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Abstract

Standard formulations of GANs, where a continuous
function deforms a connected latent space, have been shown
to be misspecified when fitting different classes of images. In
particular, the generator will necessarily sample some low-
quality images in between the classes. Rather than modifying
the architecture, a line of works aims at improving the
sampling quality from pre-trained generators at the expense
of increased computational cost. Building on this, we
introduce an additional network to predict latent importance
weights and two associated sampling methods to avoid the
poorest samples. This idea has several advantages: 1) it
provides a way to inject disconnectedness into any GAN
architecture, 2) since the rejection happens in the latent
space, it avoids going through both the generator and the
discriminator, saving computation time, 3) this importance
weights formulation provides a principled way to reduce
the Wasserstein’s distance to the target distribution. We
demonstrate the effectiveness of our method on several
datasets, both synthetic and high-dimensional.

1. Introduction

GANSs [10] are an effective way to learn complex and
high-dimensional distributions, leading to state-of-the-art
models for image synthesis in both unconditional [17]
and conditional settings [6]. However, it is well-known
that a single generator with an unimodal latent variable
cannot recover a distribution composed of disconnected
sub-manifolds [19]. This leads to a common problem for
practitioners: the existence of very low-quality samples
when covering different modes. This is formalized by [31]
which refers to this area as the no GAN’s land and provides
impossibility theorems on the learning of disconnected
manifolds with standard formulations of GANs. Fitting
a disconnected target distribution requires an additional
mechanism inserting disconnectedness in the modeled
distribution. A first solution is to add some expressivity
to the model: [19] propose to train a mixture of generators,
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Figure 1: Overview of the proposed method. GANs tend to
produce poor images for unlucky draws of the latent variable (top
row, left). We introduce importance weights w?(z) in the latent
space that allow us to use rejection sampling and accept a given
latent variable z with probability P,(z) < w?(z) (LatentRS, top
row), or to perform a simple gradient ascent over the importance
weight (LatentGA, bottom row), leading to better images. Both
strategies can be combined for improved image quality. Images
generated with StyleGAN2 trained on LSUN Church.

while [ 13] make use of a multi-modal latent distribution.

A second line of research relies heavily on a variety of
Monte-Carlo algorithms, such as Rejection Sampling [3]
or Metropolis-Hastings [32]. Monte-Carlo methods aim
at sampling from a target distribution, while having only
access to samples generated from a proposal distribution.
Using the previously learned generative distribution as a
proposal distribution, this idea was successfully applied
to GANs. However, one of the main drawbacks is that
Monte-Carlo algorithms only guarantee to sample from the
target distribution under strong assumptions. First, we need
access to the density ratios between the proposal and target
distributions or equivalently to a perfect discriminator [3].
Second, these methods are efficient only if the support of
the proposal distribution fully covers the one of the target
distribution. This is unlikely to be the case when dealing
with high-dimensional datasets [1].
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To tackle this issue, we propose a novel method aiming
at reducing the Wasserstein distance between the previously
trained generative model and the target distribution. This
is done via the adversarial training of a third network
that learns importance weights in the latent space. Note
that this network does not aim at increasing the support
of the proposal distribution but at re-weighting the latent
distribution, under a Wasserstein criterion. Thus, these
importance weights define a new distribution in the
latent space, from which we propose to sample with
two complementary methods: latent rejection sampling
(latentRS) and latent gradient ascent (latentGA). To better
understand our approach, we illustrate its efficiency with
simple examples. On the top of the Figure 1, we show
samples coming from a pre-trained StyleGAN2 [17] and
their respective acceptance probability (latentRS). At the
bottom, we exhibit a sequence of generated images while
following a gradient ascent on the learned importance
weights (latentGA).

Our contributions are the following:

e We propose a novel approach that trains a neural
network to directly modify the latent space of a
GAN. This provides a principled way to reduce the
Wasserstein distance to the target distribution.

e We show how to sample from this new generative
model with different methods: latent Rejection
Sampling (latentRS), latent Gradient Ascent (latentGA),
and latentRS+GA, a method that leverages the
complementarity between the two previous solutions.

e We run a large empirical comparison between our
proposed methods and previous approaches on a variety
of datasets and distributions. We empirically show that
all of our proposed solutions significantly reduce the
computational cost of inference. More interestingly, our
solutions propose a wide span of performances ranging
from latentRS, optimizing speed, that matches state-of-
the-art almost for free (computational cost divided by
15) and latentRS+GA (computational cost divided by
3) that outperforms previous approaches.

Notation. Before moving to the related work section,
we shortly present the notation needed in the paper. The
goal of the generator is to generate data points that are
“similar” to samples collected from some target probability
measure . The measure U, is defined on a potentially high-
dimensional space RP, equipped with the euclidean norm
II-|l. We call w, the empirical measure. To approach (L,
we use a parametric family of generative distribution, where
each distribution is the push-forward measure of a latent
distribution Z and a continuous function modeled by a neural
network. In most applications, the random variable Z defined
on a low-dimensional space RY is either a multivariate

Gaussian distribution or uniform distribution. The generator
is a parameterized class of functions from R? to RP, say
¥ ={Gg : 6 € O}, where ® C R” is the set of parameters
describing the model. Each function G¢ takes input from Z
and outputs “fake” observations with distribution pg = GofiZ.
On the other hand, the discriminator is described by a family
of functions from R to R, say 2 = {Dy: ¢ € A}, A CRC.
Finally, for any given distribution (, we note Sy, its support.

2. Related Work

[10] already stated that when training vanilla GANSs, the
generator could ignore modes of the target distribution:
this is called mode collapse. A significant step towards
understanding this phenomenon was made by [!] who
explained that the standard formulation of GANs leads
to vanishing or unstable gradients. The authors proposed
the Wasserstein GANs (WGANSs) architecture [2] where,
in particular, discriminative functions are restricted to the
class of 1-Lipschitz functions. WGANSs aim at solving the
following:

sup inf Eyoy, Dg(x) — .oy Dy (Ge(2)) (1)
acA 0€O

2.1. Learning disconnected manifolds with GANs:
training and evaluation

The broader drawback of standard GANSs is that, since
any modeled distribution is the push-forward of a unimodal
distribution by a continuous transformation, it has a
connected support. This means that when the generator
covers multiple disconnected modes of the target distribution,
it necessarily generates samples out of the real data manifold
[19]. Consequently, any thorough evaluation of GANs
should assess simultaneously both the quality and the variety
of the generated samples. To solve this issue, [27] and [20]
propose a Precision/Recall metric that aims at measuring
both the mode dropping and the mode inventing. The
precision refers to the portion of generated points that
belongs to the target manifold, while the recall measures
how much of the target distribution can be reconstructed by
the model distribution.

Building on this metric, [31] highlighted the trade-off
property of GANs deriving upper-bounds on the precision of
standard GANSs. To solve this problem, a common direction
of research consists in over-parameterizing the generative
model. [19] enforces diversity by using a mixture of
generators, while [13] suggests that a mixture of Gaussians
in the latent space is efficient to learn diverse and limited
data. Similarly, [4] propose importance weights that aim at
robustifying the training of GANs and make it less sensitive
to the target distribution’s outliers.

1669



2.2. Improving the quality of GANs post-training

Another line of research consists in improving the
sampling quality of pre-trained GANs. [31] proposed
a heuristic to insert disconnectedness and remove the
samples mapped out of the true manifold. [30] designed
Discriminator Optimal Transport (DOT), a gradient ascent
driven by a Wasserstein discriminator to improve every
single sample. Similarly, [7] follow a discriminator-driven
Langevin dynamic.

Another well-studied possibility would be to use Monte-
Carlo (MC) methods [25]. Following this path, [3] were
the first to use a rejection sampling method to improve the
quality of the proposal distribution pg. The authors use the
fact that the optimal vanilla discriminator trained with binary
cross-entropy is equal to /(. + tg). Thus, a parametric
discriminator Dy, : RP — [0, 1] can be used to approximate
the density ratios ry as follows:

() Dald)
Ug (x) 1—Dygy (x) '

This density ratio can then be plugged in the Rejection
Sampling (RS) algorithm. Doing so, it can be shown that
sampling from gy and accepting samples probabilistically
is equivalent to sample from the target distribution . The
acceptance probability of a given sample x is P, (x) = %
This is valid as long as there is a constant k € R* such that
Wi (x) < kg (x) for all x.

[32] use similar density ratios and derive MH-GAN, by
using the independent Metropolis-Hasting algorithm [14].
Finally, [11] use these density ratios r, as importance
weights and perform discrete sampling relying on the
Sampling-Importance-Resampling (SIR) algorithm [26].
Given X1, ..., X, ~ Uy, we have:

2

ro(x) ==

I‘a(X,') .
):: ra(X;)

Jj=1

ug'a (Xi) = 3)

Note that these algorithms all rely on similar density
ratios and differ by the acceptance-rejection scheme chosen.
Interestingly, in RS, the acceptance rate is not controlled,
but we are guaranteed to sample from . Conversely, with
SIR and MH, the acceptance rate is a chosen parameter,
but we are sampling from an approximation of the target
distribution.

2.3. Drawbacks of density-ratio-based methods

Even though these methods have the advantage of being
straightforward, they suffer from one main drawback. In
practice, because both the target and the proposal manifold
do not have full dimension in R? [9], [I, Lemma 3]
show that it is highly likely that pg(Sy, Sy, ) = 0 and

U (Syy NSy, ) = 0. Consequently, when dealing with high-
dimensional datasets, the proposal distribution ug and the
target distribution u, might intersect on a null set. Thus,
one would have rq(x) = 0 almost everywhere on S,,. In
this setting, the assumptions of MC methods are broken, and
these algorithms will not allow sampling from L.

In order to correct this drawback, our method proposes to
avoid the computation of density ratios from a classifier and
to directly learn how to re-weight the proposal distribution.
Our proposed scheme aims at minimizing the Wasserstein
distance to the empirical measure while controlling the range
of these importance weights.

3. Adversarial Learning of
Latent Importance weights

Similar to previous works, our method aims at improving
the performance of a generative model, post-training. We
assume the existence of a WGAN model (Gg,Dy) pre-
trained using equation 1. The pushforward generative
distribution [y is assumed to be an imperfect approximation
of the target distribution. The goal is now to learn how to
redistribute the mass of the modeled distribution so that it
best fits the target distribution.

3.1. Definition of the method

To improve the sampling quality of our pre-trained GANS,
we propose to learn an importance weight function that
directly learns how to avoid low-quality images and focus
on very realistic ones. More formally, we over-parameterize
the class of generative distributions and define a parametric
class Q = {w? ¢ € &} of importance weight functions.
Each function w?® associates importance weights to latent
space variables and is defined from R? to R*. For a given
latent space distribution ¥ and a network w?®, a new measure
79 is defined on R¢:

forall z € RY, dy?(z) = w?(z)dy(z) 4)
Using this formulation, we can prove the following lemma:

Lemma 1 Assume that 5y w? = 1, then the measure y? is
a probability distribution defined on RY.

Consequently, we now propose a new modeled generative
distribution 1, the pushforward distribution pj = Ge#y?.
The objective is to find the optimal importance weights w?
that minimizes the Wasserstein distance between the true
distribution u, and the new class of generative distributions.
The proposed method can thus be seen as minimizing
the Wasserstein distance to the target distribution, over an
increased class of generative distributions. Denoting by Lip,
the set of 1-Lipschitz real-valued functions on R”, i.e.,

() = F )

Lip, = {f: R’ - R:
[[x =yl

<1, (x#y) € (RP)?},
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we want, given a pre-trained model g, to solve:
argmin W(/.L*,ug)) =argmin sup K, D—1I ¢D
ocd wPeQ DeLip, 6
=argmin sup K, D—Eyw?D
w?eQ DeLip;

The network w?, parameterized using a feed-forward neural
network, thus learns how to redistribute the mass of g such

that ,ug) is closer to p, in terms of Wasserstein distance.

Similarly to the WGANS training, the discriminator Dy
approximates the Wasserstein distance. Dy and w? are
trained adversarially, whilst keeping the weights of Gg
frozen, using the following optimization scheme:

inf sup Eyoy, Do (x) —E..z w?(2) X Do (Go(z)) (5)
PP geA
Note that our formulation can also be plugged on top of any
objective function used for GANS.

3.2. Optimization procedure

However, as in the field of counterfactual estimation,
a naive optimization of importance weights by gradient
descent can lead to trivial solutions.

1. First, if for example, the Wasserstein critic Dy, outputs
negative values for any generated sample, the network
w? could simply learn to avoid the dataset and output 0
everywhere [28].

2. Second, another problem comes from the fact that
equation 5 can be minimized not only by putting large
importance weights w®(z) on the examples with high
likelihoods Dy (G(z)) but also by maximizing the sum
of the weights: this is the propensity overfitting [29].

3. For the objective defined in equation 5 to be a valid
Wasserstein distance minimization scheme, the measure
,uép must be a probability distribution, i.e. E,w? = 1.

To tackle this, we first add a penalty term in the loss to
enforce the expectation of the importance weights to be
close to 1. This is similar to the self-normalization proposed
by [29]. However, one still has to cope with the setting where
the distribution y? collapses to discrete data points:

Theorem 1 Given a pre-trained generative distribution g
absolutely continuous with respect to the Lebesgue measure
on RP. Let ® be the non-parametric class of continuous
functions satisfying Eyw? = 1. We have that:

12 . )
W (b, ; 8(X)) < q;ggW(un,ué”)

where 8 refers to the Dirac probability distribution and
X; = argmin |jx — X;||.
xESue

For clarity, the proof is delayed in Appendix. Intuitively,
this theorem shows that the best way to approximate the
empirical measure (4, would be by considering a mixture
of Diracs with each mode being the projection of a training
data point on the support of the learned manifold S;,,. The
network w? could thus be tempted to approximate this
mixture of Diracs defined in Theorem | and collapse on some
specific latent data points. This could lead to an increased
time complexity at inference (see [3, Section 3]). More
importantly, this would mean a mode collapse and a lack of
diversity in the generated samples.

To avoid such cases where small areas of z have really
high w?(z) values (mode collapse), we enforce a soft-
clipping on the weights [5, | 1]. Note that this constraint on
w?(z) could also be implemented with a bounded activation
function on the final layer, such as a re-scaled sigmoid or tanh
activation. Finally, we get the following objective function
for the network w?:

sup oz 14 (2) (DalGo(2) —4) ~hi (B0 (2) — 1)
(01

self-normalization

- )LZ EZNZ max (07 (W(p (Z) - m))zv (6)

discriminator reward

soft-clipping

where A = min,z Dg(G(2)). A1, A2, and m are hyper-
parameters (values displayed in Appendix). For more details,
we refer the reader to Algorithm 1.

Algorithm 1: Adversarial learning of w?

Require: Data L, Prior Z, Gen. Gy, Disc. Dg,
number of Dy, updates n,, soft-clipping param. m,
regularization weights A; and A;, batch size b;

while ¢ has not converged do

for i=0,...,n; do

Sample real data {x;}2_| ~

Sample latent vectors {z;}2_; ~ Z ;

EMD « 1 Y7, Dg (x;) —w?(2) Do (Go (1))

GP < Gradient-Penalty (D, x,Gg(z));

grad, < V4 (—EMD+GP) ;

Update o with grad,,;

end

Sample {z;}?_ |, ~Z;

A  min;[Dy(Go(zi))] 3

EMD ¢ 3 ¥ w(z)[Da(Go () — Al;
Rnorm < ([ézlbil w(zi)] — 1)2 )

Reiip %Ef’:l max (0, w?(z;) —m)? ;
grad(p — V(P(EMD + lanorm + )QRCHF) )
Update ¢ with grad,,;

end
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3.3. Sampling from the latent importance weights

Given a pre-trained generator Gy and an importance
network w®, we now present the three proposed sampling
algorithms associated with our model:

1) Latent Rejection Sampling (latentRS, Algorithm 2).

The first proposed method aims at sampling from the
newly learned latent distribution y¢ defined in equation 4.
Since the learned importance weights are capped by m
defined in equation 6, this setting fits in the Rejection
Sampling (RS) algorithm [25]. Any sample z ~ ¥ is now
accepted with probability P,(z) = w®(z)/m. Interestingly,
by actively capping the importance weights as it is done in
counterfactual estimation [5, 8], one controls the acceptance
rates IP,(z) of the rejection sampling algorithm:

By P = [ Dayt) =

m m’

Algorithm 2: LatentRS
Requires: Prior Z, Gen. Gg, Importance weight
network w®, maximum importance weight m;
while True do
Sample z~ Z ;
Sample o ~ Uniform[0, 1] ;
if & > ¢ then
| break;
end
end
x <+ Go(2);
Result: Selected point x

2) Latent Gradient Ascent (latentGA). Inspired from
[30, Algorithm 2], we propose a second method, latentGA,
where we perform gradient ascent in the latent space (see
the algorithm in Appendix). For any given sample in the
latent space, we follow the path maximizing the learned
importance weights. This method is denoted latentGA. Note
that the learning rate and the number of updates used for this
method are hyper-parameters that need to be tuned.

3) Combining latentRS with Gradient Ascent (latent
RS+GA, see Appendix). Finally, we propose to combine
sequentially both methods. In a first step, we avoid low-
quality samples with latentRS. Then, we use latentGA to
further improve the remaining generated samples. See
algorithm in Appendix.

3.4. Advantages of the proposed approach

We now discuss two advantages of our method compared
to previous density-ratio-based Monte-Carlo methods.

Computational cost. By using sampling algorithms in the
latent space, we avoid going through both the generator
and the discriminator, leading to a significant computational
speed-up. This is of particular interest when dealing with
high-dimensional spaces, since we do not need to pass
through deep CNNs generator and discriminator [17]. In
the next experimental section, we observe a computational
cost decreased by a factor of 10.

Monte-Carlo methods do not properly work when
the support S,, does not fully cover the support S, .
To better illustrate this claim, we consider a simple
2D motivational example where the real data lies on
four disconnected manifolds. We start with a proposal
distribution (in blue) that does not fully recover the target
distribution (Figure 2a). In this setting, we see in Figure
2b that the discriminator’s density-ratio-based methods [3]
avoids half of the proposal distribution, while our proposed
method learns a very different re-weighting (see Figure 2c).

This illustration is important since [, Theorem 2.2] have
shown that in high-dimension the intersection Sy, (Sy,
is likely to be a negligible set under pg. Knowing that
Sy, does not fully recover Sy, , there is thus no theoretical
guarantee that using a sampling algorithm will improve the
estimation of u,. On the opposite, our method looks for the
optimal re-weighting of ug under a well-defined criterion:
the Wasserstein distance. This results in a better fit of the
real data distribution (see next section).

4. Experiments

In this section, we illustrate the efficiency of the proposed
methods, latentRS, latentGA, and latentRS+GA on both
synthetic and natural image datasets. On image generation
tasks, we empirically stress that latentRS slightly surpasses
density-ratio-based methods with respect to the Earth
Mover’s distance while reducing the time complexity by
a factor of around 10. The use of latentGA also gives
interesting experimental visualizations and improves image
quality. More importantly, when combined, we show that
latenRS+GA surpasses the concurrent methods, while still
being less computationally intensive. Finally, we show
results with different models such as Progressive GAN [16]
and StyleGAN2 [18].

4.1. Evaluation metrics

To measure the performances of GANs when dealing
with low-dimensional applications, we equip our space with
the standard Euclidean distance. However, for the case
of image generation, we follow [0, 20] and consider the
euclidean distance between embeddings of a pre-trained
network, that convey more semantic information. Thus, for
a pair of images (a,b), we define the distance d(a,b) as
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in green and fake ones in blue. precision criterion [3].
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(a) Synthetic WGAN: real samples  (b) MC method optimizing for a

- 7 »

il
(d) Heatmap of the w? in the

latent space (in the blue areas,
w?=0).

(c) Optimizing for Wasserstein
criterion with latentRS (ours x ).

Figure 2: Synthetic experiment mimicking the setting of GANs in high-dimension, where data and generated manifolds are close but do
not perfectly intersect. While DRS only selects the intersection of manifolds and ignores the rest, the latent importance weights define a
rejection mechanism that minimizes the Wasserstein distance. For conciseness, WGAN stands for WGAN-GP.

EMD EMD
Swiss Roll | 25 Gaussians
WGAN 0.030+0.002 | 0.044-+0.001
WGAN: DRS 0.036+0.004 | 0.038+0.002
WGAN: SIR 0.037+0.003 0.041+0.001
WGAN: DOT 0.029+0.003 | 0.035+0.002
WGAN: latentRS (x) | 0.025+0.002 | 0.0360.001

Table 1: Comparison of latentRS with concurrent methods on two
synthetic datasets in the same setting as DOT [30]. Our method
enables a consistent gain in EMD, surpassing other methods on

Swiss Roll and slightly behind DOT on Mixture of 25 Gaussians.

For conciseness, WGAN stands for WGAN-GP.

d(a,b) = ||¢(a) — ¢(b)||2 where ¢ is a pre-softmax layer
of a supervised classifier. On MNIST and F-MNIST, the
classifier is pre-trained on the given dataset. On CelebA and
LSUN Church, we use VGG-16 pre-trained on ImageNet.

To begin with, we report the FID [I5]. We also
compare the performance of the different methods with the
Precision/Recall (PR) metric [20]. It is a more robust version
of the Precision/Recall metric, which was first applied in
the context of GANs by [27]. Finally, we approximate
the Wasserstein distance using the Earth Mover’s Distance
(EMD) between generated and real data points. This measure
is particularly suited to the study of WGANS, since it is
linked to their objective function. Letting X = {x1,...,x,}
andY = {y1,...,yn} be two collections of n data points and
. be the set of permutations of [1,n], the Earth Mover’s
distance between X and Y is defined by:

n
EMD(X,¥) = min " iy
i=1

4.2. Synthetic datasets

To begin the experimental study, we test our method on
2D synthetic datasets in the same setting as [30]. Table 1
compares the latentRS method with previous approaches

on the Swiss roll dataset and on a mixture of 25 Gaussians.
We see that the network w? efficiently redistributes the pre-
trained distribution Uy since EMD(,,, ,ug ) is significantly
smaller than EMD(,,, tlg ).

4.3. Image datasets

Implementation of baselines. @~ We now compare
latentRS, latentGA, and latentRS+GA with previous works
leveraging discriminator’s information on high-dimensional
data. In particular, we implemented a wide set of post-
processing methods for GANs: DRS [3], MH-GAN [32],
SIR [11] and DOT [30]. DRS, MH-GAN and SIR use
the same density ratios, and we did not see significant
differences between those three methods in our experiments.
Consequently, for the following experiments, we compare
our algorithms to SIR and DOT. For SIR, we take the
discriminator at the end of the adversarial training, fine-
tune it with the binary cross-entropy loss and select the best
model in terms of EMD. Overall, we explicitly follow the
framework used by [3, 11]: we keep the gradient penalty
[12], spectral normalization [24] during fine-tuning and do
not include an explicit mechanism to calibrate the classifier.

4.3.1 Description of datasets and neural architectures

We first consider two well-known image datasets that are
MNIST [21] and FashionMNIST (F-MNIST). We follow
[19] and use a standard CNN architecture composed of a
sequence of blocks made of 3x3 convolution layer and ReLU
activations with nearest neighbor upsampling. For these
datasets, the discriminator is trained using the hinge loss [22]
with gradient penalty (Hinge-GP). Finally, the architecture
used for the network w? is very simple: an MLP with 4
fully-connected layers and ReLU activation (with a width =
4 xd).

CelebA [23] is a large-scale dataset of faces covering a
variety of poses. We use a pre-trained model of Progressive
GAN [16] at 128x128 resolution. The discriminator is
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CelebA 128x128 Prec. (1) | Rec. (1) | EMD ({) FID ({) Inference (ms)
ProGAN 74.2409 | 60.7+14 | 25.4+0.1 | 11.30+0.02 3.6
ProGAN: SIR 79.5+04 | 57.3+10 | 24.9+02 | 12.01+0.04 49.0
ProGAN: DOT 81.3+1.0 | 52.9+14 | 25.0+0.1 | 11.01+0.03 67.6
ProGAN: latentRS (%) 80.4+09 | 55.7+1.0 | 24.7+0.1 | 10.77+0.04 4.5
ProGAN: latentRS+GA (%) 83.3+1.0 | 52.7+09 | 24.5+01 | 10.75+0.04 20.5
LSUN Church 256x256

StyleGAN2 55.6+12 | 62.4+1.1 | 23.6+0.1 | 6.9140.02 11.7
StyleGAN2: SIR 60.5+1.4 | 58.1+1.3 | 23.4+01 | 7.36+0.01 130.0
StyleGAN2: DOT 67.4+1.4 | 48.3+1.0 | 23.1+01 | 6.85+0.02 196.7
StyleGAN2: latentRS (%) 63.340.7 | 57.7+1.0 | 23.1+0.1 6.31+0.02 16.2
StyleGAN2: latentRS+GA (x) | 72.6+1.1 | 43.2+1.3 | 22.6+0.1 6.27+0.03 43.2

Table 2: latentRS+GA is the best performer, and latentRS matches SOTA with a significantly reduced inference cost (by an order of at least
10). £ is 97% confidence interval. Inference refers to the time in milliseconds needed to compute one image on a NVIDIA V100 GPU.

— ProgGAN —— DOT —— lat.GA(*) —*= StGAN2 —— DOT —— lat.GA(»)

SIRGAN  -e- lat.RS(+) == lat.RS+GA(*) SIRGAN == lat.RS(*) —— lat.RS+GA(*)
87.5 75
 85.0 c
=} 270
0825 @
(9] [v]
Lgo.of // ge6s5
o o
77.5 60
75.0 . .
55
10t 102 10t 102 10

Time in ms. (log scale) Time in ms. (log scale)

Figure 3: Visualization of the trade-off between the time spent
to generate an image and its average precision. Interestingly,
latentRS+GA has the best Pareto front. Left: ProGAN trained
on CelebA. Right: StyleGan2 trained on LSUN Church.

trained using a Wasserstein loss with gradient-penalty. Also,
the architecture used for the network w? is really standard:
a 5 hidden-layer MLP with a width of the same size than the
latent space dimension.

LSUN Church [33] is a dataset of church images with
a lot of variety. We use a pre-trained model of StyleGAN2
[18] at 256x256 resolution. Similarly to the CelebA dataset,
the discriminator is trained using a Wasserstein loss with
gradient-penalty. Also, the architecture used for the network
w? is a 3 hidden-layer MLP with width equal to the latent
space dimension. Note that the StyleGAN architecture
already contains an 8-layer MLP network My : RY — R that
transforms a latent space variable to an intermediate latent
variable [17]. We consequently leverage this pre-trained My
and train the network w? on top of it.

4.3.2 Results

The main results of this comparison are shown in Table 2
and Figure 3. On all studied datasets, our latentRS+GA

outperforms every other method on the EMD with lower
computational cost. Interestingly, latentRS achieves good
performance on FID while being more than 15 times faster.
Figure 3 is particularly interesting since it gives a good
visualization of the trade-off between computational cost
and quality of the generated samples. On this experiment ran
on CelebA and LSUN, we observe that latentRS+GA can
achieve a significantly better precision than both SIR and
DOT while being much faster. Interestingly, even though
these datasets are high-dimensional, contain only one-class,
and w? has a low capacity, our proposed methods still
produce interesting results.

To visualize the efficiency of the proposed method, Figure
4 shows generated samples along with their acceptance
probabilities.  As expected, we observe that higher
acceptance probabilities correlate with higher quality images.
Figure 5 stresses how generated images improve when
performing latent gradient ascent on the importance weights.
Finally, we provide more qualitative results and details on
the experiments in supplementary material.

5. Conclusion

This paper deals with improving the quality of pre-trained
GANSs. Conversely, to concurrent methods which leverage
the discriminator at inference time, we propose to train
adversarially a neural network which learns importance
weights in the latent space of GANs. These latent importance
weights are then used with two complementary sampling
methods: latentRS and latentGA. We experimentally show
that this latent reweighting consistently enhances the quality
of the pre-trained model. When these two methods are
combined in latentRS+GA, it surpasses concurrent post-
training methods while being less computationally intensive.
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Figure 4: Images drawn from the generative model and their acceptance probabilities with the latentRS algorithm, given by the network w?.
As expected, the quality of images correlates with higher acceptance rates on all datasets: MNIST, F-MNIST, CelebA, and LSUN.

Figure 5: Gradient ascent on latent importance weights (latentGA): the quality is gradually improved as we move to larger importance
weights. Each image is generated only for visualization, and one can run this gradient ascent directly in the latent space using w®.
Interestingly, this gradient ascent only involves a simple MLP network which is computationally cheap.
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