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Abstract The main focus of this study is the development of an adapted
complex variable method in the vicinity of equilibrium in bistable Nonlinear
Energy Sink(NES). A simplified chaos trigger model is established to describe
the distance between the stable phase cycle and the pseudo-separatrix. An an-
alytical expression can predict the excitation threshold for chaos occurrence.
The relative positions between the chaos trigger threshold line and the Slow
Invariant Manifold (SIM) structure can express the distribution of response
regimes under growing harmonic excitation. The degeneration of the response
regimes can be interpreted by the qualitative analysis method, which helps
to classify the bistable NES. The experiment confirms the analytical result
of intra-well oscillation in the frequency domain. The characteristic response
regimes of weak, modest and strong bistable NES are identified by the exper-
imental results.
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1 Introduction

The Nonlinear Energy Sink (NES), a novel vibration absorber, has become
an active research field in recent decades. It consists of nonlinear component
and an attached mass to achieve the vibration mitigation. The traditional
Tuned Mass Damper (TMD) has to be tuned to closely match the mechanical
system’s natural frequency in order to absorb more energy. The performance of
a TMD will decline dramatically if the applied excitation frequency shifts. In
contrast, the NES possesses a broader range of absorbed frequencies because
of its self-adaptive stiffness, and its energy-dependent resonating frequency
characteristic [1]. The NES also has some other remarkable advantages: a
lighter attached mass, and a capability to wipe out the resonance peak [2].

The most significant properties are that the energy of the Linear Oscilla-
tor (LO) is irreversibly transferred into the NES and is rapidly dissipated by
the damping [3]. This phenomenon, called Targeted Energy Transfer (TET),
is based on 1:1 resonance capture. If the primary system is under harmonic
forcing, it gives rise to a beating response, which is referred to as a Strongly
Modulated Response (SMR). The appearance of folded singularities in the
Slow Invariant Manifold (SIM) implies a necessary excitation threshold condi-
tion to activate the SMR [4]. The stability of the SMR is transformed into a
1-D mapping problem. The analytical approach provides a necessary damping
condition to ensure SMR [5]. The NES concept has been explored in both
numerical [6,7] and experimental ways [8,9].

Various types of NES, such as piecewise NES [10], rotary NES [11], and
vibro-impact NES (VI NES) [12,25], have been investigated to better explore
the potential of NES. The absorption performance of different configurations
among cubic NES and bistable NES shows the priority of the latter NES
to reduce the band width of the initial energies input [14,15]. Single-sided
VI NES leading to more effective shock mitigation are compared to a double-
sided restricted VI NES [16]. The mechanical applications in structural seismic
control [17] and in mitigating chatter vibration [18] in the tuning process have
been studied.

Nowadays, one of the widely used analytical approaches for processing NES
is the complexification averaging (CX-A) method to derive the modulation
equation and compute the fixed points [19]. The application of the standard
multiple-scales procedure gives a slow/fast partition of the dynamics by intro-
ducing a fast time scale τ and a slow timescale τ1 = ϵτ [2–7]. However, as for
bistable NES, which involves essential chaotic motion, a rigorous theoretical
description is not possible. The analytical study presented here provides an
adequate description of the initial highly energetic regime of intensive energy
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transfer from LO to NES on a reduced system without considering damping
and excitation [20]. A study of parameters, based on an approach complexify-
ing the Hamiltonian system, reveals the frequency-energy characteristic of the
bistable case. The backbone of periodic solutions of the conservative system in
the frequency–energy plane depicts in-phase (S11+) and out-of-phase (S11–)
1:1 resonance oscillations [21], which are responsible for the intensive energy
exchange in Hamiltonian systems.

The classification of bistable NES response regimes is mainly based on em-
pirical observation. In a low energy case, subharmonic resonances and chaotic
cross-well oscillations are excited. In a higher energy case, the fundamental
(1:1) and subharmonic (1:3) resonances mainly govern the dynamic behaviour.
In [22], an extension of Manevitch’s complex variables shows that it is poten-
tially better to describe higher harmonics in an initial high energy input. If the
bistable NES system is under harmonic excitation input, four typical response
regimes at different energy levels appear in turn: (1) intra-well oscillation,
(2) chaotic inter-well oscillation, (3) strongly modulated response, (4) steady-
state [23]. The optimal point occurs in the transition from the SMR stage to
a stable response. Adjusting a variable pitch spring can provide the desired
nonlinear stiffness with the optimal design [25]. The robustness of optimal de-
sign is verified in [16], which also concludes that the damping condition mainly
determines the ceiling of maximum efficiency in the optimal cubic NES.

To construct and extend flexible use of bistable NES in different mechan-
ical contexts, several materials have been tested, e.g., cantilever beam [26],
magnetic material [27,28], bistable thin plate [29], spring system [23,30], and
buckled beam[31].

This work is organised as follows. In Section 2, an adapted complex variable
is developed to predict the excitation threshold for chaos to occur. Section 3
proposes a simplified trigger chaos model and verifies it numerically. In Section
4, the relative position of the chaos trigger line and its global SIM structure
express an alternating phenomenon of response regimes and, in Section 5, the
experimental result verifies the analytical intra-well result calculated using
the adapted complex variables method. Section 6 investigates the frequency
distribution of three negative stiffness cases from the previous section. The
last section mentions some noteworthy conclusions.

2 Adapted complex variables method

Intra-well oscillation relates to a low energy motion that is restricted to one
of the potential wells. It will become chaotic with increasing energy. An exact
method to describe the intra-well oscillation is necessary to divide the regimes.

First of all, the target system consists of a Linear Oscillator (LO) m1,
which is sustained by a harmonic excitation xe = Gcos(ωt) through linear
stiffness k1 and viscous damping coefficient c1. A lightweight m2 is coupled
to LO with viscous damping c2 by means of cubic stiffness k3 and negative
stiffness k2. The schema of a bistable NES system is presented in Fig. 1.
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Fig. 1 The schematic of bistable NES system

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ) + k2(x− y)3 + k3(x− y) = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2(y − x)3 + k3(y − x) = 0
(1)

The governing equation (1) can be written in rescaled form (3) by introduc-
ing the following rescaled variables (2). The new variable v = x+ϵy represents
the displacement of mass and w = x − y is the relative displacement of the
bistable NES.

ϵ = m2

m1
, ω2

0 = k1

m1
,K = k2

m2ω2
0
, δ = k3

m2ω2
0

λ1 = c1
m2ω0

, λ2 = c2
m2ω0

, F = G
ϵ , Ω = ω

ω0
, τ = ω0t

(2)

v̈ + ϵλ1
v̇+ϵẇ
1+ϵ + v+ϵw

1+ϵ = ϵF cosΩτ

ẅ + ϵλ1
v̇+ϵẇ
1+ϵ + v+ϵw

1+ϵ + λ2(1 + ϵ)ẇ +K(1 + ϵ)w3 + δ(1 + ϵ)w = ϵF cosΩt

(3)
The system is investigated in the vicinity of 1:1 resonance where LO and

NES oscillate at the identical frequency Ω. The traditional treatment of w
defines it as the relative distance between LO and NES. However, the negative
stiffness generates one equilibrium on either side of the origin of the coor-
dinates. The small oscillation around equilibria will be described as a large
amplitude with respect to w = 0. It also generates a massive error in the tra-
ditional analytical calculation of NES amplitude. It is necessary to consider
the position of equilibrium and define the distance between the NES and the
equilibrium point as a relative displacement.

So, two adapted complex variables describing the neighbourhood of positive
stable equilibrium point x0 =

√
−δ/K are given by

ϕ1(τ)e
iΩτ = d

dτ v(τ) + iΩ(v(τ) + ϵx0)
ϕ2(τ)e

iΩτ = d
dτw(τ) + iΩ(w(τ)− x0)

(4)

where i =
√
−1 the imaginary unit. A minus sign should be added in (4) in

order to study the local dynamics near the negative stable equilibrium −x0.
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Fig. 2 Time displacement of (a) LO and (b) NES in an intra-well oscillation stage, with
the excitation amplitude G = 0.05mm,σ = 0, initial condition ẇ(0) = v̇(0) = 0,w(0) =
x0, v(0) = −ϵx0, with system parameters: ϵ =0.01, λ1 =1.67, λ2=0.167, K =1742, δ =-0.43
and equillibrum position x0 = 15.8mm

Only intra-well oscillation on the positive side falls within the scope of our
present considerations, for the sake of symmetry.

In a potential function which is defined by the H(w) = δw2/4+Kw4/4, it
exists two attrctor points at w = ±x0 = ±

√
−δ/K, where NES possesses the

lowest potential energy and is called potential well. When the NES vibrates
symmetrically near the positive equilibrium w = x0 as a center in Fig. 2(a)
shows, it is termed as intra-well oscillation.

When the system performs a stable response, the upper displacement po-
sition of NES is 19.37mm, and the lower displacement position is 10.96mm.
The center of the upper and lower displacement position is 15.17mm, which is
close to the position equilibrium point x0 = 15.8mm. However, the numerical
simulation confirms that the amplitude of LO is also slightly asymmetrical as
Fig. 2(a) shows. The upper displacement position of LO is 1.02mm and the
lower displacement position is -1.317mm. The center of the upper and lower
displacement position is -0.15mm, which is negative. The center of LO oscil-
lation approximately locates −ϵx0 = -0.158mm. That is the explanation for
the different center forms in the (4). By considering the center positions, the
ϕ1 and ϕ2 can describe better the amplitude of LO and NES with respect to
the oscillation centers. Therefore the adapted complex variables assumption
fits well the simulation result.

Introducing (4) into (3), and keeping only terms containing eiΩτ yields the
following slow modulated system:
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ϕ̇1 +
iΩ
2 ϕ1 +

ϵλ1(ϕ1+ϵϕ2)
2(1+ϵ) − i(ϕ1+ϵϕ2)

2Ω(1+ϵ) − ϵF
2 = 0

ϕ̇2 +
iΩ
2 ϕ2 +

ϵλ1(ϕ1+ϵϕ2)
2(1+ϵ) − i(ϕ1+εϕ2)

2Ω(1+ϵ) + λ2(1+ϵ)ϕ2

2 − 3iK(1+ϵ)ϕ2
2ϕ̄2

8Ω3

− ϵF
2 − iϕ2δ(1+ϵ)

2Ω − 3iK(1+ϵ)ϕ2x0
2

2Ω = 0

(5)

where ϕ2 is the complex conjugate of ϕ2. The stable response of intra-well
oscillation corresponds to the fixed point of (5) when the derivative equals
zero. Through an algebraic operation, the analytical amplitude of the system
can be expressed in a more convenient form. Coefficients αi (i = 1..3) are not
given here due to their length.

ϕ10 =
iϵϕ20

Ω(1+ε)
− ε2λ1ϕ20

1+ε +εF+iε2λ1FΩ

iΩ+
ελ1
1+ε−

i
Ω(1+ε)

α3Z
3
20 + α2Z

2
20 + α1Z20 + α0F

2 = 0, Z20 = |ϕ20|2
(6)

The stability of intra-well oscillation is studied by introducing a small per-
turbation ρj and its complex conjugate ρj , j = 1, 2 into the fixed point equation
(5).

ϕ1 = ϕ10 + ρ1, ϕ2 = ϕ20 + ρ2, ϕ1 = ϕ10 + ρ1, ϕ2 = ϕ20 + ρ2 (7)

Extracting the perturbation terms gives the characteristic matrix.
ρ̇1
ρ̇2
ρ̇1
ρ̇2

 =


M11 ϵM21 0 0
M21 M22 0 M24

0 0 M̄11 ϵM̄21

0 M̄24 M̄21 M̄22



ρ1
ρ2
ρ̄1
ρ̄2

 (8)

where
M11 = − i(1+ϵ)

2 − ϵλ1

2(1+ϵ) +
i

2(1+ϵ)(1+ϵσ)

M21 = − ϵλ1

2(1+ϵ) +
i

2(1+ϵ)(1+ϵσ)

M22 = 3i(1+ϵ)Kϕ20ϕ̄20

2(1+ϵ)(1+ϵσ) − λ2(1+ϵ)
2 + iϵ

2(1+ϵ)(1+ϵσ) −
i(1+ϵσ)

2 − ϵ2λ1

2(1+ϵ) +
i(1+ϵ)(3Kx2

0+δ)
2(1+ϵσ)

M24 =
3i(1+ϵ)Kϕ2

20

8(1+ϵσ)3

(9)
The small detuning parameter σ is applied to measure how near the ex-

citation frequency is to the natural frequency of LO. It gives Ω = 1 + ϵσ.
The existence of a root of the characteristic equation with a positive real part
implies the instability of periodic intra-well oscillation, and vice versa.

The stability of local equilibrium oscillation is deduced and presented in
Fig. 3 in the frequency domain. All blue points mean that all the real roots are
located in the left-half complex plane. The motion within the well is naturally
stable in our case. The absolute value of ϕ20 is lower than the chaos threshold.
It ensures that the local dynamics is restricted to within the well. If the value of
ϕ20 exceeds the chaos threshold, it is beyond the scope of our present section,
and results in truncation in the vicinity of the natural frequency in Fig. 3.
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Fig. 3 Amplitude of intra well oscillation in the frequency domain with system parameters:
ϵ =0.01, λ1 =1.67, λ2=0.167, K =1742, δ =-0.43. Blue points indicate the stability of the
solution.

2.1 Asymptotic analysis of local SIM

When considering the adapted variables method, the local SIM structure in
which the classical multiple-scales method is applied has to be reconstructed.

ϕi = ϕi (τ0, τ1, . . .) ,
d
dτ = ∂

∂τ0
+ ϵ ∂

∂τ1
+ ϵ2 ∂

∂τ2
+ · · ·

τk = ϵkτ, k = 0, 1, . . .
(10)

The dynamic behaviour is considered to involve motion on various times
scales. τ0 represents fast time scales, and τ1 = ϵτ0 slow time scales. The rule
for derivation under different time scales is presented in (10). By substituting
(10) into (9), the terms involving the same power of ϵ, are selected:

∂
∂τ0

ϕ1 = 0,
∂

∂τ0
ϕ2 +

1
2λ2ϕ2 +

1
2 i(ϕ2 − ϕ1)− 1

2 iδϕ2 − 3
2 iKϕ2x0

2 − 3
8 iKϕ̄2ϕ

2
2 = 0

(11)

where the first equation in (11) indicates that the modulation of ϕ1 is
independent of τ0. Fixed point Φ = limτ0→∞ ϕ2 obeys the algebraic equation:

1

2
λ2Φ+

1

2
i(Φ− ϕ1)−

1

2
iδΦ− 3

2
iKΦx0

2 − 3

8
iKΦ̄Φ2 = 0 (12)

Taking Φ(τ1) = N2e
iδ2 and solving the above equation:

Z1 = (λ2
2 + (δ − 1)

(
δ − 1 + 6Kx2

0 +
3
2KZ2

)
+ 9K2

(
x2
0 +

Z2

4

)2
)Z2 (13)

where Z1 = |ϕ1|2, Z2 = |Φ|2. This structure is deduced by the adapted complex
variables method, which is accurate for the intra-well oscillation around the
equilibrium point. So this SIM structure is termed as local SIM in comparison
with global SIM, which describes the SMR stage or stable periodic stage in a
high energy input case. An illustration of the local SIM is given in Fig.4 under
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Fig. 4 Local SIM and local phase trajectory for k3 = −20 (δ = -0.174, left), k3 = −100 (δ =
-0.871, right). Zoomed insert represents the detailed phase trajectory of intra-well oscillation
defined by (6) in the green frame

the different negative stiffnesses where ϵ = 0.01, λ1 = 1.67, λ2 = 0.167,K =
1742.

In a cases of small negative stiffness, the local SIM possesses a characteristic
similar to the classic cubic SIM curve, which has singular points like Fig. 4(a).
Although most of the local SIM curve is beyond the scope of this application,
the zoomed insert part in the vicinity of point (0,0) shows that the phase
trajectory climbs along with the SIM. In a more significant negative stiffness
case, in Fig. 4(b), the local SIM becomes a monotonically increasing curve.
The phase trajectory of the zoomed insert part still oscillates around the SIM,
which shows that it is correct for low energy input.

Unlike the traditional description method, e.g. case 1 in Fig. 11, where
the phase trajectory has fully separated itself from the SIM, the local SIM
describes intra-well motion more accurately. This local SIM structure is de-
veloped based on the adapted variable method and its application scope is
restricted to an intra-well oscillation. So, the lcoal SIM describes its dynamic
behaviours with sufficient accuracy only in a low energy input case. A more
significant energy input and cross well oscillation will result in its failure.

2.2 Performance verification

The validity of the adapted complex method can be verified by comparing
it with numerical simulations. The difference between amplitudes of w and v
calculated by (6). The direct numerical calculation is presented for the various
negative stiffness cases (k3 = −20 and k3 = −100) with system parameters: ϵ
=0.01, λ1 =1.67, λ2=0.167, K =1743, δ =-0.43. These parameters were kept
constant in the following numerical simulation.

In a weak negative stiffness case, both LO and NES amplitudes increase
with a more intensive excitation amplitude in Fig.5(a),(c). The range of ex-
citation amplitude is selected as [0.005mm, 0.025mm] to ensure that motion
of NES is restricted inside the well. In Fig.5(b), the different amplitudes be-
tween analytical and numerical results are in a level of 10−2mm. Meanwhile,
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Fig. 5 Comparison of numerical calculations and analytical results of NES. (a), (c) are the
numerical amplitudes of NES and LO in a weak negative stiffness case, k3 = -20. (b), (d)
are the relative differences between analytical results and numerical results. Positive values
mean numerical result is larger than the analytical result, vice versa

the numerical amplitudes in Fig.5(b) is in a level of 1mm. This difference can
be neglected. This indicates that in the case of small negative stiffness, the
analytical solution can better describe the amplitude of LO. In Fig.5(b), the
analytical NES amplitude is always more significant than the numerical result.
The adapted method generates errors mainly in the vicinity of σ = 0. However,
the absolute maximum mistake in NES amplitude calculation is 2.2%, which
is still extremely small.

In a more significant negative stiffness case k3 = −100, the deeper potential
well requires a more intensive excitation to escape the intra-well oscillation
stage. So the amplitude excitation is selected in a larger range [0.005mm,
0.1mm]. In Fig.6(a),(c), the amplitude of NES and LO steady rise with the
augment of excitation G. On the negative σ side, both LO and NES amplitudes
arrive at their maximums. Analytical LO amplitude results produce a larger
value than the numerical results in a high energy input case in In Fig.6(b). In
the case of low energy, analytical results of LO amplitude produce lower values
than numerical results. As for the analytical results of NES amplitude, it is
always smaller than the numerical calculation. The maximal difference occurs
in the σ = -1 and G = 0.1mm, where the absolute maximum error is 4%.

Based on the above disscations, the adapted complex method can calcu-
late a fixed point of system in the intra-well oscillation stage. As long as the
NES oscillate with respect to the attactor w = x0, NES amplitudes calcuca-
tion in Fig.5 and 6 shows its accuracy in frequency domain. As the stiffness
increases, the required excitation amplitude to escape the potential well is also
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Numerical results of LO amplitude/ mm
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Fig. 6 Comparison of numerical calculations and analytical results of NES. (a), (c) are the
numerical amplitudes of NES and LO in a large negative stiffness case, k3 = - 100. (b), (d)
are the relative differences between analytical results and numerical results. Positive values
mean numerical result is larger than analtical result, vice versa.

increasing and the application range of complex variables method also extends.
Equation. (4) contains the same frequency term Ω, which means both LO and
NES oscillate in the same frequency. However, in a high energy input case
and higher excitation frequency, 1:3 suhharmonic excitation is activated. The
LO oscillates three times faster than the NES. In this case, adapted complex
variables method also fails.

3 Analytical prediction of chaotic motion

3.1 Simplified model for chaos occurrence

Chaos always occurs in the transition from intra-well oscillation to inter-well
oscillation. The Melnikov method is one of the few effective methods for find-
ing the necessary condition for homoclinic bifurcation and predicting chaotic
motion. The transverse intersection of stable and unstable manifold of sad-
dle fixed point and homoclinic bifurcation occurs simultaneously. This kind of
global bifurcation is responsible for the prediction of chaotic behaviors.

According to [1], the unperturbed homoclinic orbit of bistable NES that
connects the saddle points is shown as the red curves in Fig. 7. Its expression
is given by:

q0+(τ) = (R · sech(Sτ),−RS · sech(Sτ) tanh(Sτ))
q0−(τ) = −q0+(τ)

(14)
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Fig. 7 Different trigger conditions in (a) small negative stiffness value (k3 = -20N/m,
δ = −0.174), (b) large negative stiffness value (k3 = -100N/m, δ = −0.871). The red line
is the pseudo-separatrix, the blue line is the ideal phase trajectory, the green dot is the
attractor center (x0, 0), and the triangle is the contact point. The radius D gives the critical
NES amplitude for chaos occurrence.

where R =
√
−δ/K, S =

√
−δ. This orbit is also termed as pseudo-separatrix.

The NES oscillates around the attractor (equilibrium) with a small am-
plitude, and the circle can describe its corresponding stable phase trajectory
with sufficient accuracy in the low energy input condition. This stable phase
trajectory of intr-well oscillation in damping conditions is similar to the closed
homoclinic orbit. When excitation amplitude increases, the phase trajectory
expands in a circle with its center at the attractor point (x0, 0) and the homo-
clinic orbits break, and phase trajectory touches the separatrix. Its intersection
with the pseudo-separatrix can be considered as a symbol of the occurrence of
chaos. The different values of δ result in the deformation of geometric shapes
of pseudo-separatrix, so the trigger conditions are different, as shown in Fig. 7.
The critical δ value divides the trigger conditions into two types: (1) with the
contact point located on the pseudo-separatrix or (2) with the contact point
located on the extreme right of the pseudo-separatrix.

During the transition from intra-well oscillation to chaotic inter-well os-
cillation, the phase trajectory will cross the pseudo-separatrix. The trigger
condition can be determined by calculating the minimum distance between
the point on the pseudo-separatrix and the attractor. The minimal distance
D is the minimum radius required for a circle in contact with the pseudo-
separatrix, which leads to the critical condition of triggering chaos. The D
value, as a function of w, can be defined from (15):

D2 =

(
w − 1

2
R
√
2

)2

+
S2w2

(
R2 − w2

)
R2

(15)
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The local minimum distance, which exists only in the following three po-
sitions within the interval [0, R], are obtained by taking the derivative of w in
the above equation and setting this derivative to zero.

w1,2,3 =

(
− 1

4

√
2S + 1

4

√
2S2 + 8

)
R

S
,
R√
2
, R (16)

If the negative stiffness |δ| exceeds the critical value (2 −
√
2)2, (critical

negative stiffness k3 = -39.4 N/m in our case), the minimum distance is always

equal to (1−
√
2
2 )R, which means that the point on the pseudo-separatrix that

is closest to the attractor point is always located at the extreme right point,
as case (b) in Fig. 7 shows.

In a case of relatively greater negative stiffness, it is reasonable to con-
sider the distance between the extreme right point and the attractor as the
critical amplitude. If the final stable NES amplitude |ϕ20| exceeds the critical

amplitude |ϕ20c| = (1−
√
2
2 )R, chaotic behavior appears. And the amplitudes

threshold of NES for chaos occurrence, Za = |ϕ20c|2 can be expressed in (17).

Za =

{
(1−

√
2
2 )2R2 |δ| > (2−

√
2)2

R2S2

4 |δ| ≤ (2−
√
2)2

(17)

3.2 Analytical chaos prediction

The assumption is that the intra-well oscillation expands in a circle and in-
tersects the pseudo-separatrix at critical amplitudes |ϕ20c| in various negative
stiffness cases. If the system’s amplitude increases monotonically before its
phase trajectory crosses the pseudo separatrix, the trigger condition (17) can
be substituted for the stable solution Z20 = Za and G0c = ϵ · F in the second
equation of (6). So the analytical excitation for chaos occurrence is as follows:

G2
0c = −

ϵ2Z20

(
Z2
20α3 + Z20α2 + α1

)
α0

(18)

where the α1, α2 and α3 are the same as the coefficients in (6), which are deter-
mined by the system parameters. A more exact threshold value of excitation
calculated by (18) can be compared with the numerical Lyapunov exponents
method in Fig. 9.

the Lyapunov exponent (LE) can be used to quantitatively evaluate chaos
behaviors through calculating the average exponential growth or decay of
nearby orbits [33]. The definition of the Lyapunov exponent (λLE) is given:

λLE = lim
d(0)→0,t→∞

1

t
ln

(
d(t)

d(0)

)
(19)

where d(t) is the distance in phase space between a given orbit and a test
orbit, initially starting infinitesimally close with initial distance d(0). For a pe-
riodic solution (orbit), λLE reduces to be negative when the calculation time
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Fig. 8 (a) Bifurcation of bistable NES (k3 = -50, δ = -0.44) response under variety of
excitation amplitude G, Xaver means the average distance of NES with respect to the w
= 0 position (b) Lyapunov exponent calculation for variety of excitation amplitude G with
condition: ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K = 1742, σ = 0

tends to be infinity. As for a chaotic solution, the Lyapunov characteristic
exponents approaches a positive value as time increases. Further on, only the
maximal component should be considered as an indication of chaos. For a given
ordinary differential equation, Wolf created a toolbox in Matlab to calculate
LEs, where the algorithm employed for determining the exponent was pro-
posed [35] with a MATLAB implementation found on [36]. So the calculation
of Lyapunov exponent is numerically determined from (3). To obesever the
validation of Lyapunov method and to inverstigate the excitation amplitude
threshold of chaos occurance, the bifurcation diagram under various excitation
amplitudes is presented in Fig.8.

Through the Fig. 8. Before excitation amplitude increases to 0.085 mm,
the system performs a stable intra-well oscillation, the Lyapunov exponent is
negative. Once excitation exceeds the chaos threshold, the exponent turns out
to be positive immediately. Even in the 1: 3 subharmonic stage, the Lyapunov
exponent appears to be negative again in the range of [0.11mm, 0.14mm].
During the SMR stage (G = [0.2mm, 0.43mm]), chaos motion is mixed with
1:1 resonance, so the Lyapunov exponent is always positive with a decreasing
tendency. When excitation exceeds the threshold, the response of the system
re-turns to be a stable and optimal state. Lyapunov exponent becomes negative
again. The Lyapunov method proves to be efficient enough to determine the
chaos threshold. So the chaos threshold G0c for k3 = -50N/m is selected as
0.085 mm. So the numerical result of chaos threshold in the function of negative
stiffness is marked in the red curve in Fig. 9.

The comparison between numerical predictions and analytical predictions
reveals a gradual decline in excitation threshold for chaos occurrence as nega-
tive stiffness weakens in Fig. 9. The more intense negative stiffness results in
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Fig. 9 Comparison of analytical predictions with numerical results of chaos threshold am-
plitude (harmoinc excitation σ = 0) under various negative stiffness designs, with condition:
ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K = 1742

a deeper well requiring more energy input to escape from it, which leads to a
higher excitation threshold to trigger chaos.

The analytical prediction values are close to the numerical results for a
large range of negative stiffness in Fig. 9. It proves that our analytical method
is suitable and accurate enough. According to the performance verification
section, the analytical NES amplitude is smaller than the numerical amplitude
in the strong negative stiffness case. This implies that the analytical NES
amplitude will give a more significant critical trigger excitation.

The accuracy of predictions is changed in strong negative stiffness. The
simplified model is less accurate if the phase trajectory is far away from the
attractor. At the moment when a trajectory passes the pseudo separatrix, it
is always at some distance from the attractor. This distance rises as the value
of |δ| increases.

From another point of view, the adapted complex variables method is based
on the stable periodic solution triggering chaos. In a case of much higher
negative stiffness, the instantaneous amplitude of the NES exceeds its final
stable amplitude, which is inconsistent with the initial assumption that it
is the final stable phase trajectory (final periodic solution), rather than the
instantaneous amplitude, that triggers the pseudo-separatrix.

In addition, only one side attractor is under consideration. A greater neg-
ative stiffness makes the phase trajectory deviate from the ideal circle model.
When the phase trajectory passes the mid point between the origin point and
the attractor, the other side attractor in the negative side will increase NES
amplitude. The asymmetry of amplitude with respect to the attractor ren-
ders the prediction results invalid. In the vicinity of the pseudo-separatrix, the
intra-well and inter-well subharmonic oscillations are beyond the descriptive
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capabilities of the adapted complex variables method. The above potential
interpretation explains the generation of error in the process of application of
the adapted complex variables method in the prediction of chaos.

4 Qualitative analysis of response regimes

The presentation of negative stiffness introduces chaotic motion essentially
changing the response regimes. Two main characteristics are discussed below
to interpret the response regimes in various negative stiffness cases.

First, the pseudo-separatrix governs the low energy behaviours and distin-
guishes them from chaotic motion. Low energy restricts the NES to oscillation
around the attractor (

√
−δ/K, 0), and expands in one well with growing en-

ergy. If the amplitude of w exceeds the extreme right point (
√

−2δ/K, 0) of the
separatrix, the inter-well chaotic motion pervades two wells and their vicinity.

Secondly, the global SIM branch can better describe the high energy be-
haviours of bistable NES. The phase trajectory oscillates around the right
branch of the global SIM when the system shows SMR or stable response. By
applying the classic complex variables ϕ1e

iΩτ = v̇+ iΩv, ϕ2e
iΩτ = ẇ+ iΩw

and a multiple-scales method, the traditional global SIM can be extracted as
in (20).

Z1 = λ2
2Z2 + (δ − 1)2Z2 +

3K
2 (δ − 1)Z2

2 + 9K2

16 Z3
2

Z1 = N2
1 , Z2 = N2

2

(20)

This method can be found in various references. The unstable regime is divided
by the singular value Z2i in the Z1 and Z2 plane:

Z2,i =
4
(
2(1− δ)∓

√
(1− δ)2 − 3λ2

2

)
9K

, i = 1, 2 (21)

In the SIM plane, there are four characteristic lines worth to emphasize:

1. Line A
This attractor line is located in (Z2 = −δ/K). The phrase trajectory starts
from the attractor line A and oscillates around this axis in the intra-well
oscillation stage.

2. Line B
This chaos threshold line is located in (Z2 = −2δ/K). It is deduced from
the width of the pseudo-separatrix. Once the phase trajectory crosses this
line, there is a high possibility to activate chaos. In other words, chaos
occurs when the NES amplitude exceeds

√
−2δ/K based on the previous

simplified chaos trigger model.
3. Line C

This singularity line C is located in (Z2 = Z2,1). It divides the classic SIM
structure into stable and unstable branches. In the cubic NES case, once
the phase trajectory crosses this singularity line, a snap-through motion
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occurs. However, in an intensive negative stiffness case, this condition does
not ensure the occurrence of the jumping phenomenon.

4. Line D
This singularity line C is located in (Z2 = Z2,2). If the trajectory reaches
line D, it jumps definitively to the right stable branch of the SIM even in
a bistable NES with a large |δ| value.

All the four characteristic lines are parallel to the axis Z1. So the Z1, Z2

plane, is divided into two regions: (1) Chaotic region. It occupies range of
Z2 = [0 −2δ/K]. When the system performs the chaos, phase trajectory will
occupy this range. (2) unstable region. It occupies range of Z2 = [Z2,1, Z2,2].
This region is associated with the jumping phenomenon of phase trajectory.
It is a temporary region before the system reaches at its final state.

4.1 Classification of bistable NES

The bistable NES preserves some original features of the cubic NES if a small
value of negative stiffness is introduced. The distribution of efficiency under
inputs of continually increasing energy is presented in Fig. 12, for a better
comprehension of the distribution of the regimes. Its efficiency ratio is defined
as follows:

ELO(τ) =
∫ τ

τ0
ϵλ1ẋ

2dτ,ENES(τ) =
∫ τ

τ0
ϵλ2(ẋ− ẏ)2dτ,

rNES = ENES

ELO+ENES
× 100%

(22)

4.1.1 Weak bistable NES

Initially, a small value of negative stiffness k3 = -20 N/m (δ = -0.17) is intro-
duced in the following simulation. This bistable NES preserves some original
features of the cubic NES. Fig. 10 shows that the whole excitation range has
five distinct phases. For each phase, the typical behavior of the time domain
and its phase trajectory are extracted in Fig. 11. The relative positions of four
characteristic lines are demonstrated in Fig. 12.

When the NES maintains an intra-well oscillation, e.g. case 1 in Fig. 11c,
this low energy level motion is trapped in one of the wells. Because the NES vi-
brates in the vicinity of equilibrium, the trajectory is quasi-asymmetric around
attractor line A. The adapted complex variables method can describe its be-
haviors better by the local SIM according to the previous section.

In the second stage of Fig. 11, the chaos motion brings a higher efficiency
compared to previous stage. And the maximal amplitude (Am) and avergae
amplitude (Ae) curves separate slightly. Increasing energy input causes the
NES amplitude to exceed line B and trigger chaotic motion. However, the
small value of δ leads to a significant gap between the chaos threshold line
B and singularity line D. The phase trajectory can neither activate SMR nor
be attracted to the left global SIM branch, but can only expand and take a
position near line B, as in case 2 in Fig. 11c.
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Fig. 10 (a) Energy dissipation ratio of NES (b) maximal and average LO amplitude in
weak bistable NES case with k3 = -20 N/m (δ = -0.17) under harmonic exicitations (σ =0).
The blue line represents the average amplitude in a given time interval, the green dashed
line is the maximum amplitude. The black dashed lines divide regimes into five stages.

In the third stage of Fig. 10, the LO amplitude increases linearly with
increasing G and the corresponding efficiency maintains a low level, which
implies that the TET is not activated. After the generation and transient
expansion of chaos, the time domain displacement of w is symmetrical to the
zero position. The phase trajectory is re-attracted to the left stable global
SIM branch as in case 3 in Fig. 11c and rises along the left global SIM branch.
This attraction motion that results from the phase trajectory increasing in
the Z1 direction affects the left stable global SIM branch more quickly than
the expansion of the phase trajectory in Z2 direction in the initial low energy
input stage.

In the fourth stage of Fig. 10, a complete SMR emerges. TET is activated,
so the NES efficiency arises higher. The separation of the maximal amplitude
and average amplitude curves manifests an unstable amplitude motion: SMR.
The phase trajectory of weak bistable NES moves along with the global SIM
structure. However, once the phase trajectory re-enters the chaos region after
the efficient energy dissipation, the motion is chaotic in case 4 of Fig. 11, which
is different from the cubic NES case.

In the beginning of fifth stage in Fig. 10, the efficiency of NES arrives its
maximum. The system achieves an optimal state, whcih is stable and periodic.
The maximal efficiency of this weak bistable NES in the Fig. 10 is about 71%.
Due to the large amplitude excitaion, the trajectory easily crosses the global
SIM unstable region without rising along the left stable branch like case 5
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explanation by orange arrow line.
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of Fig. 11c. Chaos triggers the snap-through motion. The trajectory jumps
directly to the right global SIM branch before it crosses the singularity point
S1 : [Z2,1, Z1,1]. So the maximal LO amplitude at the jump moment is lower
than that of the cubic SMR stage. This implies that the LO can be protected
better if there is high energy input in a weak bistable NES case. Since the
phase trajectory finally arrives at the right branch of the global SIM without
jumping back, it indicates saturation of the capability of absorbing energy.
The final position of the phase trajectory will be located in a higher position
of the right global SIM branch with an excitation of increasing amplitude.
The optimal point ideally occurs at the singularity point S2 : [Z2,2, Z1,2] in
the global SIM structure.

The negative stiffness can not only affect the stage of response regimes, but
also influence the SMR behavior. The time domain of SMR, which is divided
by green dashed lines in Fig. 12(b) shows five different parts of a complete
SMR: (1) intra-well oscillation, (2) chaos expansion, (3) re-attraction to SIM,
(4) jumping motion, (5) Targeted Energy Transfer (TET). Compared with the
SMR in the pure cubic case, the SMR starts from the intra-well oscillation, so
the orange arrow line represents a trajectory rising along line A in Fig. 12(a).
The initial motion is constrained in the well and increases until the trajectory
is re-attracted to the left stable global SIM branch, on which the orange line
converges. As the trajectory crosses the singularity line C, it jumps to the right
stable branch of the SIM, and moves down to the other singularity point S2.
1:1 resonance in this period produces an intense TET and leads to effective
dissipation by the NES. Once the NES has dissipated most of the energy of
the LO, the phase trajectory of the system jumps back to the chaotic region
in the vicinity of attractor line A and waits for the charge of energy under
harmonic excitation.

4.1.2 Modest bistable NES

The re-attraction to the global SIM mechanism in a weak bistable system
becomes delicate when the |δ| parameter takes a larger value. The mechanism
of this attraction back to the left SIM branch is mainly due to the proximity of
the chaos threshold line B to the left global SIM branch. The phase trajectory
has a strong possibility of continuing to expand along with line A and being
attracted by the left global SIM branch, rather than crossing the unstable
region and triggering SMR. If the negative stiffness is intense enough, the chaos
trigger line B will be located in the global SIM unstable region. Therefore, the
critical condition for the disappearance of re-attraction can be determined as
the overlap of line B and line C. The condition is expressed as follows:

Z21 =
4(2(1−δ)−

√
(1−δ)2−3λ2

2)

9K = −2δ
K

δwm = − 8
7 ± 2

7

√
−7λ2

2 + 9
(23)

The damping of the NES system determines the critical value of negative
stiffness. If the negative critical value exceeds the critical value -0.295 (when
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Fig. 13 (a) Energy dissipation ratio of NES (b) maxiaml and average LO amplitude in
modest bistable NES case with k3 = -60N/m (δ = -0.52) under harmonic exicitations (σ
=0). The blue line represents the average amplitude in a given time interval, the green
dashed line is the maximum amplitude. The black dashed lines divide regimes into four
stages.

λ2= 0.167), the re-attraction to the left global SIM branch mechanism is hardly
observable. So it is considered as a modest bistable NES. To better prove
this point, the efficiency distribution for a larger negative stiffness case is
presented in Fig. 13 with larger negative stiffness case k3 = -60N/m (δ = -
0.52). The efficiency distribution can be divided into 4 stages in Fig. 13 and
its characteristic behaviors under inputs of increasing amplitude excitation are
presented in Fig. 14.

In the first stage of intra-well oscillation, the NES possesses a high absorb-
ing efficiency. However, as the excitation amplitude increases, its high efficiency
is lost and declines drastically.

In the second stage in Fig. 13, chaos emerges. When |δ| increases, the span
and depth of potential well become larger, so a larger amplitude excitation
is necessary to trigger the chaotic motion. The critical value is G = 0.09mm,
while the chaos threshold excitation is G = 0.03mm in a weak bistable case.
This threshold value divides the efficiency distribution figure into the chaotic
and intra-well region in Fig. 13, A coexistence of subharmonic oscillations and
chaotic motions can be realised in this stage.

In the third stage, SMR occurs in Fig. 13. A greater value of negative
stiffness leads to the fact that the chaos trigger line B is located in the global
SIM unstable region and is close to the singularity line D in Fig. 15(a),. It can
be deduced that SMR is more early to produce in modest bistable case. As
already observed in Fig. 13(b), the SMR region starts at G = 0.22mm, which
is lower than the SMR trigger excitation G = 0.26mm in weak bistable NES.
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Fig. 14 Response regimes in modest bistable NES with k3 = -60N/m (δ = -0.52) (a) v
displacement (b) w displacement (c) phase trajectory of Z2 and Z1. The 4 typical responses
are chosen at various harmonic excitations G = 0.08mm, 0.15mm, 0.34mm, 0.45mm, with
same initial condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0), σ = 0.

In the fourth stage, the NES system possesses a stable regime again in
Fig. 13. The optimal point is generated in this stage. The absorption efficiency
of the NES system decreases with increasing external excitation. The maximal
efficiency of this modest bistable NES in the Fig. 13 is about 72.5%.

The influence of the more significant value of |δ| on the global SIM and
SMR in the time domain is illustrated in Fig. 15(a). The chaotic region will
even overlap the global SIM unstable region partially or entirely if the nega-
tive stiffness is increasing. The size of the overlapping parts of the two areas
determines the division of the response regimes.

Only four stages have been retained in Fig. 15(b), 15c: (1) intra-well oscil-
lation, (2) chaos expansion, (3) jumping motion, (4) TET. For an SMR cycle
of the modest bistable case, the re-attraction to the global SIM part has been
completely compressed and replaced by the chaos expansion.

Because the extreme right point in phase trajectory of case 2 is close to
singularity line D in Fig. 15c, the SMR is trigged by crossing chaotic region
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Fig. 15 Characteristic modest bistable global SIM and SMR in the time domain for har-
monic excitation G = 0.34 mm, σ = 0. (a) The global SIM structure with the unstable and
chaos regions (shaded). The orange arrow line indicates various stages in one SMR cycle. (b)
displacement of w, (c) displacement of v, with initial condition (w(0) = x0, v(0) = v̇(0) =
ẇ(0) = 0). The green lines divide the SMR into various stages corresponding to the global
SIM explanation by the orange arrow line.

and unstable global SIM region in Z1, Z2 plane instead of reaching at the
singularity point (S1 : [Z2,1, Z1,1]) and then jumping. It means that the system
does not require fully charging the energy to activate SMR. A lower trigger
excitation amplitude results in a lower initial Z1 amplitude, from which the
trajectory moves down along the right stable global SIM branch. This shorter
path helps NES dissipate energy around the optimal point within a shorter
time and higher efficiency. As the case 3 in Fig. 14c, the system performs 3
SMR cycles within 600 τ . However, the weak bistable case performs only one
complete SMR during the same time. Chaos provides a much faster way to
charge and trigger SMR and accelerate every SMR circle. More SMRs in a
fixed time interval are observed in Fig. 14c. That is why the SMR stage in the
modest bistable NES has higher efficiency than that of weak bistable NES. A
more efficient way to dissipate energy is generated.

4.1.3 Strong bistable NES

The chaos threshold line B will approach the SMR boundary line D more
closely for higher negative stiffness. The critical condition is defined as sin-
gularity line C is overlap with attractor line A to ensure the close distance
between line B and D in global SIM structure.

Z2,1 = 4
9

2−2δ−
√

(1−δ)2−3λ2
2

K = − δ
K

δms = − 8
5 − 4

5

√
5λ2

2 + 9
(24)

In the condition of λ2 = 0.167, the critical δ value that classifies the modest
NES and strong NES is -0.82.

A larger negative stiffness case with k3 = 150 N/m (δ = -1.3) is selected
in the strong bistable NES simulation. The expansion of the chaos regime
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Fig. 16 (a) Energy dissipation ratio of NES (b) maximal and average LO amplitude in
strong bistable NES case under harmonic exicitations (σ =0). The blue line represents the
average amplitude in a given time interval, the green dashed line is the maximum amplitude.
The black dashed lines divide regimes into three stages.

will disappear in effeciency distribution Fig. 16. The trajectory will cross the
singularity line D and directly start to jump and perform an SMR. Case 2 in
Fig. 17 shows that the snap-through phenomenon occurs at the instant when
phase trajectory crosses the chaos region, if the distance between lines B and
D is small enough in Fig. 18(a). The energy dissipation ratio can be classified
into 3 stages: (1) intra-well oscillation, (2) SMR, (3) stable stage.

In the first intra-well stage, the NES system possesses a low efficiency. It
implies that the negative stiffness must be tuned to a modest bistable con-
figuration in order to maintain high efficiency even at low energy input. Too
large or too small a negative stiffness will lead to a decrease in efficiency. The
energy is mainly localized in the LO, the amplitude of which mainly increases
linearly in Fig. 16(b).

In the second SMR stage, the maximal amplitude and average amplitude
curves separate drastically in a large distance. Meanwhile, in the modest NES
case, both curves separate gradually. It implies that chaos motion is not in-
volved in the SMR stage. It makes the SMR stage of strong bistable NES per-
forms similar to an SMR stage of cubic NES, where the chaos can be hardly
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Fig. 17 Response regimes in strong bistable NES with k3 = 150 N/m (δ = -1.3) (a) v
displacement (b) w displacement (c) phase trajectory of Z2 and Z1. The 3 typical responses
are chosen at various harmonic excitations G = 0.25mm, 0.45mm, 0.55mm, with same initial
condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0), σ = 0
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Fig. 18 Characteristic strong bistable global SIM and SMR in the time domain for harmonic
excitation G = 0.45mm, σ = 0. (a) The global SIM structure with the unstable and chaos re-
gion (shaded). The orange arrow line indicates various stages in one SMR cycle. (b) displace-
ment of w, (c) displacement of v, with initial condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0).
The green lines divide the SMR into various stages corresponding to the global SIM expla-
nation indicated by the orange arrow line
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observed. Compared with the SMR stage in weak bistable NES case, the du-
ration of energy pumping in Fig. 17(b) is longer and it has a less absorbing
cycle within the same time interval.

In the third stable periodic response stage, the large negative stiffness value
increases the excitation amplitude threshold for SMR disappearance, about G
= 0.54mm. Meanwhile, the excitation amplitude thresholds for SMR disap-
pearance are G = 0.44mm and G =0.4mm in the modest and weak bistable
NES design, respectively. A high |δ| value can help the system to achieve an
optimal state in a higher energy input case. The attractor line A restricts the
motion inside of potential well before it jumps out. The maximal efficiency of
this strong bistable NES in the Fig. 16 is about 70.5%.

In the strong bistable NES case, the increasing |δ| results in a simpler form
of SMR. The motion of SMR is either in a potential well or in the right stable
global SIM branch. The chaotic motion becomes weak and transient. Only 3
parts: (1) intra-well oscillation, (2) snap-through, and (3) TET are classified as
in Fig. 18(b), 18c. In the second SMR stage, once the phase trajectory crosses
the chaos trigger line B, the right stable branch of the global SIM attracts the
phase trajectory.

4.1.4 Abnormal bistable NES

If the negative stiffness is extremely large, another critical condition can be
achieved, where the chaos threshold line B coincides with the singularity line
D, and the following equation can be derived:

4
9

2−2δ+
√

(1−δ)2−3λ2
2

K = − 2δ
K

δwm2 = − 8
7 ± 2

7

√
−7λ2

2 + 9
(25)

Solving the above equation gives a critical negative stiffness of δsa = -2, above
which, bistable NES is classified as an abnormal case. In this abnormal case,
the simulation of negative stiffness case k3 = -250 (δ = -2.2) is carried out.

In this case, the trajectory exceeds the chaos threshold and becomes a
stable inter-well oscillation. Because the interaction of chaos threshold line B
and the right global SIM branch, the SMR vanishes. Only two regimes persist
in the efficiency distribution and LO amplitude in Fig. 21 : (1) intra-well
oscillation, and (2) stable periodic response. In contrast to the previous model,
the SMR stage is compressed and vanishes, leading to a so-called abnormal
bistable NES.

The trigger chaos line B has exceeded on the right side of singularity line
D, so the optimal point (maximum efficiency) is not lying on the singular point
S2. The maximal efficiency that an abnormal NES can achieve is much lower
than in previous cases, about 50%.
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Fig. 19 (a) Energy dissipation ratio of NES (b) maximal and average LO amplitude in
abnormal bistable NES case under harmonic exicitations (σ = 0). The blue line represents
the average amplitude, the green dashed line is the maximum amplitude. The black dashed
lines divide regimes into two stages.

5 Experimental validation

The first goal of the experimental tests was to verify the feasibility of the
intra-well adapted complex variables method in the frequency domain. The
second objective was to observe the characteristic response regimes of different
bistable NES design under increasing excitation amplitude inputs. Various
negative stiffnesses were constructed by adjusting the pre-compression length
of the linear spring in the bistable NES. A diagram of the bistable NES and
the actual experimental device are presented in Fig. 22 and 23.

The bistable stiffness is constructed by combining 2 linear springs and 2
conical springs that mainly provide the nonlinear stiffness. The conical spring
presents two phases: (a) linear phase, (b) nonlinear phase during the compres-
sion [14]. When the coils of a conical spring come into contact with each other
due to compression, a transition moment occurs that divides the linear and
nonlinear phases. So the two conical springs are pre-compressed at the tran-
sition point to eliminate the linear phase, as in (a) of Fig. 22. The two linear
springs, whose role is to counterbalance the linear stiffness in the nonlinear
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Fig. 20 Response regimes in abnormal bistable NES with k3 = -250 (δ = -2.2) (a) v
displacement, (b) w displacement, (c) phase trajectory of Z2 and Z1. The 2 typical responses
are chosen at various harmonic excitations G = 0.5mm, 0.7mm, σ = 0.

40

20

0

-20

-40

100

50

0

-50

-100

v
/m
m

w
/m
m

τ

τ

Fig. 21 Characteristic abnormal bistable global SIM and response in the time domain at
harmonic excitation G = 0.65 mm, σ = 0. (a) The global SIM structure with unstable region
(shaded). The orange arrow line indicates various stages in one SMR cycle. (b) displacement
of w; (c) displacement of v. The green lines divide the SMR into various stages corresponding
the global SIM explanation by the orange arrow line.

phase, are installed perpendicular to the conical springs like (b) in Fig. 22. The
force-displacement relation of combining system can be expressed as follows:

F = k2u+ k3u
3

k2 =
(
a1 + k0 − 2kl

lp
l0l+2lc−lp

)
, k3 =

(
a3 + kl

l0l+2lc
(l0l+2lc−lp)

3

)
(26)
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Fig. 22 Detailed diagram of the bistable NES system: (a) negative stiffness mechanism,
(b) conical spring system, (c) combining system

Laser 
NES with 
nonlinear  sti ness

LO with
linear spring

Fig. 23 Global view of the experimental setup. The four spring system constructs the
nonlinear stiffness. LO is connected to a shaker by the linear spring and vibrates in a track

where k0 represents the linear phase stiffness and a1, a3 are the linear stiff-
ness and cubic nonlinearity in the nonlinear phase of a conical spring. l0l and
lc are the lengths of the linear spring and connector, respectively. kl is the stiff-
ness of the linear spring. The pre-compression length lp determines the value
of both the negative stiffness k3 and the nonlinear stiffness k2. The detailed
parameters and 3 initial pre-compression lengths for 3 different bistable NES
cases are presented in Table. 1.
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Table 1 Experimental parameters of NES system

k0 a1 a3 kl l0l
187N/m 280N/m 3.6e5N/m3 1060N/m 50mm

lc lp1 lp2 lp3
14.5mm 16mm 17.5mm 21mm
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Fig. 24 Force displacement of different experiment tests with parameters in Table. 3

The corresponding static force-displacement figures for each case are pre-
sented in Fig. 24. In each case, the theoretical result provides sufficient accu-
racy to describe the experimental result and two equilibria (F = 0), one on
either side of the displacement, which characterize a bistable NES. The dis-
tance between the equilibrium points becomes greater when the lp increases,
resulting in increased span and depth of the potential well. So it can be con-
cluded that the control strategy of changing the length of pre-compression
to produce desirable stiffness characteristics is feasible. However, increasing
lp will not only increase the value of δ but also cause an augmentation of K,
which is different from the idea of purely introducing δ and keepingK constant
used in the previous bistable NES classification.

The testing system consisted of a NES embedded with a LO. A 10 kN
electrodynamic shaker provided the excitation at a variable frequency. The
absolute displacements of NES and LO were measured by two laser systems
installed vertically. The bandpass filter filtered the high-frequency noise, thus
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Table 2 Experimental parameters

Physical parameters m1 m2 c1 c2 k1
5.5kg 0.05kg 5 Ns/m 0.5Ns/m 1.148e4N/m

Reduced parameters ϵ λ1 λ2 f0
0.91% 2.19 0.22 7.27

Table 3 Experimental stiffness coefficients

case (a) case (b) case (c)

k3 -71.4 -136.3 -300.1
k2 6.95e5 7.2e5 7.89e5

δ -0.68 -1.31 -2.89
K 6.59e3e5 6.90e3 7.58e3

correcting the raw signal and the biases. The amplitude of excitation was 0.08
mm, which was the minimum value that the shaker could apply. Its frequency
was varied from 7 Hz to 7.6 Hz at a sweep velocity of 0.01 Hz/s.

The mass of the NES was small, so the inertia of the springs was not
negligible. The effective mass of a conical spring and a linear spring can be
found in [14]. The viscous damping coefficient was estimated by modal analysis,
where the nonlinear stiffness was replaced by linear stiffness. The physical
parameters are summarized in Table 2. The different negative stiffnesses caused
by various pre-compression lengths are presented in Table 3

Fig. 25 shows the experimentally obtained frequency response function for
the small amplitude excitation G = 0.08 mm, where 3 cases perform intra-well
oscillation. The analytical result was obtained by substituting the reduced
parameters in Tab. 2 and 3 into (6) and resolving the amplitude of LO |ϕ10|.

When a natural frequency excitation is applied in LO, the resonance phe-
nomenon is activated. The LO possesses the largest amplitude, of 7.23Hz, close
to the predicted value of 7.26Hz. In general, the analytical method described
the intra-well oscillation correctly under various δ cases as shown in Fig. 25.
The analytical amplitude, which is compared with the experimental result,
had the same error distribution under different negative stiffnesses. On the
two sides of the natural frequency, the analytical result was usually lower than
the experimental result. In the vicinity of the natural frequency, the analyt-
ical result had a higher amplitude in Fig. 25(a),(b). This error distribution
is the same as the numerical test of Fig. 6(b), where the analytical method
possesses a larger result near σ = 0. In the most intensive δ case in Fig. 25c,
the calculation method gave a lower analytical result. This confirms the pre-
vious conclusion that the adapted complex variables method leads to minor
error in the modest bistable case under small excitation. This is due to the
fact that the negative stiffness value is too large to cause deformation of the
real phase trajectory near the equilibrium point (which does not conform to
the assumption of a circle).
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Fig. 25 Experimental and analytical frequency response curve of LO for different pre-
compression length cases. The parameters of the 3 cases are presented in Table. 3

6 Response regimes in frequency domain

The previous section described the response regimes in various energy input
levels. However, the advantage of a NES in absorbing energy is more apparent
in the frequency domain. In this section, the response of the bistable NES is
investigated experimentally over a broader range of frequencies.

The three different compression cases, having parameters that were iden-
tical to those of the previous intra-well experimental validation, were tested
under a frequency sweeping excitation from 7Hz to 7.6Hz. The same frequency
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sweeping process with different excitation amplitudes was repeated to record
the responses of the LO and NES.

6.1 Case (a) experiment

11 sets of excitation amplitudes, from small to large values: 0.08mm, 0.10mm,
0.12mm, 0.15mm, 0.18mm, 0.21mm, 0.25mm, 0.28mm, 0.32mm, 0.36mm, and
0.4mm, were tested for case (a). To help distinguish them, the adjacent time-
displacement curves are marked with different colours.

In Fig. 26, the black diamond points distinguish the SMR region and reso-
nance peak (potential risk case), where the amplitude of the LO is enormous,
and the efficiency of absorbing energy fails for the NES.

In the first case (G = 0.08mm), the stable response was the primary behav-
ior. Intra-well oscillation appeared during the whole frequency domain. The
NES oscillated around the equilibria.

In the vicinity of the natural frequency, 7.26Hz, 1: 3 subharmonic oscillation
occurred first at low energy input (G = 0.1mm) and became more obvious at
G = 0.12mm.

After the external excitation reached a threshold (G = 0.18mm), the re-
gion of 1: 3 subharmonic resonance broke and expanded to higher and lower
frequency sides with increasing external excitation amplitude. In the neigh-
bourhood of the natural frequency, the response reverted to a 1: 1 resonance.
It also implies that the phase trajectory is re-attracted to the left branch of
global SIM as case 3 in weak bistable NES simulation of Fig. 12c. In the sim-
ulation, the system returns from a chaotic motion into periodic motion with
increase of excitation amplitude. In the experiment, the NES system turned
from subharmonic oscillation into periodic motion. This may be because of the
property of shift-frequency excitation. The 1:3 subharmonic was activated in
low frequency. When the frequency of excitation was tuned to f0, the previous
1:3 subharmonic oscillation was kept. The stability of subharmonic oscilla-
tion was better than the chaos behavior, which did not occur as predicted by
the traditional analysis framework. So characteristic response of weak bistable
NES (re-attraction stage) was observed.

Once G = 0.21mm was applied in case (a), SMR cycles appeared in the
frequency interval [7.27Hz, 7.38Hz], which is marked by two black diamond
points. The first snap-through motion and last jump-back motion of NES
define the interval of SMR in Fig. 26(b). For the left boundary, at 7.27Hz, the
LO always had the maximal amplitude. For the right boundary, at 7.38Hz,
the LO possessed minimal local amplitude after several cycles of SMR. This
indicated the effect of absorbing the energy of the SMR. The chaotic motion
occupied two adjacent efficient TET, which resulted in the augmentation of
LO amplitude in Fig. 26(a).

The SMR interval expanded to [7.21Hz, 7.47Hz] under greater excitation,
G = 0.25mm. Then G continued to increase to 0.32mm, the interval of SMR
became broader [7.15Hz, 7.47Hz]. As G increased from 0.21 to 0.32mm, the
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left boundary, where SMR appeared, decreased from 7.23Hz to 7.15Hz, while
the right boundary, where SMR vanished, expanded from 7.38Hz to 7.47Hz
accordingly. This demonstrates a broader efficient range for performing TET
for a higher energy input before the resonance peak occurs.

In G = 0.36mm, the duration of amplitude decline of SMR has extended
irregularly and caused a potential risk region near the left interval boundary.
Meanwhile, the frequency range of SMR has achieved the maximum of [7.13Hz,
7.54Hz]. The case (a) design has the best robustness facing the uncertainty of
excitation frequency under G = 0.36mm. The 1: 3 subharmonic oscillation
appeared in the low-frequency region. Then the SMR occurred in the vicinity
of natural frequency. The systems returned to a stable response if frequency
continued to increase.

When G = 0.4mm, the resonance peak appeared between 7.05Hz and
7.25Hz. Within the resonance interval, the LO amplitude significantly ex-
ceeded the other cases, the NES lost its ability to absorb energy, and the
system was at risk. A resonance peak occurred due to the existence of three
solutions in the singularity equation in the low-frequency region, one of which
had a large stable amplitude. However, in the vicinity of the natural frequency,
7.26Hz, the LO had a stable minimal amplitude of 2.8mm, which represents
the singularity point of the right global SIM branch. So there is a trade-off
relationship between the co-existence of the best performance of NES and the
worst resonance peak at the amplitude of G = 0.4mm for case (a) design.
The best design also provided a possibility of worse behavior at low frequency.
So the feasibility of optimal design case (a) depended on the perturbation of
harmonic excitation frequency.

When the excitation increased from 0.08mm to 0.4mm, in the vicinity of
natural frequency of LO, there are five stages that appeared in turn: (1) intra-
well oscillation stage, (2) 1:3 subharmonic oscillation stage, (3) re-attraction
stage, (4) SMR, (5) stable response. Those five stage are marked in Fig.26(b)
with the green dashed boxes. Those response regimes are similar to the weak
bistable NES classification based on the numerical response regimes.

6.2 Case (b) experiment

Then the pre-compression length was increased to 17.5mm, case (b) possessed
larger negative stiffness |δ| and cubic nonlinearity parameters K. Similarly to
case (a), the system (b) was also used with 12 sets of sweeping frequency exci-
tations of different amplitudes: 0.08mm, 0.10mm, 0.12mm, 0.15mm, 0.18mm,
0.21mm, 0.25mm, 0.28mm, 0.32mm, 0.36mm, 0.40mm, 0.44mm. Frequency
varied from 7Hz to 7.6Hz.

An essential characteristic of case (b) was the extensive range of appar-
ent chaotic motion, which replaced the subharmonic motion of case (a). A
larger depth value of potential well δ2/4K enhanced the stability of intra-well
oscillation.
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Fig. 26 (a) Frequency response of LO (b) frequency response of NES for case (a). The am-
plitudes of excitation are selected as 0.08mm, 0.10mm, 0.12mm, 0.15mm, 0.18mm, 0.21mm,
0.25mm, 0.28mm, 0.32mm, 0.36mm, 0.4mm. The black diamond distinguishes the SMR re-
gion from the resonance peak region. The green boxes indicate the characteristic regimes.

In the first three cases (0.08mm, 0.10mm, 0.12mm), the system oscillated
in one of the wells over the frequency.

The chaos motion occurred first for G = 0.15mm. A single and weak SMR
was also observed for G = 0.18mm, which is lower than the SMR occurrence
threshold of case (a) (G = 0.21mm) in Fig. 27. The SMR was generated near
the natural frequency and divided the chaotic region. The chaos frequency
range expanded toward lower and higher frequency sides as the excitation
increased.

For excitation G from 0.21mm to 0.32mm, the frequency interval for SMR
occurrence expanded from a narrow range [7.29Hz, 7.31Hz] to [7.18Hz, 7.47Hz].

When G became 0.36mm, a potential resonance peak also occurred. How-
ever, the frequency range of resonance peak [7.13Hz, 7.18Hz] was narrower
than that of case (a). This tendency was more obvious in the response of NES
under G = 0.4mm, where the resonance peak region was [7.10Hz, 7.23Hz]. This
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range was narrower than the [7.05Hz, 7.25Hz] of case (a). The resonance peak
occurred when the system did not give a stable response at 7.26Hz. At the
same time, the interval in which SMR occurred widened to [7.23Hz, 7.56Hz].

At the amplitude G = 0.44mm, the first signs of the steady-state response
of LO at the natural frequency of 7.25Hz appeared, where the LO ampli-
tude in Fig. 27 tended to be stable and locally minimal between the SMR
and resonance peak. SMR range still dominated the extensive range [7.25Hz,
7.58Hz] and moved to a higher frequency side. An effective SMR range was
also enhanced in a high energy input case. A larger compression length can
reinforce the amplitude threshold required for the emergence of an optimal
stable periodic response (saturation of absorbing energy).

When the excitation increased from 0.08mm to 0.44mm, in the vicinity of
the natural frequency of LO, there were four stages that appeared in turn: (1)
intra-well oscillation stage, (2) chaotic motion, (3) SMR, (4) stable periodic
response (sign appeared). Those four stages are marked in Fig.27(b) with the
green dashed boxes. The re-attraction stage disappears as a prediction of the
numerical simulation: the overlap of unstable region and chaos region prevents
the phase trajectory jump back to the left global SIM branch. So re-attraction
motion disappeared. The characteristic of modest bistable NES: the expansion
of chaotic motion was observed.

6.3 Case (c) experiment

Case (c) could be achieved by continuing to compress the pre-compression
length to 21mm. Case (c) was used with the same amplitude condition as case
(b), except for the 0.15mm and 0.44mm cases. The negative stiffness continued
to be enhanced.

Neither chaotic motion nor subharmonic motion is observed in Fig. 28. It
can be interpreted as a model of strong bistable NES that the narrow distance
between trigger line B and singularity line D causes the phase trajectory to
start snap-through motion and jump to the right branch of the global SIM as
soon as it comes out of the well. So, before the system oscillates around the
right branch of the SIM, the chaos motion is replaced by the 1:1 resonance.

This first SMR appeared at G = 0.18mm, which is the same as case (b)
in Fig. 28. The frequency range of SMR increased from [7.18Hz, 7.20Hz] to
[7.05Hz, 7.41Hz], as the excitation amplitude rose from 0.18mm to 0.36mm.
The SMR range expanded to a lower and higher frequency sides. In case (a)
and case (b), there was a significant chaotic motion between the two adjacent
SMR cycles. In case (c), this chaotic phenomenon is not obvious.

The range of potential resonance peak is [7.07Hz, 7.19Hz] for G = 0.4mm.
Compared with the resonance peak in case (b) for G = 0.36mm, the excitation
threshold for the occurrence of resonance increased and its appearance was
delayed. The resonance situation was improved. Although, the stable periodic
response (optimal state) is not observed because of the limitation of the laser
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Fig. 27 (a) Frequency response of LO (b) frequency response of NES for case (b). The am-
plitudes of excitation are selected as 0.08mm, 0.10mm, 0.12mm, 0.15mm, 0.18mm, 0.21mm,
0.25mm, 0.28mm, 0.32mm, 0.36mm, 0.40mm, 0.44mm. The black diamond distinguishes
the SMR region from the resonance peak region. The green boxes indicate the characteristic
regimes.

displacement sensors. It can be inferred that his optimal state occurs above
excitation amplitude of 0.4mm.

When the excitation increased from 0.08mm to 0.4mm, in the vicinity of the
natural frequency of LO, there were two stages that appeared in turn: (1) intra-
well oscillation stage, (2) SMR, The third stage stable response can be inferred
by the numerical simulation. Those two stages are marked in Fig.28(b) with the
green dashed boxes. The disappearance of chaotic motion is the characteristic
symbol of a strong bistable NES.



Title Suppressed Due to Excessive Length 37

(a)

(b)

0.40

0.36

0.32

0.28

0.25

0.21

0.18

0.12
0.10

0.08

0.40

0.36

0.32

0.28

0.25

0.21

0.18

0.12
0.10
0.08

G/mm

G/mm

(1)

(2)

Fig. 28 (a) Frequency response of LO (b) frequency response of NES for case (c). The am-
plitude of excitation are selected as 0.08mm, 0.10mm, 0.12mm, 0.18mm, 0.21mm, 0.25mm,
0.28mm, 0.32mm, 0.36mm, 0.40mm. The black diamond distinguishes the SMR region and
resonance peak region. The green boxes indicate the characteristic regimes.

7 Conclusions

The study focuses on the qualitative analysis of response regimes in bistable
NES. Several main conclusions can be drawn:

1. The adapted complex variables method, which defines the equilibrium
point as an original coordinate, performs better to approach the dynamic
behaviors of intra-well oscillation. The numerical investigation reveals its
natural stability of intra-well oscillation. This method gives a good fitting
result and has been compared with the numerical results in the frequency
domain. The actual phase trajectory of intra-well oscillates along with the
constructed local Slow Invariant Manifold (SIM), which describes the low
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energy behaviors better than the classic method. But the local SIM’s reli-
ability is constrained to intra-well oscillation.

2. A simplified model of triggering chaos has showed that the phase trajectory
expands in a circular form with the equilibrium point as the center within
the pseudo-separatrix. Despite being simple, the chosen approach enabled
us to predict the analytical harmonic excitation amplitude for chaos oc-
currence. The numerical chaos boundary has proved the reliability of its
analytical prediction in weak negative stiffness cases. The Melnikov method
enables the calculation of the critical damping of the NES for triggering
chaos and is validated by numerical simulations.

3. The relative position between the chaos trigger line and the global SIM
structure has been proposed to illustrate the variation of the triggering
Strong Modulated Response (SMR) condition. The variety in relative po-
sition of those lines enables us to explain the disappearence of response
stages with larger negative stiffness value |δ| cases and for various energy
levels. On the other hand, the location of chaos trigger line B in the global
SIM structure classifies the bistable NES as a weak, modest, strong or ab-
normal bistable NES. A more efficient way to dissipate energy has been
found in the modest bistable case, due to the small distance between the
chaos trigger line and the singularity line in the global SIM structure.

4. The frequency-response experiment of Linear Oscillator (LO) amplitude
was carried out to validate the feasibility of the adapted variables complex
method. Good agreement between the theoretical and experimental results
of intra-well oscillation under different negative stiffnesses was observed.
Experiment confirms that the number of response regimes in the vicinity
of f0 will reduce with a more significant value of |δ|, which is predicted in
the numerical simulation. The design of a modest bistable NES provides
the broadest frequency range of SMR for the same excitation input and
helps to reduce the risk of the resonance peak in the frequency domain.
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