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Abstract

In the framework of risk assessment in nuclear accident, simulation tools are widely used to under-
stand and model physical phenomena. These simulation tools take into account a large number
of uncertain input parameters. We often use Monte-Carlo type methods to explore their range of
variation: the inputs space is randomly sampled and a code run is performed on each sampled
point. However, some of these code runs may fail to converge. Analyzing these code failures to
understand which of the inputs have the most influence on them lead to a better understanding
of how the code works. It also intends to improve the robustness of the simulation software and
code computations. For this purpose, we propose two complementary approaches performing a
statistical analysis of the code failures. The first approach is based on Goodness-of-fit tests and
compares conditional probability distributions according to code failures to a reference one. A
second approach, based on a dependence measure named the Hilbert-Schmidt Independence Crite-
rion (HSIC), provides another way to measure the global dependence between the inputs and the
code failures. The development of this methodology is carried out in the context of severe nuclear
accidents. More especially, the presented methods are applied for the study of a simulation code
that simulates the fuel-coolant interaction in severe nuclear accident context, MC3D.

Keywords — Code failure analysis, Sensitivity analysis, Hilbert-Schmidt Independence Criterion,
Severe nuclear accidents, Code robustness
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I. INTRODUCTION

In the framework of risk assessment in nuclear accident, some calculation tools are now widely
used to understand, model and predict physical phenomena. In particular, the characterization of
severe accident involves the use of a large amount of models linked together in a global numerical
simulator. Each of these models and the way they are linked together require a large set of input
parameters. These parameters may be subject to uncertainties due to the partial characterisation
of the phenomenon, the state of knowledge or modelling uncertainties. It is therefore necessary to
explore the whole range of variation of these inputs in order to understand the overall behavior of
the simulation code.

To achieve this exploration, Monte-Carlo type methods are often used: the inputs space is randomly
sampled. A code run is then performed on each sampled point. These type of exploration methods
have the advantage of allowing the deployment of statistical inference tools: central limit theorem,
estimation theory, statistic test and confidence interval theory, etc. Monte-Carlo methods thus
enable, at the end of the exploration, to get quantitative results to analyze with associated degrees
of confidence (e.g via confidence intervals and statistical tests). However, the simulation codes
considered here are generally expensive in terms of computing time. This means that we have
access to only a limited number of simulations. This limit guides the choice of statistical tools and
methods to be used.

In some cases, a portion of the code run does not manage to converge. This can be due to numerical
problems or suitability of the models used by the simulation code. Analyzing these code failures
to understand which inputs have the most influence on them will allow a better understanding
of how the code works. This will also provide valuable information on the values of the input
parameters to avoid code failures. More generally, this analysis intends to improve the robustness
of the simulation software and code computations.

Ideally, the direct use of classification algorithms such as random forest [1], logistic regression [2] or
support vector machine (SVM) [3] could predict code failures according to the inputs. Nevertheless,
as previously mentioned, accident simulation codes are complex and take many variables as input.
Their computational cost is also often high, which limits the number of available simulations for
the training set. These drawbacks lead to some difficulties in obtaining satisfactory results using
this kind of algorithms.

In this context, we propose statistic-based tools to analyze code failures. Failure occurrence can
be considered as a binary output in its own right. It allows to consider code failures analysis
in the general context of sensitivity analysis. Sensitivity Analysis methods aim at determining
how the variability of models inputs affects the fluctuation of its output. Many methods have
been developed for this purpose [4]. Most of classic tools used for sensitivity analysis, such as
Sobol’ indices [5] or the Elementary Effect method [6, 7] are not well tailored for the case of code
failures. Indeed, in this case the studied output is binary while most sensitivity analysis tools are
designed to study continuous outputs. Furthermore, the estimation of total Sobol’ indices requires
a large number of simulations. Recently, tools based on dependence measures have been proposed
for global sensitivity analysis. These tools allow to remove some of these limitations [8]. Among
them, the Hilbert-Schmidt Independence Criterion [9] denoted by HSIC, generalizes the notion of
covariance between two random variables. These tools can be used with many different types of
variables, including binary ones. Moreover, the HSIC allows to fully characterize the independence
between two variables (with certain parametric choices). The HSIC estimation only requires only
a limited budget of simulations. Last but not least, statistical tests of independence can be built
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upon HSIC measures. In this work, we propose two methods to perform a sensitivity analysis on
code failures:

• A first approach based on Goodness-of-fit tests that compares the conditional probability
distributions knowing the code failures;

• Another approach, based on the HSIC that measures the global dependence between the
inputs and the occurrence of code failures.

The development of these methods is carried out in the context of severe nuclear accidents. More
precisely, the simulation code under study is MC3D [10, 11]. This code models the fuel-coolant
interaction (FCI). This interaction can lead to the steam explosion phenomenon [12]. Further
details about the application case will be given in a dedicated section. When exploring the input
space of this code using a Monte-Carlo method, we found a fairly high failure ratio (around 35%).
Understanding these code failures may help to reduce this failing ratio. This can be interesting
knowing that several hours to few days are necessary for one run of this code.

Thus, this paper is organized as follows: Section 2 aims at introducing the methodological frame-
work and the notations used often. Section 3 presents the application context. Sections 4 and
Section 5 present the two different aforementioned approaches proposed to perform a sensitivity
analysis on code failures. An example use of the results provided by the two methods is given
in Section 6. This application stands on the code modeling of severe nuclear accident. Finally,
Section 7 provides some conclusions and perspectives. More technical material is postponed in the
appendices.

II. MATHEMATICAL FORMALISM

A simulation code can be viewed as a model function M linking the inputs to one (or several)
output(s):

M :
X → Y
X 7−→M(X) = Y.

(1)

Here,

• X = {X1, ...Xd} is the vector containing the d uncertain inputs evolving in a measurable
space denoted by X ∈ Rd;

• M is the model function that links the inputs to the outputs;
• Y is the vector of the code outputs and Y its range of variations.

We are studying here the quantity of interest Z representing the code failures, and defined by the
function fZ(X) : X → {0, 1}:

Z = fZ(X) =

{
1 if the model M(X) fails
0 otherwise.

(2)

Figure 1 summarizes the proposed formalism.

As the model M is not known analytically, a direct computation of the distribution of Z is not
straightforward. Indeed, only observations (corresponding to code runs) of M are available. It is
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Fig. 1. Diagram summarizing the proposed mathematical formalism. Z = 1 means that the code
failed and there is nothing else to observe. If Z = 0, the code has no error and we have access to
the output Y.

therefore assumed in the following that we have a n-size input sample and its associated output
sample. This sample is denoted by (X,Z), where:

• X =
(
x(1), . . . ,x(n)

)T
with x(i) =

(
x

(i)
1 , . . . , x

(i)
d

)T
denotes the matrix containing a sample

of size n also called the Design of Experiments (DoE), X ∈Mn,d(R) (the set of all matrices
with n lines and d columns);

• xj =
(
x

(1)
j , . . . , x

(n)
j

)T
with j ∈ J1, dK denotes the observed samples for the input Xj ;

• Z =
(
z(1), . . . , z(n)

)T
is the vector of outputs corresponding to the DoE X with z(i) =

fZ(x(i)).

In the context of code failures, we decided to organize the DoE in two sub-designs: the first part
is constituted by the realisations for which the code fails while the second part corresponds to the
successful simulations. Thus, we define them by:

• A = {l1, . . . , l|A|}: subset of the indices taken from {1, . . . , n} such that the corresponding
simulations fail (Z = 1);

• Ā = {1, . . . , n}\A the subset of the indices taken from {1, . . . , n} such that the corresponding
simulations do not fail (Z = 0);

• XA =
(
x(l1), . . . ,x(l|A|)

)T
the matrix containing the elements of X such that the code fails,

XA ∈M|A|,d(R);

• xA,j =
(
x

(l1)
j , . . . , x

(l|A|)

j

)
the values of the jth variable for the failing part of the sample;

• XĀ the matrix containing the elements of X such that the code does not fail.

III. APPLICATION CONTEXT

The work proposed here is motivated by the study of the failures of a severe nuclear accident
simulation code. An accident in a nuclear reactor becomes severe when the core starts to melt and
lose its integrity. The molten materials coming from the core is called corium. Severe accident
simulation codes help to improve the safety of nuclear reactors by providing information to predict
failure of barriers or safety systems. These codes are generally meshed (or at least partially meshed)
with physical modeling being done in each mesh in the form of conservation laws.
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The code on which we apply the proposed tools is the simulator MC3D [10, 11]. This calculation
code simulates the Fuel-Coolant Interaction (FCI) in nuclear severe accident context. The fuel-
coolant interaction is a complex, non-linear phenomenon in which many mechanisms interact.
Indeed, under certain conditions, these interactions result in a fine fragmentation of the corium
leading to a violent vaporization of the coolant and the propagation of a pressure wave. This
phenomenon, called steam explosion, may threaten the reactor integrity. The code MC3D that
simulates this phenomenon is composed of two chained models, related to the main phases of the
FCI [12]:

• the premixing, corresponding to the fragmentation in the water of the molten corium jet into
large droplets;

• the steam explosion, corresponding to the fine fragmentation of the droplets generated during
the premixing phase. This leads to an increase of the heat transfers between these fragments
and the generation a pressure wave that propagates in the fuel coolant mixture.

The application case here corresponds to the study of the failures of the code modeling the premix-
ing phase. The framework of the application case is the simulation by MC3D of corium interaction
in the KROTOS experimental facility [13, 14]. Figure 2 depicts the spatial meshing used for the
code runs (on the left) and the Krotos facility (on the right). The spatial mesh is 2D axisymmetric
with 27 R axis meshes and 103 Z axis meshes. This global geometry describes the test section of
the KROTOS facility. In this figure, the corium pool in the crucible is represented in red and the
water pool in the test tube is represented in blue. The grey areas correspond to solid structures
(crucible and jet formation device, or conical bottom of the test tube). The duration of each run
of the code is between 8 hours and a day. Note that runs can be done in parallel (one run per
calculation node).

Fig. 2. (a) Representation of the spatial mesh for the numerical experiment.The R-axis is expanded
with respect to the Z-axis for better visibility.(b) Representation of the Krotos facility

The number of input parameters of the MC3D considered here is d = 50. These parameters vary
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uniformly around their nominal value. In practice and without loss of generality, the statistical
tools will be applied here on the inputs scaled on the unit hypercube [0, 1]d. A preliminary re-
scaling is performed before running the simulation. Hence, we will consider in the following that
all the d inputs vary uniformly in [0, 1]: X ∼ U[0,1]d .

In our application, the design of experiment X has been obtained by a space-filling sampling
method, named Latin Hypercube Sampling (denoted LHS [15]). We proceed so to improve the
distribution of the realizations along the 1D-sub-projections of the design. Finally, we have in our
study case n = 2000 simulations of the code. Among them, l|A| = 700 failed. This represents
35% of the code runs. Considering the computational cost of each code simulation, this significant
number of code failures justifies in practice the development of the methods presented here.

IV. ASSESSMENT OF THE IMPACT OF INPUTS ON CODE FAILURES BASED
ON COMPARISONS OF CONDITIONAL DISTRIBUTIONS

In this section, we present a method to study the influence of each input parameter Xj on the code
failures. For this aim, a study of the realizations xA,j such that the code fails and their associated
distribution function is performed. Indeed, if we suppose that an input Xj has no direct effect on
code failures, then the subset A such that the code fails (Z = 1) is independent of the values taken
by Xj . That implies that the samplings xA,j follows the same distribution as xj . Thus, since
the realizations of (xj)j∈[[1,d]] are uniformly distributed, if an input Xj is not directly involved on
code failures, its marginal distribution xA,j should remain uniformly distributed. From this, a
first solution to detect the inputs influencing the code failure is to compare the distribution of each
xA,j to a uniform law U[0,1] using a statistical goodness-of-fit test.

The classical Kolmogorov-Smirnov (KS) [16, 17] goodness-of-fit test is used here to perform this
comparison. This statistical method is well suited to compare a sample distribution to a reference
one. The conservative aspect of this test method is not an issue here. Indeed, the tests will
only discriminate the input parameters whose distribution is really different from the uniform
distribution and thus the most likely to have a significant effect on code failures. For an initial
analysis and given the large number of variables involved in the application case, potentially missing
few influential variables may be less of a problem than wrongly selecting some.

The next subsection gives a brief review on the Kolmogorov-Smirnov (KS) statistic and the asso-
ciated test method. It also presents how we use it to study the influence of inputs on code failures.
More theoretical details on the KS statistic and test are given in Appendix 1.

IV.A. Comparison of the marginal of each input to the uniform distribution using
Kolmogorov-Smirnov test

Let X be a random variable and F0 the reference cumulative distribution function. Let x =(
x(1), . . . , x(n)

)
be an independent and identically distributed (i.i.d) sample of X. The Kolmogorov-

Smirnov statistic corresponds to the re-scaled maximum difference between the cumulative distri-
bution function of the data denoted Fn and the reference one F0. Formally, it is defined by Eq.
(3):

SKSn (Fn, F0) = n1/2 sup
t
|Fn(t)− F0(t)|. (3)

7



Fn(t) is the empirical estimation of the true cumulative distribution of X defined by Fn(t) =∑n
i=1 1x(i)<t. Here, 1A is the indicator function of a set A.

The Kolmogorov-Smirnov (KS) test is built upon this statistic SKSn . Consider the statistical test
where the null hypothesis is “H0: F = F0” and the alternative hypothesis is “H1: F 6= F0”.

The observed value sKSn,obs(Fn, F0) = n1/2 supt |Fn(t) − F0(t)| is computed on the data. It is then

compared to the theoretical distribution of the statistic SKSn under the null hypothesis H0. As
usually in statistical inference, the p-value, defined here by pKS = Pr(SKSn > sKSn,obs|H0), is com-
puted to carry out this comparison. More details on KS statistic and test are given in Appendix
1.

Thus, the p-value drives the decision process. The lower the p-value, the stronger the null hy-
pothesis is rejected. A significance level α (also known as “Type I error”), corresponding to an
error of rejecting wrongly the null hypothesis H0, is classically associated to the test procedure.
For a given sample, if the observed p-value is lower than the chosen significance threshold α, then
the null hypothesis is rejected at the chosen level of significance α. It is important to note that
this significance level is arbitrarily chosen. In practice, it is usually set at α = 0.01, α = 0.05 or
α = 0.10, depending on the application and the consequences of wrongly rejecting H0.

In our case, we wish to compare each of the d samples (xA,j)j∈{1,..d} to the uniform distribution.
Thus, the idea is to apply the Kolmogorov-Smirnov test to assess the marginal influence of each
input. For each vector samplings (xA,j)j∈{1,..d}, the statistic sKSn,obs(Fj,n, FU[0,1]

) is computed,

Fj,n(t) being the empirical distribution function of xA,j . The p-values {pKS1 ...pKSd } associated with
these tests are then calculated. The obtained p-values allow us to rank the inputs by likelihood of
the null hypothesis. The p-values below the threshold α correspond to the inputs for which the
hypothesis of a uniform distribution of xA,j is highly unlikely. These inputs are therefore those
likely to have a significant impact on the code failures.

IV.B. Results for the case study

The method described above is applied to the simulations of the MC3D premixing code. Kolmogorov-
Smirnov test is applied on each of the d = 50 one-dimensional sub-projection realizations. As
stated in Section II, the DoE X is obtained using a space-filling method named LHS. Therefore,
the samplings of xA,j are not independent, even under the null hypothesis. However, the majority
of the theoretical convergence of the Kolmorov-Smirnov statistic (presented in Appendix 1) have
been only demonstrated under the hypothesis of i.i.d samplings of the inputs. For this reason,
we used for the case study an empirical distribution of the Kolmogorov statistic to estimate the
d p-values {pKS1 ...pKSd } instead of the theoretical asymptotic distribution. The process for the
empirical estimation of a statistic distribution is detailed at the end of Appendix 1.

Figure 3 presents the estimated p-values and highlights the result of KS-test process.

In our study we choose the threshold α = 0.1. This choice is supported by the jump in p-values
observed around this threshold: the p-value of X24 (pKS24 = 0.075) is just followed by the one of
X18 with (pKS18 = 0.159). Two groups of inputs are clearly identified: a first one made up of 13
variables for which the uniform distribution hypothesis is rejected (p < 0.1) and a second one with
the 37 remaining inputs for which the test cannot reject the hypothesis of a uniform distribution.

In conclusion, a first method has been introduced here to study the direct implication of each input
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Fig. 3. Ordered p-values of the KS-tests performed for each of the d = 50 inputs.

in code failures. It has been done by comparing the marginal empirical distribution of xA,j to the
theoretical distribution of xj (uniform). This method allows to identify which variables were most
likely to have an impact on code failure.
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V. SENSITIVITY ANALYSIS OF CODE FAILURES BASED ON DEPENDENCE
MEASURES

In this section, we present another metric, based on an dependence measure, to study the global
influence of each input on code failures. The idea is now to study the dependence between the
random variable (Xj)j∈J1,dK and the binary random variable Z characterizing the code failures.
This enables in particular the detection of variables that only have an influence on code failure,
alone or in interaction with other variables.

More precisely, this method relies on the Hilbert-Schmidt Independence Criterion (HSIC) [18]
between each of the inputs Xj and the output Z. It is inspired from the work on target HSIC
proposed by [19]. The next subsection gives a quick presentation of this criterion and the associated
test. It also discuss how it is applied to quantify the impact of the input parameters on the code
failure. A more precise description of this criterion and its associated properties are given in the
Appendix 2.

V.A. HSIC-based independence test between each inputs Xj and the code failures

The HSIC, proposed by [9], is a criterion that detects the dependence between two random vari-
ables. By applying it to the elements of the vector inputs X and the output characterizing the
failures of the code Z, we may detect on which inputs the code failures depend. This criterion is
based on a kernel approach. More precisely, it is based on cross-covariance operators in Reproduc-
ing Kernel Hilbert Spaces (RKHS) [9]. RKHS are composed of mapping functions (features) and
characterized by positive definite kernel function. For a random variable X and the output Z, the
HSIC is defined by:

HSIC(X,Z)F,G =
∑
p,q

Cov(up(X), vq(Z))2. (4)

Here, F and G are the two RKHS associated to X and Z respectively. The functions (up), p ≥ 0
and (vq), q ≥ 0 are some orthonormal base associated to F and G, respectively. Cov denotes the
covariance operator. Assuming specific conditions detailed in Appendix 2, we have the following
property:

HSIC(X,Z)F,G = 0⇔ X ⊥⊥ Z. (5)

Here, ⊥⊥ means independence. Thus, the HSIC allows to fully characterize the dependence between
X and Z.

Notice that we only have at hand a n realizations of (X,Z). So that, we can only compute an

estimation of the HSIC. This estimation is denoted by ĤSIC(X,Z). An asymptotically unbiased
estimator proposed by [9] is given by Eq. (10) in Appendix 2. From this estimation, an inde-

pendence test based on the statistic SHSICn (X,Z) = n × ĤSIC(X,Z) can be suited. Using this
statistic and the equivalence (5), the following statistical hypothesis is settled:

“H0: HSIC(X,Z)F,G = 0” against “H1: HSIC(X,Z)F,G > 0”.
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As previously, the idea is to process the HSIC test for each inputs (Xj)j∈J1,dK through the com-
parison of the observed quantity sHSICn,obs (xj ,Z) and the probability distribution of the reference

statistic under the null hypothesis SHSICn (Xj,Z). For this, we compute the p-value : pHSIC =
Pr(SHSICn > sHSICn,obs |H0). The inputs with the lowest p-values regarding this procedure are the
ones for which the assumption of independence with Z is the least compatible with the observed
data. These inputs are therefore the most likely to explain the failures of the code.

V.B. Results for the case study

We apply now the HSIC-based independence test method to the case study. Recall that in our
application, the design of experiment X has been performed using the Latin hypercube sampling
method. However, as for the KS test, the HSIC test procedure theory (presented in details in Ap-
pendix 2) has been initially built upon the hypothesis of i.i.d samplings of the inputs. Nevertheless,
recent results have shown that the usual approximations if the distribution of HSIC statistic under
H0 remain valid with Latin hypercube samplings and can still be used (see [20] for more details).
The classic procedure can then be reasonably applied.

Figure 4 shows the obtained results. For reasons similar to those for the KS test, a threshold
α = 0.1 is chosen, to screen the significantly lowest p-values for which the independence hypothesis
is rejected. Thus, 12 inputs are selected. These are the inputs most likely to have a direct impact
on code failures regarding the HSIC tests.

Fig. 4. Ordered p-values associated to HSIC tests of independence performed for each of the d = 50
inputs.
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VI. APPLICATION TO OUR CASE STUDY: GRAPHICAL ANALYSIS AND
PHYSICAL INTERPRETATION OF THE RESULTS

In this section, the use of the results from the presented methods for the study of the MC3D code
is given. Table I summarizes these results. It presents the set of variables selected by at least one
of the two test methods. We notice that 12 of the 13 variables presented have been selected by
both methods. Only the input X50 is significant only for the KS test method but not the HSIC
one. This input is just above the threshold for the HSIC test method. Confidence in this variable
selection is thus enhanced by the consistency between the results of the two test procedures.

TABLE I
Summary of tests results.

input p-value KS test p-value HSIC test

X32 0.000 0.000
X9 0.004 0.001
X37 0.006 0.021
X4 0.007 0.038
X1 0.016 0.012
X45 0.017 0.024
X39 0.020 0.001
X36 0.025 0.032
X42 0.036 0.047
X50 0.047 0.12
X10 0.051 0.052
X34 0.064 0.015
X24 0.075 0.234
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To go further in the analysis, the estimated density of xA,j (marginal sample such as the code
fails) in comparison to the xj estimated densities is plotted in Figure 5 for the variables with the
lowest p-values. The densities are estimated with a kernel-based non parametric approach. For
more information about this method of estimation, one can refer to [21, 22]. Note that since the
input DoE is a LHS, the estimated density of the xj look very close to the theoretical uniform
distribution. Figure 5 provides information on how the occurrence of failure impacts the density of
each input. Therefore, thanks to Bayes formula, it directly informs on the probability distribution
of code failure occurrence depending on the values of each input.

Fig. 5. Empirical density plots of the six inputs having the lowest p-values regarding the KS test.

Let focus on the input X32, corresponding to the variable MULTEH in the simulation code MC3D.
This is the most likely to have an impact on code failure regarding both test methods (cf. Ta-
ble I). MULTEH is a multiplicative parameter of the heat transfer coefficient calculated by the
Epstein-Hauser correlation [23], between the fuel droplets and the interface between the vapor film
surrounding the droplets and the coolant (Figure 6). It has a direct influence on the heat transfer
from the droplets to the film interface. Therefore, the vaporization rate, which is determined from
the energy balance of the interface, directly depends on the parameter MULTEH. The bigger this
parameter is, the bigger vaporization rate of the water is. As the premixing model of MC3D is
not developed to handle violent physics, which is more the role of the explosion model, this may
be a reason why the number of failures increases with the parameter MULTEH, as can be seen on
Figure 5.

X1, named KELMHOLTZ FRAGNUM in MC3D, is also an input that has a high probability to
have an impact on code failures (cf Table I). It is a multiplicative coefficient of the fragmentation
rate of the corium jet. Among the two jet fragmentation models available in MC3D premixing
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Fig. 6. Model of the heat exchange from the fuel droplet to the interface between the coolant and
the vapor film, (red arrow).

application, we have used for this study the one based on the Kelvin-Helmholtz fragmentation
mechanism. In practice, this model is an extension of the Kelvin-Helmholtz instability model to
multiphase flows [24]. In this model, the jet fragmentation rate and the diameter of the generated
fuel droplets are respectively proportional to the Kelvin-Helmholtz instability growth velocity
and to most amplified wavelength. KELMHOLTZ FRAGNUM is the multiplicative coefficient
between the Kelvin-Helmholtz instability growth velocity and the jet fragmentation rate. The
larger this parameter, the higher the fragmentation rate and the higher the mass of drops created.
A larger amount of fuel droplets means a higher vaporization of the water, as for MULTEH.
But, contrary to MULTEH, the probability of code failure decreases for the highest values of
KELMHOLTZ FRAGNUM. This study thus highlight an unexpected result, inconsistent with
physical interpretation. This point will need to be further investigated.

VII. CONCLUSION AND PROSPECTS

Code failures are common problems in the context of numerical simulation of complex physical
phenomena such as severe accidents in a nuclear reactor. To improve the robustness of these
simulation codes, it is useful to understand which inputs are involved in code failures and how
they are involved. In this context and considering code failures as a binary output in its own
right, the principles of global sensitivity analysis can be used to identify the variables that have
the greatest effect on the failures. Since the output under study (code failures) is a categorical
variable, most classic tools of sensitivity analysis such as Sobol indices or Morris method are
not adapted. Moreover, in the case of computationally expensive simulation codes, the number of
possible simulations is limited. This is also a major drawback to the application of usual sensitivity
analysis methods. The large number of inputs to be taken into account for our application case
(around 50) makes the use of methods whose cost depends on the dimension of the inputs even
more difficult.

Within this framework, we introduced two methods to detect which input variables of a code might
be involved in code failures. First, we studied the input distribution of the samples such as the
code fails. It has been done using a goodness-of-fit test based on the Kolmogorov statistic. This
test method allowed to detect the variables for which the distribution as code fails is different from
the initial distribution. A second method, based on the Hilbert Schmidt Independence Criterion
(HSIC), has been then proposed. This criterion measures the dependence between two variables.
This method allows to detect all the possible dependency between the input variables and the
failures of the code. These methods have the advantage of being usable for general design of
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experiments. They allow, with a small additional cost, to have a first idea of the variables involved
in the code failure.

The development of these methods was motivated by the study of the simulation code MC3D.
This code models the fuel-coolant interaction that can lead to the steam explosion phenomenon.
In the context of the exploration of the input space of the code, several code run (2000) have been
carried out. Among these, more than a third of them failed. We aimed to understand the origin of
these code failures. Thus, Section 6 presents an example of the use of the presented tools. Indeed
the two presented methods were used to select a set of variables which were considered significant
regarding code failures of MC3D. A graphical analysis of the selected densities such as the code
fails has been proceeded. A physical interpretation of the role of some of the significant variables
regarding these failures has also been given.

Some extensions of this work can be considered. For instance, it might be interesting to perform
a more detailed analysis of code failures focusing the analysis on the 12 selected inputs. We could
for example extend our work in the general case of categorical output, in order to distinguish the
different causes of code failures in the analysis. Another option could be to study which inputs
interact in order to cause code failures. To do so, a good idea could be to use kernel based method
in a similar way to the second method presented.
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APPENDIX 1: KOLMOGOROV-SMIRNOV STATISTIC AND ITS ASSOCIATED
TEST

This section is devoted to the formal description of the Kolmogorov statistic and the associated
Kolmogorov-Smirnov test procedure. These tools are used for the method presented in section IV.

The Kolmogorov statistic

Let F be the distribution function associated the random variableX. We define x =
(
x(1), . . . , x(n)

)
as an independent and identically distributed (i.i.d) sampling of X. For any set A, we define 1A as
the characteristic function of A. Thus, the empirical distribution of X is Fn(t) =

∑n
i=1 1x(i)<t|t∈R.

A distance between the empirical distribution Fn and F can be then defined as follow:

DKS
n (Fn, F ) = ‖Fn(t)− F (t)‖∞ = sup

t
|Fn(t)− F (t)|.

Note that DKS
n (Fn, F )→n→∞ 0 almost surely, according to the Glivenko-Cantelli theorem.

Let
(
x[1], . . . , x[n]

)
be the ordered realizations of x. We have the following equality:

DKS
n (Fn, F ) = max1≤i≤n[max(|i/n− F (x[i])|, |F (x[i])− (i− 1)/n|)] (6)

15



This property allow to compute easily the quantity DKS
n (Fn, F ) in practice.

The Kolmogorov-Smirnov (KS) statistic corresponds to the quantity SKSn = n1/2DKS
n (Fn, F ).

Two important properties about the KS statistic SKSn has been shown (see [16] for instance):

(i)
(
x(1), . . . , x(n)

)
, SKSn converges in law to K when n → ∞, with K having a cumulative

distribution function defined by

FK(t) = P (K ≤ t) = 1 + 2

+∞∑
k=1

(−1)ke−2k2t2 .

Notice that the distribution FK(t) does not depend neither in Fn nor in F .

(ii) If F0 is continuous distribution function such as F 6= F0, the quantity SKSn (Fn, F0)→n→∞ ∞
in probability.

The Kolmogorov-Smirnov test procedure

The objective of Kolmogorov-Smirnov test is to compare the cumulative distribution F associated
to x with a reference probability distribution F0.

The test hypotheses are:

• the null hypothesis “H0: F = F0”,

• the alternative hypothesis “H1: F 6= F0”.

Given the results presented above, the statistic considered for this test is SKSn (Fn, F0). To process
the test, the observed value sKSn,obs(Fn, F0) = n1/2 supt |Fn(t) − F0(t)| is computed. It is then
compared to the theoretical distribution K associated to the Kolmogorov statistic under H0 .
Since we have SKSn converging in law to K under H0 and SKSn (Fn, F0)→n→∞ +∞ in probability
under H1, the critical region {K < sKSn } can be associated to the test. Thus, the corresponding
p-value is defined by the quantity P (K < SKSn |H0.

Estimating a statistic under the null hypothesis using non-iid samples

In many practical cases, one use quasi-Monte Carlo methods to sample our input space (instead of
pure Monte Carlo sampling). This is useful when the input space dimension is high and the code is
computationally expensive. These methods have the advantage of better covering the input space,
and thus generally give a better idea of the response of the code. This is why we used a Latin Hyper
Cube Sampling (LHS) method to build our numerical design in our practical case. Nevertheless,
most of the theoretical results concerning the convergence of known statistics (such as Kolmogorov
statistic) are only true for independent and identically distributed (i.i.d) samples. The quasi-Monte
Carlo samples in general (and LHS samples in particular) are not i.i.d. Thus, one cannot use these
theoretical results tailored for i.i.d variables directly in practice, unless theoretical results have
been specifically demonstrated for these sampling methods and/or the estimated statistic.
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The natural solution to address this problem is to simulate samples under the null hypothesis H0

in order to get the empirical cumulative distribution of the statistic under H0. Then we use it to
estimate the p-value associated to the test we want to proceed.

To do so in our case, we simulate L times independently the samples we could have under the
null hypothesis: a LHS of size n and dimension 1 that corresponds to xj,s and an n size vector
of independent Bernoulli draws following the distributions B(1/2). This vector corresponds to a
size n vector of outputs Z under the null hypothesis. We then estimate the L associated statistics

{SKS|H0,(1)
n , ..., S

KS|H0,(L)
n } using the formula (6). This allows us to get the empirical cumulative

distribution FSKS|H0 (t) =
∑L
l=1 1SKS|H0,(l)

n <t
. Note that the higher is L, the better is the estimation

of the cumulative distribution. We then estimate, for each vector samplings (xA,j)j∈{1,..d}, the
statistic sKSn,obs(Fj,n, FU[0,1]

). Here, Fj,n(t) is the empirical distribution function of xA,j and FU[0,1]
is

the uniform cumulative distribution function. Finally and for each of the d statistic, we estimate the
p-value associated to the test pKS = 1−F

S
KS|H0
n

(sKSn,obs(Fj,n, FU[0,1]
)). The Algorithm 1 summarizes

the whole process.

Algorithm 1 conditional to LHS KS P-values

Require: Sample size n, number of repetition L and XA design
1: for l = 1 to L do
2: Generate an LHS sample of size n and dimension 1 to simulate a sample of type xj
3: A sample of size n is then independently drawn according to Bernoulli distribution B(1/2)

that corresponds to a sample of the output Z under the null hypothesis
4: A replica under the null hypothesis of xA|H0 is deduced form this drawn

5: Compute the observed Kolmogorov statistic S
KS|H0
n = n1/2DKS

n (FxA|H0
, FU[0,1]

), FxA|H0

being the empirical cumulative distribution of xA|H0

6: end for
7: An empirical distribution F

S
KS|H0
n

(t) =
∑L
l=1 1SKS|H0,(l)

n <t
of the KS statistic under H0 over

the obtained L observed Kolmogorov statistics.
8: Compute the d observed Kolmogorov statistic on the xA,j and the corresponding statistics

{sKS,(1)
n,obs , ...s

KS,(d)
n,obs }

9: Get the d p-values {pKS1 ...pKSd }, using the empirical distribution of the KS statistic under the
null hypothesis FsKS

n,obs
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APPENDIX 2: HILBERT-SCHMIDT INDEPENDENCE CRITERION AND ITS
ASSOCIATED TEST

This section is devoted to a formal description of the context related to the Hilbert-Schmidt
independence criterion (HSIC). We focus on its main properties and the associated test procedure.
These tools are used for method presented in section V.

Presentation of the criterion the associated key concepts

The Hilbert-Schmidt Independence Criterion (HSIC), proposed in [9], aims to detects the depen-
dence between two random variables. This criterion is based on a kernel approach. More precisely,
it is based on cross-covariance operators that generalizes the notion of the classical covariance [9]

First, let define the covariance. For any real-valued random variable X and Y with finite second
moments, the covariance is the expected value of the product of their deviations from their indi-
vidual expected values: Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]. An important property about
the covariance is that if two random variables X and Y are independent, then Cov(X,Y ) = 0.
The reciprocal statement is not true in general. The main idea of the HSIC is to generalize the
concept of covariance in order to get the reciprocal statement.

Before defining the HSIC, we need to introduce the concepts of Reproducing Kernel Hilbert Spaces
(RKHS), characteristic kernels and generalized cross-covariance operator. Let F be an Hilbert
space (a complete vector space equipped with an inner product 〈, 〉F ) of functions of X in R. F is
a Reproducing Kernel Hilbert Space (RKHS), if there is a unique symmetric function k : X×X → R
such that:

1. ∀x ∈ X , k(x, .) ∈ F ;
2. ∀f ∈ F , x ∈ X , 〈f, k(x, .)〉 = f(x) (reproducing property).

This function k is called the reproducing kernel of G. Roughly speaking, we can consider the
function k as a function that quantifies the similarity between two elements of F .

Let F (resp. G) be a RKHS associated to X (resp. Y . Let k(., .) (resp. l(., .)) be the characteristic
kernel of F (resp. G). We also define 〈·, ·〉F and 〈·, ·〉G as their inner products.

The generalized cross-covariance operator is be defined as the operator mapping from F to G and
verifying for all (f, g) ∈ F × G:

〈f, CX,Y (g)〉F = Cov(f(X), g(Y )) (7)

It generalizes the notion of the covariance between X and Y so it can detect a larger amount of
dependence between them.

To summarize the information provided by CX,Y , we consider its Hilbert-Schmidt norm the HSIC
, as stated by Eq. (8).

HSIC(X,Y )F,G = ‖CX,Y ‖2 =
∑
p,q

〈up, CX,Y (vq)〉F =
∑
p,q

Cov(up(X), vq(Y ))2. (8)
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Here, (up), p ≥ 0 and (vq), q ≥ 0 are somme orthonormal bases of F and G respectively. An
interesting fact about the HSIC is that we have an equivalence between these two propositions:

• HSIC(X,Y ) = 0

• Cov(f(X), g(Y )) = 0 ∀(f, g) ∈ F × G.

Besides, it has been shown that two variablesX and Y are independent if and only if Cov(f(X), g(Y )) =
0 for all continuous functions (f, g) ∈ F × G (see [25] for instance).

Thus, for suitable RHKS F and G, we get the equivalence between the nullity of HSIC(X,Z)F,G
and the independence between X and Y . In this case, the HSIC allows to generalize the notion of
covariance in the sense presented at the beginning of this section.

A sufficient condition so that nullity of the HSIC characterizes the independence is the use of
characteristic kernels. A kernel k is characteristic of F if, for all probability measures P defined
on F , the function P →

∫
k(., x)dP(x) is injective. For more details about characteristic kernels,

one refer to [26, 27].

For real variables, the most used characteristic kernel is the Gaussian kernel. It is defined, for
(x, x′) ∈ R× R, by:

k(x, x′) = exp(−λ2 (x− x′)2), and characterized by the bandwidth parameter λ. This parameter is
often set at λ = 1/σ2 with σ2 being the empirical variance of the samples x (resp. x′). The inputs
in our case study, (Xj)j∈J1,dK, being defined in [0, 1]d, they have been associated to the Gaussian
kernel.

For categorical variables, the Dirac kernel can be appropriate. Let (y, y′) ∈ {0, ...K}2 be two
categorical variables and K the number of categories. The dirac kernel is defined by: l(y, y′) =
δy,y′/ny. Here, δ represents the Dirac measure and ny the number of sample in the same category
as y. In our application, it corresponds to the characteristic kernel used for the output Z. In our
case, K = 1 and ny corresponds either to the number of code failures (nA = 700) or to successful
calculations n− nA = 1300.

Using RKHS properties, Gretton [9] has shown that HSIC can also be expressed in a convenient
form using kernels (9):

HSIC(X,Y )F,G = E[k(X,X ′)l(Y, Y ′)] + E[k(X,X ′)]E[l(Y, Y ′)]− 2E[E[k(X,X ′)]E[l(Y, Y ′)]] (9)

with (X ′, Y ′) being independent and identically distributed (i.i.d) copies of (X,Y ).

Estimation of the Hilbert-Schmidt Independence Criterion

In practice, the computation of HSIC is proceed using Eq. (9). For instance, Gretton [9] pro-
posed an estimator using this equation. Let {(x(1), y(1)), ..., (x(n), y(n))} ⊆ X × Y be a series of
n independent copies of (X,Y ). According to [9], an HSIC estimator is given by the following
formula:

ĤSIC(X,Y ) = (n− 1)−2tr(KHLH) (10)

with:
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• H,K,L three matrices in Rn×n, such as: K(i′,j′) = k(x(i′), x(j′)), L(i′j)′ = l(y(i′), y(j′)) and
H(i′,j′) = δ(i′,j′) − 1

n , δ(i′,j′) being the dirac distribution.

• tr the trace application, such as for any A ∈ Rn×n, tr(A) =
∑n
i′=1A

(i′i′).

This estimator is asymptotically unbiased [9].

HSIC statistic and test procedure

A statistical independence test can be built on the fundamental property of the HSIC to test the
independence between two variables. For a given variable X and other variable Z, it aims at
testing the null hypothesis H0: “The input X and the output Z are independent” against the
alternative hypothesis H1: “There is a dependency structure between the input X and the output
Z”. Since there is an equivalence between the independence of variables and the nullity of HSIC
(with characteristic kernels), the two hypotheses can be reformulated as follows:

• H0: “HSIC(X,Y )F,G = 0”

• H1: “HSIC(X,Y )F,G > 0”

The quantity SHSICn (X,Y ) = n × ĤSIC(X,Y ) is a natural statistic for this test. If X and Z
are independent and under asymptotic convergence (i.e if n is large enough), it has been proved
that the law of SHSICn can be asymptotically approached by a Gamma distribution with a shape
parameter and a scale parameter. The interested reader is refer of [18] for more details.

As usual, the p-value drives the decision process. Here, the p-value corresponds to the probability,
under H0, that the statistic SHSICn becomes greater or equal to the value observed on the studied
data (here sHSICn,obs ). Formally, the p-value is defined by:

pHSIC = Pr(SHSICn > sHSICn,obs |H0)

REFERENCES

[1] T. K. Ho, Random decision forests, in: Proceedings of the Third International Conference on
Document Analysis and Recognition - Volume 1, IEEE Computer Society, USA, 1995, p. 278.

[2] D. W. Hosmer, S. Lemeshow, Applied logistic regression, John Wiley and Sons, (2000).

[3] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (3) (1995) 273–297.
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