

A schedule φ of M is a function from transitions of T to ℝ+ ∪ {∞} that associates a
firing date with each transition t of T such that:

• φ(t) ∈ ℝ+ if t is enabled in the current state.

• φ(t) = ∞ otherwise.

The set of timed executions of M is the smallest set such that:

• <s0, 0, φ0> is a timed execution, namely the empty execution with the initial schedule
φ0 verifying the conditions 3 and 4 given below.

• If
11

0 0 1 1 1 1 1 1,0, , , , , , 1,
ntt

n n nσ s φ s d φ s d φ n
−

− − −= → → ≥ is a timed execution, then

so is , , ,
nt

n n nσ s d φ→ where :
nδ

n n nt g a T→ ∈ verifies condition 1, sn ∈ S verifies
condition 2, dn = φn–1(tn) is the date of the step n, and φn is a schedule verifying
conditions 3 to 6 given below.

Condition 3 (scheduled transitions): The transition t is scheduled at step n ≥ 0 if and only

if it is enabled, i.e., : :
δ

t g a T∀ → ∈

()
()

1 ()
0 ()

n n

n n

g s φ t
g s φ t

+= ∈
= = ∞

A consequence of condition 3 is that if a transition t that was scheduled at step n ≥ 0 is
not enabled anymore at step n + 1, then it is ‘de-scheduled’, i.e., φn+1(t) = ∞.

Condition 4 (newly enabled transitions): If the transition t gets enabled at step n ≥ 0, then

it is scheduled, i.e., : :
δ

t g a T∀ → ∈

() ()
()

1 0 1 () ()
[0,1] . . () , ()

n n n n n

n n n

g s g s φ t d δ t
z s t δ t δ s φ z

− = ∧ = = +
∧ ∃ ∈ =

Condition 4 applies also:

• To the initial state, i.e., with n = 0 and by posing g(s–1) = 0;

• To the transition tn (even though g(sn–1) = 1).

Condition 5 (earliest transitions firing): The transition tn fired at step n ≥ 1 is one of
those with the earliest firing dates at step n – 1, i.e., ∀ t ∈ T:

()1 1()n n n nd φ t φ t− −= ≤

Condition 6 (previously enabled transitions): Finally, if the transition t ≠ tn was enabled
at step n – 1 and is still enabled at step n, n ≥ 1, then its schedule stays the same, i.e.,

: , :
δ

nt g a T t t∀ → ∈ ≠

() ()1 11 1 () ()n n n ng s g s φ t φ t− −= ∧ = =

As an illustration consider again our queuing example.
Initially, there is no client in the queue (and indeed no client served), so q0 = 0 and

s0 = 0. In this state, only the transition ta is enabled. A delay δ0(ta) is thus calculated (i.e.,
drawn at random according to the delay of ta), e.g., δ0(ta) = 3. The firing date φ0(ta) of ta is
defined as φ0(ta) = d0 + δ0(ta) = 3 (condition 4). Moreover, φ0(tb) = φ0(tc) = ∞.

As ta is the only enabled transition at step 0, the first event that occurs in the system is
the firing of this transition (t1 = ta), at the date d1 = φ0(ta) = 3. The state at step 1 is thus
aa((q0, s0)) = (q1, s1) = (1, 0) (condition 2).

In this state, both transitions ta and tb are enabled. A new delay is thus calculated for
the transition ta, e.g., δ1(ta) = 4, and the delay δ1(tb) = 0 is calculated for the transition tb as
this transition is deterministic and immediate. We have thus φ1(ta) = d1 + δ1(ta) = 7 and
φ1(tb) = d1 + δ1(tb) = 3. Indeed, φ1(tc) = ∞.

At this point, both ta and tb are enabled, but due to the condition 5, only tb can be
fired, as φ1(tb) = 3 < φ1(ta) = 7. This illustrates the fact that some non-timed executions do
not correspond to any timed executions.

We have thus t2 = tb, d2 = φ1(tb) = 3, q2 = 0 and s2 = 1. In this state, both transitions ta
and tc are enabled. As ta was already enabled in state (q1, s1), its firing date remains
unchanged (condition 6), i.e., φ2(ta) = φ1(ta). The transition tc was not enabled in state
(q1, s1), so a new delay δ2(tc) is calculated for this transition, e.g., δ2(tc) = 2, and its firing
date is set to φ2(tc) = d2 + δ2(tc) = 5.

Applying condition 5, we see that as φ2(tc) = 5 < φ2(ta) = 7, tc must be fired at step 3.
And so on.
It is worth noticing that the semantics of stochastic discrete event systems is fully

deterministic, except for the calculation of delays and the choice of the transition to fire
when several transitions are enabled at the same time.

2.5 Interpretation in terms of timed automata

Stochastic discrete event systems can be re-interpreted in terms of (stochastic) timed
automata.

The idea consists in associating a clock c with each transition : .
δ

t g a T→ ∈ c is reset
when t gets logically enabled at step n ≥ 0. The guard g is extended into g′: g ˄ c =
φn(t), where φn(t) is calculated as in condition 4. This makes the transition t enabled
exactly at the date φn(t).

In other words, stochastic discrete event systems can be seen as stochastic timed
automata in which clocks are implicitly defined. The latter are thus strictly more
expressive than the former. However, this gain in expressiveness comes with a significant
price in terms of practical difficulty to design, to validate and to maintain models. This is
probably the reason why timed automata remain, as of today, mostly used in academia,
conversely to discrete event systems that are widely used in industry.

2.6 Stochastic simulations

Stochastic discrete event systems are in general assessed by means of Monte-Carlo
simulations. The idea is fairly simple: one performs a large number of executions,
drawing at pseudo-random delays of stochastic transitions. Executions are stepwisely
expanded until a certain mission time is reached. Along each execution, the value of

some indicators (random variables) are calculated. Then, one performs statistics on these
values, over the different executions.

The indicators that may be calculated belong to three categories.
First, indicators regarding transitions (e.g., the number of transitions fired during the

execution, the number of times a given transition has been fired during the execution, or
the first date at which a given transition has been fired during the execution).

Second, indicators relying on predicates over states. A predicate over states is a
Boolean function over states (e.g., the first date at which a state satisfying the predicate
has been reached during the execution, or the number of times a state satisfying the
predicate has been reached during the execution).

Third, indicators relying on reward over states. A reward over states is a real-valued
function over states (e.g., the minimum, maximum or mean value the reward takes during
the execution).

The above list is indeed non-exhaustive, although it covers most of the needs. It can
be extended at will.

In our queuing example, we may be interested in:

• The number of times the transition ta is fired, which gives an indicator on the number
of clients who joined the queue.

• The number of times the transition tc is fired, which gives an indicator on the number
of clients who have been served.

• The maximum and mean values of the reward q, which gives an indicator on the
maximum and mean numbers of waiting clients.

• The mean value of the reward that takes the value 1 when s = 0 and the value 0
otherwise, which gives an indicator on the time the operator at the counter remains
idle.

3 Abstract semantics

3.1 Principle

Let M: <S, T, s0> be a stochastic discrete event system and let
1

0 0 0, ,
t

σ s d φ= →

, , , 1,
nt

n n ns d φ n→ ≥ be a timed execution of M.
By conditions 3–6, for each firing date dj, j ≥ n, it exists a step i, 0 ≤ i < j, such that

the transition tj fired at step j has been scheduled at step i, i.e.

() ()j i j i i jd φ t d δ t= = + (2)

This property can be graphically illustrated by timelines. Figure 2 shows the timeline
describing a timed execution of our queuing system.

Figure 2 A timeline describing an execution of the queuing system

This timed execution is made of the following steps.

0 Initially, i.e., at date d0 = 0, there is no client in the queue and no client served. The
arrival of a first client (transition ta) is scheduled at date φ0(ta) = d0 + δ0(ta).

1 At date d1 = φ0(ta), the first client arrives in the queue. A second client arrival is
scheduled at date φ1(ta) = d1 + δ1(ta) and the beginning of the service of the first
client is scheduled at date φ1(tb) = d1 + δ1(tb).

2 At date d2 = φ1(tb), the first client starts to be served. The completion of the service
of the first client is scheduled at date φ2(tc) = d2 + δ2(tc).

3 At date d3 = φ2(tc), the service of the first client is completed.

4 At date d4 = φ1(ta), the second client arrives in the queue. The start of the service of
the second client is scheduled at date φ4(tb) = d4 + δ4(tb). Moreover, the arrival of a
third client is scheduled at date φ4(ta) = d4 + δ4(ta).

5 At date d5 = φ4(tb), the second client starts to be served. The completion of the
service of the second client is scheduled at date φ5(tc) = d5 + δ5(tc).

In Figure 2, we represent stochastic transitions (ta and tc) by thick arrows and
deterministic ones (tb) by thin arrows. Moreover, transitions scheduled but not fired yet
are represented with dashed arrows. We shall keep these conventions in the sequel.

If we consider the di’s, the φi(t)’s and the δi(t)’s as real-valued variables, each
execution generates three sets of constraints:

• The equalities φi(t) = di + δi(t) which reflect the dates at which the transitions are
scheduled and fired. The difference between these two dates being the delay
calculated for the transition.

• The equalities dj = φi(tj) that indicates which transition is fired at step j.

• Finally, the inequalities di–1 ≤ di that reflect the chronological order of steps.

Table 1 summarises the constraints generated by the execution depicted in Figure 2.
The key idea behind the definition of an abstract semantics for stochastic discrete

event systems is thus to step-wisely generate a system of inequations for each execution,
rather than concrete values for the di’s, the φi(t)’s and the δi(t)’s. The abstract execution is
valid if and only if the corresponding system of inequalities has a solution. This process
starts by defining abstract delays.

Table 1 Constraints generated by the execution pictured in Figure 2

Step Date Chronology Schedule
0 d0 = 0 φ0(ta) = d0 + δ0(ta)
1 d1 = φ0(ta) d0 ≤ d1 φ1(ta) = d1 + δ1(ta), φ1(tb) = d1 + δ1(tb)
2 d2 = φ1(tb) d1 ≤ d2 φ2(tc) = d2 + δ2(tc)
3 d3 = φ2(tc) d2 ≤ d3

4 d4 = φ1(ta) d3 ≤ d4 φ4(ta) = d4 + δ4(ta), φ4(tb) = d4 + δ4(tb)
5 d5 = φ4(tb) d4 ≤ d5 φ5(tc) = d5 + δ5(tc)

3.2 Abstract delays

If we do not put any constraint on the values of the delays, i.e., on variables δi(t)’s, the
systems of linear inequalities are actually trivially satisfiable: it suffices to set δi(t) = 0 for
all steps i and all transitions t. However, we do have information on the δi(t)’s as they are
obtained by considering inverse functions of cumulative probability distributions.

The second idea upon which the abstract semantics of stochastic discrete event
systems relies, consists thus in abstracting possible values of delays δi(t) by means of
intervals of + ∪ {∞}. Table 2 provides the intervals associated with widely used built-in
delay functions as well as the corresponding scheduling constraints.
Table 2 Intervals associated with delay functions

Distribution Variation interval Scheduling constraints
Dirac(d) [d, d] φi(t) = di + d
exponential(λ)]0, +∞) φi(t) > di
Weibull(α, β)]0, +∞) φi(t) > di
uniform(l, h)]l, h[φi(t) > di + l, φi(t) < di + h

In other words, delays can be split into two categories:

• Deterministic delays, represented by Dirac distributions, which can take a single
value d, d ≥ 0.

• Stochastic delays, represented by all other distributions, which can take any value in
an interval]l, h[, 0 < l < h ≤ ∞, where l and h depend on the distribution.

There is however a subtlety that prevents to implement our two ideas directly. It is
explained in the next Section 3.3.

3.3 Causality chains and chronology constraints

A stochastic transition can never be fired at exactly the same time as another transition.
The reason is a well-known argument of the Kolmogorov axiomatic of probability theory
(Kolmogorov, 1933): the Lebesgue’s measure of the probability of such an event is null.
This has to be reflected in systems of inequalities. Namely, there are cases in which
inequalities di–1 ≤ di, which reflect the chronology, must be strict: the date of the firing of
the transition ti can be as close as one wants to the date of the firing of the transition ti–1,
but not exactly the same.

Figure 3 shows the timelines of nearly identical executions of some stochastic
discrete event systems, involving both deterministic and stochastic transitions. The first
execution, pictured in Figure 3(a), starts with a stochastic transition A, then continues
with deterministic transitions b, c, d and e. The second execution, pictured in Figure 3(b),
is similar to the first one, except that now B is a stochastic transition. In the first
execution, steps 4 and 5 can take place at the same date, i.e., d4 ≤ d5, providing that d1(b)
+ d2(d) = d1(c) + d3(e); even though the execution starts with a stochastic transition. In the
second execution, steps 4 and 5 cannot take place at the same date, i.e., d4 < d5, even
though both transitions d and e are deterministic. The reason is that the transition B
prevents the two dates to be equal.

Figure 3 Timelines of two executions involving both deterministic and stochastic transitions,
(a) execution 1 (b) execution 2

(a)

(b)

To decide about the chronology constraint between dates di–1 and di, we need to introduce
the notion of causality chain. Let M: <S, T> be a stochastic discrete event system and let

1

0 0 0, , , , , 1,
ntt

n n nσ s d φ s d φ n= → → ≥ be a timed execution of M. The causality chain
of the transition tn is the sub-sequence of transitions of σ such that:

() ()

()

1 2

1 1 1 1 2 2 1 2 20 0 0 0, , , , , ,

, ,

i i

n

k

t t

i i i i i i i i i

t

n n i n n

s d φ s d φ t φ s d φ t φ

s d φ t φ

→ = → =

→ =

By construction, the causality chain of the transition tn exists and is unique.
In the execution pictured in Figure 3(a), the causality chains of transitions d and e are

as follows:

0 0 0 1 1 0 1 2 2 1 2 4 4 2 4, , , (), , (), , (),
A b d

s d φ s d φ A φ s d φ b φ s d φ d φ→ = → = → =

0 0 0 1 1 0 1 3 3 1 3 5 5 3 5, , , (), , (), , (),
A c e

s d φ s d φ A φ s d φ c φ s d φ e φ→ = → = → =

Now, any two causality chains σ1 and σ2 extracted from an execution σ have a largest
common prefix, i.e., can be written as σ1 = πτ1 and σ2 = πτ2, where the suffixes τ1 and τ2
share no transition.

In the above example, the largest common prefix of causality chains of d and e is
made of the transition A, while their respective suffixes consist of the transitions b, d in
one case and c and e in the other case.

The rule to decide whether the chronology constraint between dates di–1 and di is strict
or not can be stated as follow. Let σi–1 = πτi–1 and σi = πτi be the causality chains of the
transitions ti–1 and ti, where π is their largest common prefix. Then, the chronology
inequality between di–1 and di is strict if and only if at least one of the suffix sequences
τi–1 and τi involves a stochastic transition.

In our example, the chronology inequality between d4 and d5 is thus not strict in the
first execution (as transitions b, c, d and e are all deterministic), and strict in the second
one (as the transition B is stochastic).

Now, we can define formally the abstract semantics of stochastic discrete event
systems.

3.4 Formal definition

Let M: <S, T, s0> be a stochastic discrete event system. M encodes implicitly a set of
possible abstract executions. The set of abstract executions of M is the smallest set such
that:

• <s0, Γ0> is an abstract execution, namely the empty execution starting in the initial
state s0 ∈ S with the initial system of inequalities Γ0 containing:
1 the equality d0 = 0
2 the scheduling constraints defined by the condition 7 given below.

• If
11

0 0 1 1 1 1,Γ ,Γ ,Γ , 1,
ntt

n nσ s s s n
−

− −= → → ≥ is an abstract execution, then so is

,Γ ,
nt

n nσ s→ where :
nδ

n n nt g a T→ ∈ verifies condition 1, sn ∈ S verifies condition 2,
and Γn is obtained by adding to Γn–1 the constraints:
1 dn = φi(tn), where i is the step at which tn has been scheduled
2 dn–1 < dn or dn–1 ≤ dn according to the rule on causality chains defined in the

previous section.
3 the scheduling constraints defined by the condition 7 given below.

Condition 7 (Abstract Scheduling) If the transition :
δ

t g a→ gets enabled at step n ≥ 0,
then Γn contains the constraints:

• φn(t) = dn + d, if δ(sn) is a deterministic delay d.

• φn(t) > dn + l and φn(t) < dn + h, if δ(sn) is a stochastic delay with a lower bound l and
an upper bound h.

An abstract execution
2

0 0 1 1,Γ ,Γ ,Γ , 0,
ntt

n ns s s n→ → ≥ is valid if all the Γi are
satisfiable, for 1 .i n=

Note that the satisfiability of Γn implies, by construction, the satisfiability of Γ0, Γ1,
…, Γn–1.

3.5 Bisimulation

The key mathematical property in our case is that abstract and concrete executions are
bisimilar: any concrete execution can be simulated by an abstract execution and
reciprocally any abstract execution corresponds to at least one concrete execution.

The following two theorems capture this property.

Theorem 1. Let M: <S, T, s0> be a stochastic discrete event system and let
1

0 0 0 1 1 1, , , , , , , 0,
ntt

n n nσ s d φ s d φ s d φ n= → → ≥ be a timed execution of M.

Then, the abstract execution
1

0 0 1 1,Γ ,Γ ,Γ
ntt

n ns s s→ → built as described above
is valid.

Proof. By construction.

Theorem 2. Let M: <S, T, s0> be a stochastic discrete event system and let
1

0 0 1 1,Γ ,Γ ,Γ , 0,
ntt

n ns s s n→ → ≥ be a valid abstract execution of M.

Then, there exists at least one timed execution
1

0 0 0 1 1 1, , , ,
t

σ s d φ s d φ= →

, ,
nt

n n ns d φ→ of M.

Proof. If the abstract execution is valid, then by definition, Γn is satisfiable. Let σn be a
solution of Γn, i.e., a valuation of each of variables that satisfies all constraints of Γn.
Using σn, we can then define concrete delays and firing dates. As concrete delays and
firing dates defined in this way verify by construction conditions 3–6, we obtain a valid
concrete execution.

The two above theorems have important practical consequences: it is possible to
verify properties of infinitely many concrete executions by means of finitely many
abstract executions. Furthermore some applications will be discussed in Section 4. But
before entering into this discussion, we need to show that abstract executions can be
implemented efficiently.

3.6 Constraint solving algorithm

Let M: <S, T, s0> be a stochastic discrete event system and let
1

0 0 1 1: ,Γ ,Γ
t

σ s s→

,Γ , 0,
nt

n ns n→ ≥ be an abstract execution of M. σ is constructed step by step, so we can
assume that the validity of all prefix executions of σ has been checked. It remains thus to
check the satisfiability of Γn, or more precisely to check that the constraints introduced at
step n are compatible with the constraints of Γn–1.

A first remark here is that variables dj’s, j = 1… n, are essentially renaming of
variables φj(ti), for some 0 ≤ i < j. We can thus eliminate them when building the Γi’s.
Actually, we introduced them in the above developments only for the sake of clarity of
the presentation.

We are thus left with three types of equations:

• Equations of the form φi–1(t) < φi(t′) or φi–1(t) ≤ φi(t′) describing chronology
constraints. We can normalise these equations respectively as, φi(t′) > φi–1(t) + 0 and
φi(t′) ≥ φi–1(t) + 0.

• Equations of the form φj(t) = φi(t′) + d, j > i describing the abstract scheduling of
deterministic transitions. We can normalise these equations by introducing two
inequalities: φj(t) ≤ φi(t′) + d and φj(t) ≥ φi(t′) + d.

• Equations of the form φj(t) > φi(t′) + l, and φj(t) < φi(t′) + h, j > i describing the
abstract scheduling of stochastic transitions.

Eventually, we end up with inequalities of the form:

• Yj < Xi + c or Yj ≤ Xi + c, j > i

• Yj > Xi + c or Yj ≥ Xi + c, j > i.

The idea is thus to perform the Fourier-Motzkin elimination backward, i.e., starting from
the φn(t)’s:

• from Zk < Yj + d and Yj < Xi + c, one can deduces Zk < Xi + d + c

• from Zk ≤ Yj + d and Yj ≤ Xi + c, one can deduces Zk ≤ Xi + d + c

• and so on.

Three important remarks here.
First, the form of inequalities produced by the Fourier-Motzkin elimination is the

same as the form of the original inequalities. This makes it possible to optimise data
structures and operations on system of inequalities.

Second, if the system contains two inequalities Yj < Xi + c and Yj < Xi + d, then one is
necessarily useless: the first one if c > d, the second otherwise. This applies indeed for all
pairs of inequalities going in the same direction, e.g., < and ≤, ≤ and ≤, etc. Again, this
makes it possible to optimise data structures and operations on system of inequalities.

In particular, AVL trees or similar structures can be used to store inequalities in order
to be able to retrieve efficiently inequalities involving any two variables (in (log m),
where m is the number of pairs of variables involved in inequalities of the system).

Third, the system is unsatisfiable if and only if, at some point of the Fourier-Motzkin
process, the system contains two inequalities Yj < Xi + c and Yj > Xi + d such that c ≤ d.
Indeed, this applies for all pairs of inequalities (strict or not), except in the case Yj ≤ Xi + c
and Yj ≥ Xi + c.

This means that to check the satisfiability of Γn, given that Γn–1 is satisfiable, it
suffices to apply the Fourier-Motzkin elimination keeping only variables introduced at
step n as left members of inequalities.

In our implementation, we used a few other optimisations, but the description of
which goes beyond the scope of this article.

As the result of the above developments, the greedy algorithm that checks whether a
given transition can be fired at step n is very efficient, i.e., of nearly constant complexity
in all practical cases we have dealt with.

4 Application to AltaRica 3.0 models

4.1 The AltaRica 3.0 modelling language

AltaRica 3.0 is an object-oriented modelling language dedicated to probabilistic risk and
safety analyses of complex technical systems (Batteux et al., 2019). It combines guarded
transition systems (Rauzy, 2008; Batteux et al., 2017) with the structuring paradigm
S2ML (Batteux et al., 2018). Guarded transition systems are a specific implementation of
stochastic discrete event systems, as we defined them in this article. S2ML, which stands
for system structure modelling language, gathers, in a unified way, structuring constructs
stemmed from object-oriented programming and prototype-oriented programming.

Several assessment tools have been developed for AltaRica 3.0, including a stepwise
simulator, compilers to fault trees and Markov chains, and a stochastic simulator. These
tools are provided with the freely available OpenAltaRica Platform. The stepwise
simulator makes it possible to perform interactive simulations of AltaRica 3.0 models. It
proves to be of great interest for stakeholders to discuss the behaviours of the systems
under study. It is also very useful to debug and to validate models, as we shall see in this
section. The original version of the stepwise simulator did not take into account delays
associated to transitions. As a consequence, it was possible to fire sequences of
transitions that were impossible according to the timed semantics.

The new version of this simulator, which implements the abstract semantics presented
in the previous sections, makes it fully compliant with the timed semantics of AltaRica
3.0. Furthermore, results coming from both stochastic and stepwise simulators can be
compared: any simulation played in the stepwise simulator could have been generated by
the stochastic simulator, and vice versa.

4.2 Illustrative example

As an illustration, we shall consider the simplified power-supply system of a farm of
servers pictured in Figure 4.

Figure 4 A power supply system

The power is delivered to the busbar via three redundant channels. The main supply
channel consists of the grid G and a circuit breaker CB. The two backup supply channels
consist of a battery (actually a group of batteries) Bi, i = 1, 2, and a circuit breaker CBi,
i = 1, 2. All these components may fail.

In the initial state (and more generally when the main supply is working), CB is
closed, while CB1 and CB2 are open. If the main supply is lost, the network is configured
in order to use the first backup supply, i.e., CB1 is closed, while CB and CB2 are opened.
If the first backup supply is also lost, the network is configured in order to use the second
backup supply, i.e., CB2 is closed, while CB and CB1 are opened. Network
reconfigurations are assumed to be instantaneous, i.e., the corresponding transitions are
associated with Dirac(0) delays.

The loss of the grid is assumed to be exponentially distributed, with a failure rate
λG = 5.0 × 10–4 h–1. Moreover, it is assumed that it is recovered after at most 12 hours,
i.e., to be uniformly distributed between αG = 0h and βG = 12h. The guarded transition
system representing the behaviour of the grid is pictured in Figure 5(a).

The batteries are normally in the standby mode. They may fail in this mode. This
failure is assumed to be dormant, i.e., to remain unnoticed until the battery is actually
used, and exponentially distributed with a failure rate λB = 2.5 × 10–5 h–1. In reality,
periodic tests make it possible to detect these failures. However, we shall not include
maintenance policies in the model presented here, in order not to overload it. When the
battery is in use, it discharges. The time to a full discharge of the battery is assumed to be
uniformly distributed between αB = 8h and βB = 10h. The guarded transition system
representing the behaviour of batteries is pictured in Figure 5(b). As for timeline,
deterministic (here immediate) transitions are represented with thin arrows, while
stochastic transitions are represented with thick ones. Transitions can be guarded not only
by their source state, here encoded by the variable _state, but also by some other
variables, here the Boolean variable active that indicates whether the battery is
currently required to provide power to the busbar.

Finally, the circuit breakers may be either free to open and to close, or stuck in one of
these positions. This failure is again assumed to be dormant and exponentially
distributed, with a failure rate λCB = 1.0 × 10–6 h–1. As we do not take into account
maintenance policies here, circuit breakers are assumed to be non-repairable. The
guarded transition system representing the behaviour of circuit breakers is pictured in
Figure 5(c).

Table 3 summarises the probability distributions associated with failures and repairs.
Table 3 Reliability parameters of the power supply system

Component Transition Distribution Parameters
Grid Failure Exponential Failure rate λG = 5.0 × 10–4 h–1

Repair Uniform Lower bound αG = 0 h,
upper bound βG = 12 h

Batteries Dormant failure Exponential Failure rate λB = 2.5 × 10–5 h–1
Discharge Uniform Lower bound αB = 8 h,

upper bound βB = 10 h
Circuit breakers Dormant failure Exponential Failure rate λCB = 1.0 × 10–6 h–1

4.3 AltaRica model

The first step in designing an AltaRica model consists usually in designing classes that
encode the behaviours of the components of the system under study. Alternatively, these
classes can be picked-up in libraries of on-the-shelf reusable modelling components.

To describe (from scratch) our example, we have thus to design classes for the grid,
the batteries and the circuit breakers. These classes are direct encoding of the guarded
transition systems pictured in Figure 5.

Figure 5 State automata representing components of the power supply system, (a) grid (b) battery
(c) circuit breaker

(a)

(b)

(c)

For instance, Figure 6 shows the code for the guarded transition system pictured in
Figure 5(b) that represents the behaviour of batteries. This class involves one state
variable, _state, and two Boolean flow variables, active and outPower. The
variable outPower represents whether the battery actually provides power. The class

Battery involves also four transitions, labelled respectively by events start, stop,
dormantFailure and discharge. Probability distributions associated with these
events are declared with parameters, to be able to change easily their values when the
class is instantiated. In AltaRica 3.0, the values of state variables are modified via
transitions, while the values of flow variables, that depend functionally on the former, are
modified via assertions. The assertions are executed after each transition firing, in order
to update the values of flow variables. In the code given in Figure 6, the assertion defines
the value of outPower. The value of active is set up outside the component.

Figure 6 AltaRica 3.0 code for the class representing batteries

Figure 7 AltaRica 3.0 code for the power supply system

Once the behaviours of basic components described by means of classes, it is possible to
describe the system under study as a whole, in a top-down way. AltaRica 3.0 provides the
notion of block—prototypes in the sense of object-oriented theory—to do so. The
different components of the system are then connected via assertions (or
synchronisations). The reader interested in more details can refer to authors’ article
presenting AltaRica 3.0 (Batteux et al., 2019).

Figure 7 shows the code for the power supply system.
Models such as the one presented above are usually assessed by means of

Monte-Carlo simulations: their highly dynamic nature prevents to assess them via the
compilation into combinatorial models such as fault trees. Moreover, it is not possible to
compile them into Markov chains, as they mix deterministic and stochastic transitions,
the latter not always obeying Markovian hypotheses.

4.4 A tricky scenario

As just pointed out, the AltaRica 3.0 model presented in the previous section makes
possible a fine grain analysis of the safety and the availability of the power supply
system. In the actual model, maintenance policies are also taken into account, making the
analysis even more accurate.

The expressive power of AltaRica 3.0 comes, however, with a price (when used
fully): models must be carefully checked, so to verify that they actually encode the
expected behaviour of the system under study. The stepwise simulator plays a very
important role to do so. We shall now illustrate our point by unwinding a tricky scenario.

In the initial state, six stochastic transitions are enabled (all exponentially distributed):

• MainSupply.G.failure, MainSupply.CB.dormantFailure

• BackupSupply1.B.dormantFailure,
BackupSupply1.CB.dormantFailure

• BackupSupply2.B.dormantFailure,
BackupSupply2.CB.dormantFailure.

In the full model, a few additional deterministic transitions representing periodic
maintenance operations come in addition of the above ones.

If MainSupply.G.failure is fired, then the whole network needs to be
reconfigured. The guards of the other failure transitions remain satisfied, but these
transitions cannot be fired because of the three immediate reconfiguration transitions that
are newly enabled:

• MainSupply.CB.Open

• BackupSupply1.B.start, BackupSupply1.CB.close.

These immediate transitions must thus be fired prior to the firing of any other transition.
In the previous version of the stepwise simulator (that did not take into account the

timed semantics), it was however possible for the analyst to fire both failure and
reconfiguration transitions, making the debugging task tedious, to say the least.

After the firing of these immediate transitions, the busbar is powered by the first
backup train. The following transitions are enabled:

• MainSupply.G.repair, MainSupply.CB.dormantFailure

• BackupSupply1.B.discharge,
BackupSupply1.CB.dormantFailure

• BackupSupply2.B.dormantFailure,
BackupSupply2.CB.dormantFailure.

If the transition BackupSupply1.B.discharge is fired, then three immediate
reconfiguration transitions become enabled:

• BackupSupply1.CB.open

• BackupSupply2.B.start, BackupSupply2.CB2.close.

As previously, these immediate transitions must be fired prior to the firing of any other
transition. After the firing of these immediate transitions, the busbar is powered by the
second backup train.

Now, five transitions have their guards satisfied:

• MainSupply.G.repair, MainSupply.CB.dormantFailure

• BackupSupply1.CB.dormantFailure

• BackupSupply2.B.discharge,
BackupSupply2.CB.dormantFailure.

However, the transition BackupSupply2.B.discharge is not enabled. The reason
is that the battery of the second backup supply has been activated after the discharge of
the battery of the first backup supply. According to our reliability parameters,
discharging both batteries takes at least 8 + 8 = 16 hours. But the transition
MainSupply.G.repair, which has been scheduled at the same date as the activation
of the battery of the first supply, cannot take more than 12 hours. It follows that
MainSupply.G.repair must be fired before BackupSupply2.B.discharge.

Table 4 gives a possible concrete execution corresponding to our scenario.
Table 4 A possible concrete execution of the power supply system

Step Transition Firing date
1 MainSupply.G.failure 0 + 1234.5 = 1234.5
2 MainSupply.CB.Open 1234.5 + 0 = 1234.5
3 BackupSupply1.B.start 1234.5 + 0 = 1234.5
4 BackupSupply1.CB.close 1234.5 + 0 = 1234.5
5 BackupSupply1.B.discharge 1234.5 + 9.2 = 1243.7
6 BackupSupply1.CB.open 1243.7 + 0 = 1243.7
7 BackupSupply2.B.start 1234.5 + 0 = 1234.5
8 BackupSupply2.CB.close 1243.7 + 0 = 1243.7
9 MainSupply.G.repair 1234.5 + 11.6 = 1246.1

Figure 8 shows a timeline representing this execution (for the sake of simplicity, we did
not represent dormant failures of circuit breakers).

Figure 8 Timeline of the execution of the power supply system

Note that in case the transition BackupSupply1.CB.dormantFailure is fired
before MainSupply.G.failure, the scenario changes completely. Now, the first
backup supply cannot be activated. Consequently, the second one is. Moreover, the
discharge of its battery can occur before the grid is repaired.

On a small example, like the one presented here, it is still possible to do some book-
keeping of delays by hand. But when the model gets large, this is clearly impossible. This
is the reason why, the introduction of the abstract semantics is of tremendous practical
interest.

5 Conclusions

In this article, we introduced the notion of abstract execution of stochastic discrete event
systems—taking a very general definition of the latter—that consists in abstracting
(stochastic) delays associated with transitions into systems of linear inequalities. We
showed that abstract and concrete executions are bisimilar: any concrete execution can be
simulated by an abstract execution and reciprocally any abstract execution corresponds to
at least one concrete execution. We introduced also the concept of timeline which proves
to be very useful to reason on timed executions. Finally, we showed how to solve
efficiently the generated systems of linear inequalities.

We illustrated the proposed approach via its implementation in the stepwise simulator
of AltaRica 3.0. This latter tool makes it possible to debug and to validate complex
behavioural models. The notion of abstract execution reconciles stochastic and stepwise
simulations of AltaRica 3.0 models. We showed its practical interest by looking at tricky
scenarios of an industrial case study mixing stochastic and deterministic transitions.

The introduction of abstract executions, already interesting on its own, paves the way
to the design of efficient model-checking algorithms. In particular, we designed the
prototype of a generator of full fledged sequences of events leading to a failure state,
based on this abstract semantics. We plan to enhance this prototype, which is already
available within the OpenAltaRica Platform, with model-checking functionalities.

References
Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S. and Franceschinis, G. (1994) Modelling

with Generalized Stochastic Petri Nets, Wiley Series in Parallel Computing, John Wiley and
Sons, New York, NY, USA.

Alur, R. and Dill, D.L. (1994) ‘A theory of timed automata’, Theoretical Computer Science,
Vol. 126, No. 2, pp.183–235.

Baierm C. and Katoen, J-P. (2008) Principles of Model Checking, June, MIT Press, Cambridge,
MA, USA.

Batteux, M., Prosvirnova, T. and Rauzy, A. (2017) ‘Altarica 3.0 assertions: the why and the
wherefore’, Journal of Risk and Reliability, September, Vol. 231, No. 6, pp.691–700.

Batteux, M., Prosvirnova, T. and Rauzy, A. (2018) ‘From models of structures to structures of
models’, in IEEE International Symposium on Systems Engineering (ISSE 2018), Roma, Italy,
IEEE, October.

Batteux, M., Prosvirnova, T. and Rauzy, A. (2019) ‘Altarica 3.0 in 10 modeling patterns’,
International Journal of Critical Computer-Based Systems, Vol. 9, Nos. 1–2, pp.133–165.

Bouissou, M., Bouhadana, H., Bannelier, M. and Villatte, N. (1991) ‘Knowledge modelling and
reliability processing: presentation of the FIGARO language and of associated tools’, in
Lindeberg, J.F. (Ed.): Proceedings of SAFECOMP’91 – IFAC International Conference on
Safety of Computer Control Systems, pp.69–75, Pergamon Press, Trondheim, Norway.

Brameret, P-A., Rauzy, A. and Roussel, J-M. (2015) ‘Automated generation of partial markov
chain from high level descriptions’, Reliability Engineering and System Safety, July, Vol. 139,
pp.179–187.

Cassandras, C.G. and Lafortune, S. (2008) Introduction to Discrete Event Systems, Springer,
New-York, NY, USA.

Chvàtal, V. (1983) Linear Programming, W.H. Freeman and Company, New-York, NY, USA.
Clarke, E.M., Grumberg, O. and Peled, D.A. (2000) Model Checking, February, MIT Press,

Cambridge, MA, USA.
Cousot, P. and Cousot, R. (1977) ‘Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints’, in Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp.238–252, New York, NY, USA, ACM Press, Los Angeles, California.

Holzmann, G.J. (2003) The SPIN Model Checker: Primer and Reference Manual, September,
Addison Wesley, Boston, MA 02116, USA.

Kaplan, E.L. and Meier, P. (1958) ‘Nonparametric estimation from incomplete observations’,
Journal of American Statistics Association, Vol. 53, No. 282, pp.457–481.

Kolmogorov, A.N. (1933) Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin,
Germany.

Kwiatkowska, M., Norman, G. and Parker, D. (2011) ‘PRISM 4.0: verification of probabilistic
real-time systems’, in Gopalakrishnan, G. and Qadeer, S. (Eds.): Proceedings 23rd
International Conference on Computer Aided Verification (CAV’11), April, Vol. 6806 of
Lecture Notes in Computer Science, pp.585–591, Springer.

Larsen, K.G., Pettersson, P. and Yi, W. (1997) ‘Uppaal in a Nutshell’, International Journal on
Software Tools for Technology Transfer, October, Vol. 1, No. 1–2, pp.134–152.

Matloff, N. and Salzman, P.J. (2008) The Art of Debugging with GDB, DDD, and Eclipse, No
Starch Press, San Francisco, CA, USA.

Milner, R. (1989) Communication and Concurrency, Prentice-Hall international series in computer
science, Prentice Hall, Upper Saddle River, New Jersey, USA.

Plateau, B. and Stewart, W.J. (2000) ‘Stochastic automata networks’, in Grassmann, W.K. (Eds.):
Computational Probability. International Series in Operations Research & Management
Science, Vol. 24, Springer, Boston, MA.

Prosvirnova, T. and Rauzy, A. (2015) ‘Automated generation of minimal cutsets from altarica 3.0
models’, International Journal of Critical Computer-Based Systems, Vol. 6, No. 1, pp.50–79.

Rauzy, A. (2008) ‘Guarded transition systems: a new states/events formalism for reliability
studies’, Journal of Risk and Reliability, Vol. 222, No. 4, pp.495–505.

Schrijver, A. (1998) Theory of Linear and Integer Programming, Wiley Series in Discrete
Mathematics & Optimization, John Wiley & Sons, Hoboken, New Jersey, USA.

Signoret, J-P. and Leroy, A. (2021) Reliability Assessment of Safety and Production Systems:
Analysis, Modelling, Calculations and Case Studies, Springer Series in Reliability
Engineering, Springer, Cham, Switzerland.

Trivedi, K.S. (2001) Probability and Statistics with Reliability, Queuing, and Computer Science
Applications, Wiley-Blackwell, Hoboken,New Jersey, USA.

Yi, W., Pettersson, P. and Daniels, M. (1994) ‘Automatic verification of real-time communicating
systems by constraint solving’, in Hogrefe, D. and Leue, S. (Eds.): Proceedings of the 7th
Conference on Formal Description Techniques, FORTE’1994, pp.223–238, Berne,
Switzerland, North–Holland, October.

Zimmermann, A. (2010) Stochastic Discrete Event Systems, Springer, Berlin, Heidelberg,
Germany.

Zio, E. (2013) The Monte Carlo Simulation Method for System Reliability and Risk Analysis.
Springer Series in Reliability Engineering, Springer London, London, England.

