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Abstract 

Trace elements and δ15N values were analysed in micronekton (crustaceans, fishes and squids) 

sampled in the south-western Indian Ocean. Myctophids were associated with high 

concentrations of arsenic at La Pérouse and MAD-Ridge seamounts, and with lead and 

manganese at MAD-Ridge and in the Mozambique Channel. The difference in cadmium, 

copper and zinc concentrations between micronekton broad categories reflected differing 

metabolic and storage processes. When significant, negative relationships were found between 

micronekton body size and trace element concentrations, which can possibly be attributed to 

differing metabolic activity in young and old individuals, dietary shifts and/or dilution effect 

of growth. No relationships were found between trace element concentrations and δ15N values 

of micronekton (except cobalt which decreased with increasing δ15N values), since most trace 

elements are not biomagnified in food webs due to regulation and excretion processes within 

organisms. All trace element pairs were positively correlated in fishes suggesting regulation 

processes. 
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1 Introduction 

Micronekton are organisms of 2−20 cm in size, able to swim independently of ocean currents 

(Brodeur and Yamamura, 2005; De Forest and Drazen, 2009) which differentiate them from 

phytoplankton (which drift with currents) and micro− to macro− zooplankton (20 µm−2 cm). 

The crustaceans, small-sized fishes and cephalopods which comprise the micronekton, are the 

main prey of a wide range of predators including tunas, billfishes, sharks, marine birds and 

marine mammals (Guinet et al., 1996; Potier et al., 2007; Lambert et al., 2014; Filmalter et al., 

2017; Romanov et al., 2020). Micronekton also play a key role in the biological pump by 

transporting organic carbon from the euphotic to deeper parts of the ocean (Hidaka et al., 2001; 

Le Moigne, 2019) through their diel vertical migration patterns (Béhagle et al., 2014; Ariza, 

2015; Annasawmy et al., 2018, 2019, 2020a) . Within the micronekton, are a widespread group, 

the myctophids, represented by ~ 250 species in 33 genera, and accounting for 75% of trawled 

mesopelagic fish biomass and an estimated global biomass of 600 million metric tons (Catul et 

al., 2011). Myctophid species play an important role in the transfer of contaminants they 

bioaccumulate to higher trophic levels (Cipro et al., 2018; Figueiredo et al., 2020; Seco et al., 

2020). While trace element concentrations in some myctophid and various top predator species 

such as tunas and swordfish have been previously investigated (Bustamante et al., 2003; 

Storelli et al., 2005; Chen et al., 2014; Torres et al., 2016; Chouvelon et al., 2017; Cipro et al., 

2018; Houssard et al., 2019), the concentrations in crustaceans, fishes and squids have been 

poorly described in the south-western Indian Ocean. 

Trace elements are defined here as those occurring in trace amounts within micronekton 

(typically < 0.01% of the organism), and excluding the macronutrients calcium, magnesium, 

potassium and sodium (Marsden and Rainbow, 2004). While trace elements such as iron (Fe), 

manganese (Mn), selenium (Se) and zinc (Zn) are essential (i.e., micronutrients) to the normal 

functioning of an organism, cadmium (Cd), lead (Pb) and mercury (Hg) are non-essential 

elements, with no known biological function (Mason, 2013). Certain metals including copper 

(Cu) and Zn and the metalloid Se are important in metabolic processes but they can be toxic in 

high doses (Hastie et al., 2009). Trace elements such as Hg can bioaccumulate to harmful levels 

when they are stored in the tissues of organisms faster than they can be detoxified and/or 

excreted (Hastie et al., 2009). Biomagnification of a trace element is its increase at each trophic 

level (Gray, 2002). Biomagnification is inferred when a significant positive relationship is 

observed between the element and δ15N values (Cheung and Wang, 2008). The rate at which 

bioaccumulation (concentrations increase along time, so with age/size) and biomagnification 
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occur, depends on the availability of the trace element and species-specific physiological and 

ecological characteristics, with the ultimate concentration in an organism’s tissue being 

influenced by the ability of the organism to excrete or store the element (Gray, 2002). 

Growing energy demands have led to an increase in industrial production and anthropogenic 

emissions of trace elements such as Cd, chromium (Cr), Cu, Mn, Pb, Se, and Zn, which enter 

the atmosphere, aquatic and terrestrial ecosystems (Pacyna and Pacyna, 2001). Natural 

emissions of trace metals also vary and may arise from deflated soil and sediment, forest fire 

debris, volcanic, biogenic and oceanic emissions (Nriagu, 1989). This study determined the 

concentrations of 12 trace elements in pelagic nekton organisms collected from four specific 

and unique deep-water study sites (La Pérouse and MAD-Ridge seamounts, Reunion Island 

and the south-western Mozambique Channel) to elucidate their regional differences. Due to the 

differing oceanic environment at the four sites (shallow and intermediate seamounts vs island 

vs open ocean), we expected trace element concentrations to vary spatially. These trace 

elements included arsenic (As), Cd, Cr, cobalt (Co), Cu, Fe, Pb, Mn, nickel (Ni), Se, silver 

(Ag), and Zn. 

The main objectives of this study were to document (1) trace element concentrations in the 

pelagic nekton assemblages (crustaceans, fishes and squids) in the Indian Ocean, (2) the 

difference in trace element concentrations between myctophids (most numerous species and 

individuals sampled) and other specimens, (3) the regional variability in trace element 

concentrations in myctophids, (4) the influence of body size (bioaccumulation process) and 

δ15N values (biomagnification process) on trace element concentrations, and (5) metal-metal 

correlations across all four study sites to investigate metabolic or contamination relationships 

between the elements, and Se-mediated-Hg detoxification processes. 

 

2 Materials and Methods 

2.1 Study sites 

The mesopelagic organisms were sampled onboard the RV Antea in the south-western Indian 

Ocean at the La Pérouse seamount in September 2016 (La Pérouse cruise, DOI: 

10.17600/16004500), at Reunion Island in October 2016 (IOTA cruise, DOI: 

10.17600/16004600), and at MAD-Ridge seamount and the Mozambique Channel in 

December 2016 (MAD-Ridge cruise, DOI: 10.17600/16004900) (Fig. 1). 
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2.2 Sampling of pelagic nekton 

Pelagic nekton assemblages were sampled with an International Young Gadoid Pelagic Trawl 

net towed at a ship speed of ~2−3 knots for 60 min at La Pérouse (10 tows) and Reunion Island 

(3 tows) and 30 min at MAD-Ridge seamount (17 tows) and in the Mozambique Channel (4 

tows). The trawl had a length of 40 m, an 80 mm knotless nylon delta mesh netting at the front 

tapering, a 5 mm mesh at the codend and a mouth opening of ~ 96 m2. Trawls were conducted 

in shallow (0−200 m), intermediate (200−400 m) and deep (below 400) layers. La Pérouse 

trawls were conducted mostly during the night in shallow, intermediate and deep layers (Table 

1), except 1 daytime shallow trawl. MAD-Ridge trawls were conducted during the day and 

night in shallow and deep layers, and during the night in the intermediate layer. Complete 

summary of these trawl stations is given in Annasawmy et al. (2019). Mozambique Channel 

trawls were carried out during the night only in shallow and deep layers. Trawls at Reunion 

Island were completed during the day only within the first 250 m of the water column. 

The sampled organisms were sorted on board into gelatinous, crustaceans, fishes and 

cephalopods, counted and stored at −20°C. Only the micronekton broad categories 

crustaceans, fishes and squids were analysed during this study and are listed in Table 2. They 

were identified to the lowest possible taxon, weighed and measured (abdomen and carapace 

length for crustaceans, dorsal mantle length for squids and standard length for fishes) before 

further analyses (Sections 2.3−2.4). 

A total of 53 taxa, including crustaceans (4 taxa), squids (5) and fishes (44) were sampled for 

trace element analyses (Table 2). Crustaceans were represented by the families Oplophoridae, 

Pasiphaeidae, Penaeidae and Sergestidae, and squids, by the families Enoploteuthidae, 

Histioteuthidae, Ommastrephidae and Pyroteuthidae. Fishes were dominant in the trawl catches 

(Cherel et al., 2020) and the families analysed for trace elements were Carangidae, Diretmidae, 

Gonostomatidae, Myctophidae, Neoscopelidae, Sternoptychidae and Stomiidae. Detailed 

information on the size ranges of the pelagic nekton assemblages can be found in Annasawmy 

et al. (2022) and Cherel et al. (2020); relationships between δ13C and δ15N values and total Hg 

concentrations with size, feeding habit and habitat range of pelagic nekton organisms can be 

found in Annasawmy et al. (2020b, 2022). 
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2.3 Trace element analyses 

Tissue samples from selected specimens (muscular tissues taken from the abdomen for 

crustaceans, from the dorsal musculature for fishes, and from the mantle for squids) were 

freeze-dried in Christ Alpha 1−4 LSC Freeze Dryers for 48h and ground to a fine homogenous 

powder using an automatic ball mill RETSCH MM200 at 30 oscillations per second for ~10 

min. The elements As, Ag, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn were analysed by 

inductively coupled plasma atomic emission spectrometry on a Varian Vista-Pro ICP-OES and 

by inductively coupled plasma mass spectrometry on a Thermo Fisher Scientific ICP-MS X 

Series II at the LIENSs laboratory (La Rochelle, France). The certified reference materials, 

dogfish liver (DOLT−5, National Research Council Canada) and lobster hepatopancreas 

(TORT−3, NRCC) were used to check the analytical performances for each trace element. 

Certified and measured trace element concentrations in reference materials TORT−3 and 

DOLT−5 are given in Supplementary Material 1. The concentrations of all trace elements are 

given in µg g-1 dw (dry weight). 

 

2.4 Stable isotope analyses 

Prior to stable isotope analyses, lipids were removed from ground samples using 

dichloromethane on an accelerated solvent extraction system (ASE®, Dionex). The lipid-free 

samples were weighed (~ 400−600 µg) in tin capsules, which were combusted through 

continuous flow in a Thermo Scientific Flash 2000 elemental analyser coupled to a Delta V 

Plus mass spectrometer at the Pôle de Spectrométrie Océan (Plouzané, France). The isotopic 

ratios were expressed in the conventional δ notations as parts per thousand (‰) deviations from 

international standards: 

δ15N (‰) = [(Rsample/Rstandard) − 1] x 1000 

where R is the ratio of 15N/14N. 

The measurement error was < 0.15% for the nitrogen isotope measurements. The international 

isotopic standards of known δ15N values were used: USGS-61, USGS-62 and USGS-63 

Caffeine and IAEA-CH-6 sucrose. The home standard (Thermo acetanilide) was analysed 

every 70 samples for experimental precision and the certified values were reproduced within 

the confidence limits. Eight blanks were further analysed at the beginning of each sample batch. 

 



7 

2.5 Statistical analyses 

Assumptions of normality using the Shapiro Wilk’s test (Shapiro and Wilk, 1965) and 

homogeneity of variances using the Bartlett test (Bartlett, 1937) were computed in R (v. 3.6.1) 

prior to running the statistical tests. Links between concentrations of the trace elements As, Ag, 

Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, and the micronekton broad categories (crustaceans, 

fishes and squids) were investigated using Kruskal-Wallis (KW) tests and pairwise Wilcoxon 

rank sum tests. The latter tests were also used to investigate trace element concentrations in 

Myctophidae family between the four sampling sites (La Pérouse, MAD-Ridge, Mozambique 

Channel and Reunion Island). Wilcoxon rank sum tests investigated the trace element 

concentrations between myctophids and all other specimens. To further investigate the spatial 

variability of trace element concentrations in myctophids, principal component analysis (PCA) 

was performed on square-root transformed and normalised data in Primer & Permanova v6 

(Clarke and Warwick, 2001). Only the Myctophidae family was investigated between the 

sampling sites since they were the most numerous and abundant specimens collected across all 

four sites. Linear regressions were computed to assess the relationships between the above-

mentioned trace elements with size of crustaceans, fishes and squids at all four study sites and 

with δ15N values at La Pérouse, MAD-Ridge and the Mozambique Channel. Stable isotope 

ratios were not available at Reunion Island and hence the link between δ15N values and trace 

element concentrations was not investigated at this site. Linear regressions were also computed 

to investigate metal-metal correlations in micronekton broad categories at all sites. The Se:Hg 

molar ratio (noted as Se:Hg) was calculated from the Se and Hg concentrations by dividing 

concentrations (in µg g-1 wet weight) by the molecular weight (78.96 for Se and 200.59 for 

Hg). The relationships between Se:Hg and body size of crustaceans, fishes and squids were 

further investigated using linear regressions. 

 

3 Results 

 

3.1 Geographic and vertical distributions of trace elements 

The concentrations of the trace elements As, Cu, Fe, Mn, Ni, Pb, Se, and Zn differed 

significantly across the micronekton broad categories (KW, pairwise comparisons, p < 0.05). 

Fishes and crustaceans showed similar overall median concentrations of Ag, Cd, and Co at all 

sampling sites (pairwise comparisons, p > 0.05). Squids had higher median As, Cd, Co, Cu, 
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Fe, Mn, Ni, Pb, Se, and Zn concentrations compared to crustaceans and fishes across all 

sampling sites (KW, pairwise comparisons, p < 0.05; Fig. 2). A comparison between families 

revealed decreasing concentrations of Cd with Enoploteuthids > Onychoteuthids > 

Histioteuthids > Pyroteuthids. 

Co showed different mean concentrations between myctophids collected in the Mozambique 

Channel and those from Reunion Island and MAD-Ridge seamount (pairwise comparisons, p 

< 0.05; Fig. 3). Fe and Zn were the most predominant elements in myctophids, with values 

ranging up to 80 µg g-1 dw (Fig. 3), while the elements Ag, Cd, Co, and Pb had the lowest 

concentrations (<1 µg g-1 dw). Myctophids showed lower mean As, Cd, Cu, and Zn 

concentrations compared to the other species (p < 0.05; Fig. 4a). The PCA analyses identified 

PC4 and PC5 that explained 78.6% cumulative variance in the trace metal concentrations in 

myctophids across the four sites. PC4 was positively associated with Ag and Co in myctophid 

samples collected from Reunion Island, and with As in myctophids from La Pérouse and MAD-

Ridge seamounts (Table 3). PC5 was positively associated with Mn in myctophids from MAD-

Ridge seamount and the Mozambique Channel. Similar to the KW tests, the PCA analyses 

showed that myctophids from Mozambique Channel and Reunion Island had differing trace 

element concentrations, notably, Co (Fig. 4b). 

 

3.2 Relationships between trace element concentrations with size and δ15N values 

All significant relationships were negative between the trace element concentrations in 

crustaceans, fishes and squids, and body size at all sampling sites. Crustaceans showed 

decreasing Ag, Co, Cu, Fe, Mn, Ni, Pb, and Zn concentrations with increasing size (p < 0.05). 

Concentrations of Co, Cu, Fe, Ni, Se, and Zn decreased with increasing fish size (p < 0.05). In 

squids, Cu was the only trace element which showed a significant relationship with body size 

(p < 0.05) (Fig. 5). All the other trace elements showed no relationship with increasing 

micronekton size. 

Of the trace elements analysed, only Co showed a significant negative relationship with δ15N 

values of fishes (p < 0.05). The other trace elements did not show significant relationships with 

δ15N values of crustaceans, fishes and squids at all sampling sites (p > 0.05). 

 

3.3 Correlations between trace element concentrations 
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Correlations between trace element concentrations were investigated to establish whether there 

were significant links within the pelagic nekton to show possible metabolic or contamination 

relationships between the elements. All significant pairs showed positive correlations. Cu-Zn 

was the only trace element pair which was positively correlated in all three micronekton broad 

categories (p < 0.05, Table 4). Zn-Pb and Zn-Fe were positively correlated in squids sampled 

at all four sampling sites (p < 0.05). Cu-Fe, Cd-Ni and Pb-Fe were positively correlated in 

crustaceans (p < 0.05). All trace element pairs analysed (Zn-Fe, Zn-Pb, Zn-Cd, Cu-Pb, Cu-Ni, 

Cu-Cd, Cd-Fe, Pb-Ni, Pb-Fe, Ni-Cd, Cu-Fe and Ni-Fe) were positively correlated in fishes (p 

< 0.05). 

While Se concentrations were positively correlated with Hg in fishes, the relationships between 

Se and Hg were not significant in crustaceans and squids (Fig. 6). The data showed that there 

was an excess of Se in relation to Hg (ratio Se:Hg > 1) in all pelagic nekton specimens, except 

2 Oplophoridae (crustacean) and 1 Sigmops elongatus (fish) at La Pérouse seamount and 

Reunion Island where Se:Hg < 1. The ratio Se:Hg exhibited no significant relationships with 

size of crustaceans, fishes and squids (p < 0.05) (Fig. 6). Fishes demonstrated significant 

positive correlations between Ag-Se, Cd-Se, Cu-Se and Zn-Se (p < 0.05) while no correlations 

were found in crustaceans (p > 0.05). The trace element pairs Ag-Se and Cu-Se showed 

significant positive correlations in squids (p < 0.05) (Fig. 7). 

 

4 Discussion 

4.1 Variability in trace element concentrations in micronekton broad categories 

Trace element accumulation strategies vary between micronekton broad categories and 

between metals. Concentrations of As were higher in crustaceans relative to fishes, which is in 

accordance with previous studies (LeBlanc and Jackson, 1973). While crustaceans and fishes 

showed similar median concentrations of Ag, Cd, and Co, crustaceans showed higher 

concentrations of Cu and Zn compared to fishes. Higher Cu and Zn concentrations in 

crustaceans relative to fishes, is in accordance with previous observations (Amiard-Triquet, 

1980) since Cu is known to associate with the respiratory pigment haemocyanin, and Zn to be 

involved in the stabilisation of the quaternary structure of this molecule in crustaceans (White 

and Rainbow, 1985). Diet is the main pathway of exposure for crustaceans and fish, so direct 

exposure from waterborne Ag (as for the other elements) is very limited (Mathews and Fisher, 

2009; Weeks and Rainbow, 1993). Albeit in small amounts, both Ag and Co may be 
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accumulated from seawater for eggs, juveniles and adult squids (Bustamante et al., 2004a, 

2004b). Furthermore, Ag is mainly stored in the digestive gland of invertebrates and in the liver 

of vertebrates, making muscles poorly relevant to assess the extent of contamination by this 

trace element for crustaceans, squids and fishes (Bustamante et al., 2004a, 2004b). 

Generally, organisms have mechanisms to regulate body concentrations of essential elements 

such as Cu and Zn to constant body concentrations over a wide range of ambient trace element 

availabilities (Rainbow and White, 1989). White and Rainbow (1985) noted that the optimal 

minimum enzymatic Cu and Zn requirements are ~26 and 50 µg g-1 dw, respectively, in oceanic 

crustaceans. In our study, 29 crustaceans (all Penaeids and Sergestids) out of 41 (total) showed 

Cu concentrations less than the minimum metabolic requirement (2−18 µg g-1 dw). Only 11 

Penaeid and Sergestid individuals showed Zn concentrations below the minimum metabolic 

requirement (41−49 µg g-1 dw). All Oplophorid and Pasiphaeid crustaceans showed Zn 

concentrations above 50 µg g-1 dw. In oceanic environments, as opposed to coastal ones, 

ambient trace element concentrations may be limiting and hence species inhabiting these 

regions may normally function with lower Cu and Zn concentrations. Organisms showing high 

concentrations of Cu and Zn may be able to metabolically store these elements under conditions 

of high ambient concentrations (White and Rainbow, 1985). 

Squids showed higher concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Se, and Zn with 

respect to fishes and crustaceans at all four sites. Cephalopods are known to bioaccumulate 

higher concentrations of Cd, Cu, and Zn with respect to fishes (Bocher et al., 2003; Lahaye et 

al., 2005; Anderson et al., 2010) with the digestive gland of these organisms acting as the main 

storage organ for non-essential elements such as Ag and Cd, and for essential elements such as 

Cu, Fe, and Zn (e.g., Bustamante et al., 2006; 2008; Kojadinovic et al., 2011). The higher 

median Cd concentrations in squids relative to fishes and crustaceans may be related to 

retention processes that produce very elevated concentrations of this element in the tissues of 

cephalopods (Koyama et al., 2000; Bustamante et al., 2002). Cephalopods can store essential 

elements for metabolic processes and Ag, As, Cd, Co, Cr, Ni, and Pb as a result of their 

detoxification processes (Miramand and Bentley, 1992). 

Cephalopod species are known to accumulate different concentrations of trace elements in their 

tissues, e.g., Histioteuthids and Ommastrephid squids have higher Cd concentrations compared 

to Loliginids (Lahaye et al., 2005; Pierce et al., 2008). However, the differing Cd 

concentrations between families observed in the present study may be due to the low number 



11 

of individuals per family with decreasing number of individuals Enoploteuthids > 

Onychoteuthids > Histioteuthids > Pyroteuthids collected at La Pérouse, MAD-Ridge 

seamounts and Reunion Island, rather than any previously described reasons linked to physical 

oceanographic processes, migration and foraging strategies of individuals (Lahaye et al., 2005). 

More investigations on trace elements in mesopelagic squids are needed. Micronekton broad 

categories therefore show different trace element concentrations possibly due to differential 

uptake, metabolic processes including assimilation, accumulation and elimination, behaviours 

and/or habitat use (Boalt et al., 2014). 

 

4.2 Geographical variability in trace element concentrations 

Little attention has been given to the concentrations of trace elements in myctophids and 

mesopelagic fishes in general, compared to the existing literature on several crustacean and 

squid taxa. The myctophids sampled at the different sites showed similar concentrations of Ag, 

Cd, Cr, Cu, Fe, Ni, Se, and Zn but higher concentrations of As in myctophids sampled at La 

Pérouse and MAD-Ridge seamounts compared to Reunion Island and the Mozambique 

Channel. This can possibly be attributed to the sediment organic matter at the seamounts 

binding As and anaerobic bacteria making it readily available to the overlying water column 

and marine organisms (Neff, 1997; LeBlanc and Jackson, 1973) feeding and migrating above 

the seamounts (Annasawmy et al., 2019; 2020b), as previously demonstrated for fishes at 

Condor seamount in the Atlantic (Raimundo et al., 2013). Studies showed regional differences 

in Cd, Cr, and Zn concentrations in tunas from Reunion Island and those in the southern 

Mozambique Channel (Chouvelon et al., 2017), which were attributed to the main prey of these 

predators (Kojadinovic et al., 2007). However, as shown in this study, micronekton trace 

element concentrations poorly reflect the geographic variability of Cd, Cr and Zn, observed 

previously in top predators. Other unexplained factors (such as differences in foraging 

behaviour and prey types of individuals, elemental availability, and accumulation, assimilation 

and regulation mechanisms) may describe the previous regional level differences in tunas. 

Overall, Pb concentrations were low in myctophids, in accordance with studies showing a low 

degree of contamination of the oceanic environment (Morley et al., 1993) and in micronekton 

predators (skipjack, yellowfin tunas and swordfish) of the western Indian Ocean (Kojadinovic 

et al., 2007). This also suggests that the volcanic activity in Reunion Island has no measurable 

effect on Pb input into the surrounding marine ecosystem as observed previously (Torres et al., 
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2016), or that the half-life of Pb in water is too short as suggested by Kojadinovic et al. (2007), 

and/or that Pb biodiminishes along the food chains. In accordance with studies showing higher 

Mn concentrations in the liver of Dolphinfish from the Mozambique Channel compared to 

those from Reunion Island (Kojadinovic et al., 2007), myctophids from the Mozambique 

Channel and MAD-Ridge seamount were associated with higher Mn concentrations compared 

to those from Reunion Island. The bottom sediments of the southern African margin are 

believed be a source of manganese nodules which can be supplied to the water column by 

agitation of the seafloor sediments (Summerhayes and Willis, 1975), upwelling within 

mesoscale activities (as observed for other trace elements in other regions; Bustamante et al., 

2003), and/or plankton “recycling” (Summerhayes and Willis, 1975), thereby making Mn 

available to higher trophic levels. 

Myctophids sampled in this study showed a predominance of Fe and Zn, and low 

concentrations of Ag, Cd, Co, and Pb compared to other nektonic species. Myctophids from 

the south west coast of India, southwestern Taiwan and the Gulf of California were also found 

to be enriched in Fe and Zn (Chai et al., 2012; Sankar et al., 2016). Fe is important for many 

biochemical processes such as the storage and transport of oxygen in fishes (Galbraith et al., 

2019). Similar to this study, Co was the least abundant element in myctophids of the Gulf of 

California (Figueiredo et al., 2020). The prevalence of micronutrients (such as Fe, Se, and Zn) 

in myctophids, make them attractive candidates for fish meal and dietary supplements to 

combat mineral deficiencies (Alvheim et al., 2020). 

Concentrations of Ag, As, Cd, Co, Cr, Cu, Mn, Pb, Se, and Zn in the mesopelagic fishes 

Chauliodus sloani, Sigmops elongatus and Ceratoscopelus warmingii were within the same 

range of values as those recorded for similar specimens of a similar size range from the Sulu, 

Celebes and Philippine Seas (South China) (Asante et al., 2010). This may be likely due to 

similar biochemical processes occurring within these organisms irrespective of the location. A 

significant proportion of the sampled micronekton specimens showed trace metal 

concentrations slightly above the permitted levels determined by European and worldwide 

legislations (Cd: 2.0; Cr: 0.65−4.35; Ni: 0.5−0.6; Zn: 50 µg g-1 dw) (FAO, 1983; World Health 

Organization, 1985, 1989). With the worldwide rise in levels of certain pollutants due to 

anthropogenic activities (Kubier et al., 2020), and the rising interest in the commercial 

exploitation of micronekton, these organisms will have to be regularly monitored for their trace 

element concentrations so as not to pose a threat for human consumption. 



13 

4.3 Influence of biological processes on trace elements in pelagic nekton assemblages 

Generally, concentrations of most trace elements decreased or showed no change with 

increasing size of micronekton at all sites. This observation is well supported in literature, for 

example, trace element accumulation is higher in younger fish (Kojadinovic et al., 2007) since 

metabolic activity would be higher than in older fish (Canli and Atli, 2003), thereby showing 

the decreasing trace element concentration with size. Decreasing bioaccumulation rate in 

cephalopod species have been attributed to dietary shifts with increasing body size, with 

smaller squids feeding on invertebrates with higher trace element burdens and exhibiting longer 

and more intense feeding activities and faster metabolism than bigger/mature squids feeding 

mainly on fish (Gerpe et al., 2000; Pierce et al., 2008; Chouvelon et al., 2011) and/or 

detoxification processes with maturation (Lischka et al., 2018). The negative correlation 

between trace elements and body size may further be explained by compositional changes in 

muscle (Díaz et al., 1994) and/or a dilution effect of growth on elemental levels (Kojadinovic 

et al., 2007, 2011; Pierce et al., 2008). Elements such as Ag are not efficiently bioaccumulated 

in some marine organisms (except cephalopods) due to detoxification mechanisms and its low 

bioavailability (Cheung and Wang, 2008). Muscle tissues being analysed may not display high 

trace element burdens as opposed to the digestive gland, liver and kidneys of organisms since 

trace element bioaccumulation is also tissue-specific (Bustamante et al., 2003; Bustamante et 

al., 2006; Murthy et al., 2008; Boalt et al., 2014). 

All trace elements, except Co, showed no relationship with δ15N values in the micronekton 

broad categories. Biomagnification of a trace element (i.e., increasing concentrations along the 

food webs) is trace element-specific (Cheung and Wang, 2008). Most trace elements are not 

biomagnified in food webs due to regulation and excretion processes within organisms (Gray, 

2002), and because of their inefficient trophic transfer (Watras et al., 1998). A lack of 

biomagnification, as reported in other food chains, may therefore be linked to “trophic dilution” 

or biodiminution resulting from low bioavailability of the element, low assimilation 

efficiencies, enhanced excretion rates, and dilution effect by larger organisms (Briand et al., 

2018), or by the incomplete inclusion of the entire food web (Cheung and Wang, 2008). The 

only significant (negative) relationship was observed between Co and δ15N values in fishes 

suggesting a biodiminution of this element along the food chain, which is in accordance with 

previous observations from the Bay of Biscay in the northeast Atlantic (Chouvelon et al., 2021). 
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4.4 Metal-metal correlations 

All significant trace element pairs showed positive correlations. Cadmium showed positive 

correlations with Cu, Fe, Ni and Zn in fishes, and with Ni in crustaceans. In marine 

invertebrates, trace elements such as Cd may bind to metallothioneins, thereby reducing the 

amount of free metal ions in the body of the organism (Bustamante et al., 2004a, 2004b). 

Studies have also noted positive correlations between concentrations of Cd and concentrations 

of Cu and Zn, suggesting that metallothioneins may act as a sink for toxic Cd and excess Cu 

and Zn in marine species (Kojadinovic et al., 2007; Mitra et al., 2012; Cipro et al., 2014). 

Selenated molecules are metabolized for specific roles in marine organisms such as in the 

glutathione peroxidase pathway, which offers protection against free radical damage with 

excess Se being excreted (Keating and Caffrey, 1989; Maher et al., 1992). Selenium may also 

reduce the availability of methylmercury by sequestering Hg, thus decreasing its toxicity 

(Sasakura and Suzuki, 1998; Feroci et al., 2005; Ralston and Raymond, 2010). The lack of 

correlations between Se and Hg in crustaceans and squids may provide an argument for the 

lack of Se-mediated-Hg detoxification processes in these organisms compared to fishes. The 

weak positive Se-Hg correlation in fishes is in agreement with previous studies (Kehrig et al., 

2013). Se was in molar excess relative to Hg in almost all specimens (Se:Hg > 1). The 

concentrations of Hg might not be sufficient to lead to a detoxification response by Se. 

Significant positive relationships were observed between Se and Ag, Cd, Cu, and Zn since Se 

may likely bind to these trace elements in fishes and to Ag and Cu in squids to form a complex 

with selenoproteins, thereby decreasing the concentrations of these metal ions in the organisms 

and protecting against toxicity (Sasakura and Suzuki, 1998; Feroci et al., 2005). Such 

mechanisms seem to be absent in the crustaceans studied here since none of the metal-Se 

interactions were significant. 

 

5 Conclusions 

Similar patterns of elemental concentrations, and relationships with size and δ15N values in 

crustaceans, fishes and squids were found between the present and previous studies, likely due 

to similar biochemical processes occurring within these organisms irrespective of the location. 

However, in myctophids, As showed higher concentrations at La Pérouse seamount, and Mn 

concentrations were higher at MAD-Ridge seamounts and the Mozambique Channel, which 

were likely related to the environmental and biophysical parameters at these different sites. The 
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variable Cd concentrations in different squid families remain to be explained. Se-mediated 

protection against toxicity was demonstrated for specific trace elements and mostly in fish. 

Despite some limitations, to our knowledge, this study is the first one to add unprecedented 

insight on the trace element concentrations in crustaceans, fishes and squids of the south-

western Indian Ocean. Since the trace element concentrations were not available for lower 

trophic levels, future studies will look at element concentrations in the atmosphere, water 

column, and in zooplankton of the south-western Indian Ocean. 
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Table 1. Summary of trawl stations at La Pérouse, MAD-Ridge seamounts, Mozambique 

Channel and Reunion Island. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region Trawl No. Depth Category Time of day 

La Pérouse 1 Deep Night 

 2 Deep Night 

 3 Shallow Night 

 4 Shallow Night 

 5 Shallow Day 

 6 Shallow Night 

 7 Deep Night 

 8 Deep Night 

 9 Intermediate Night 

 10 Intermediate Night 

MAD-Ridge 1 Deep Day 

 2 Deep Night 

 3 Shallow Night 

 4 Shallow Day 

 5 Intermediate Night 

 6 Shallow Night 

 7 Deep Day 

 8 Shallow Night 

 9 Shallow Night 

 10 Deep Day 

 11 Shallow Night 

 12 Deep Night 

 13 Deep Day 

 14 Intermediate Night 

 15 Shallow Night 

 16 Intermediate Night 

 17 Deep Day 

Mozambique Channel 18 Deep Night 

 19 Shallow Night 

 20 Deep Night 

 21 Shallow Night 

Reunion Island 1 Intermediate Day 

 3 Intermediate Day 

 5 Intermediate Day 
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Table 2. Concentrations (µg g-1 dw) of trace elements, δ15N and δ13C values in pelagic nekton assemblages at La Pérouse and MAD-Ridge 

seamounts, the south-western Mozambique Channel (MZC) and Reunion Island. Values are given in mean ± standard deviation. 

Family/ Species Region n δ15N δ13C Hg Ag As Cd Co Cr Cu Fe Mn Ni Pb Se Zn 

Crustaceans 

Oplophoridae La 

Pérouse 

5 11.4 

± 

0.16 

−18.1 

± 

0.45 

0.78 

± 

0.57 

0.22 

± 

0.18 

28.7 

± 

15.2 

0.15 

± 

0.08 

0.10 

± 

0.03 

0.39 

± 

0.18 

51.3 

± 

26.2 

29.9 

± 

14.6 

0.79 

± 

0.15 

0.47 

± 

0.32 

0.04 

± 

0.02 

2.10 

± 

0.36 

64.6 

± 

9.89 

 MAD-

Ridge 

4 9.63 

± 

0.56 

−18.3 

± 

0.35 

0.40 

± 

0.16 

0.35 

± 

0.08 

24.1 

± 

0.75 

0.07 

± 

0.04 

0.11 

± 

0.07 

1.10 

± 

0.24 

54.3 

± 

26.0 

26.2 

± 

4.57 

0.89 

± 

0.29 

0.42 

± 

0.07 

0.08 

± 

0.02 

2.41 

± 

0.86 

71.5 

± 

16.6 

 Reunion 

Is 

3   0.64 

± 

0.81 

0.39 

± 

0.09 

46.5 

± 

24.5 

0.41 

± 

0.20 

0.14 

± 

0.02 

0.43 

± 

0.17 

53.5 

± 

25.4 

23.3 

± 

3.85 

0.86 

± 

0.12 

0.39 

± 

0.16 

0.05 

± 

0.02 

2.22 

± 

0.25 

85.2 

± 

16.2 

Pasiphaeidae                  

Pasiphaea spp. La 

Pérouse 

2 9.82 −18.0 0.18 0.07 99.1 0.09 0.07 0.53 13.5 21.0 0.44 0.47 0.06 4.09 61.1 

Penaeidae                  

Funchalia sp. La 

Pérouse 

2 7.77 −19.2 0.07 0.05 44.0 0.19 0.10 0.41 5.88 16.4 0.25 0.29 0.05 2.04 50.4 

 MAD-

Ridge 

5 7.28 

± 

0.68 

−18.5 

± 

0.18 

0.11 

± 

0.04 

0.02 

± 

0.00 

48.6 

± 

12.7 

0.14 

± 

0.05 

0.03 

± 

0.01 

2.22 

± 

1.66 

5.38 

± 

2.76 

18.6 

± 

11.7 

0.51 

± 

0.14 

0.24 

± 

0.16 

0.03 

± 

0.01 

2.02 

± 

0.39 

51.8 

± 

6.71 
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 MZC 2 7.15 −19.1 

± 

0.44 

0.09 

± 

0.04 

0.02 23.1 0.09  0.04 0.54 7.62 8.19 0.36 0.33 0.02 1.43 60.1 

 Reunion 

Is 

4   0.08 

± 

0.02 

0.01 

± 

0.00 

42.0 

± 

18.1 

0.08 

± 

0.07 

0.04 

± 

0.01 

0.14 

± 

0.05 

9.67 

± 

2.16 

6.88 

± 

2.84 

0.31 

± 

0.05 

0.11 

± 

0.01 

0.02 

± 

0.01 

2.25 

± 

0.29 

50.9 

± 

4.55 

Sergestidae La 

Pérouse 

4 11.2 

± 

1.50 

−18.7 

± 

0.01 

0.32 

± 

0.05 

0.03 

± 

0.01 

24.9 

± 

5.37 

0.11 

± 

0.03 

0.04 

± 

0.01 

0.43 

± 

0.19 

4.53 

± 

1.83 

27.2 

± 

11.7 

0.57 

± 

0.19 

0.22 

± 

0.04 

0.04 

± 

0.01 

2.21 

± 

0.08 

57.2 

± 

6.89 

 MAD-

Ridge 

1 9.01 −18.8 0.18 0.02 7.16 0.77 0.02 0.60 6.06 7.80 0.47 0.34 0.03 2.24 40.6 

 MZC 4 9.79 

± 

0.54 

−19.2 

± 

0.22 

0.20 

± 

0.08 

0.03 

± 

0.01 

24.1 

± 

15.1 

0.75 

± 

0.72 

0.04 

± 

0.02 

1.19 

± 

1.12 

9.98 

± 

4.49 

11.5 

± 

7.19 

0.53 

± 

0.11 

0.78 

± 

0.78 

0.03 

± 

0.02 

3.08 

± 

1.47 

57.1 

± 

18.0 

 Reunion 

Is 

5   0.17 

± 

0.13 

0.05 

± 

0.04 

36.2 

± 

12.2 

0.57 

± 

0.47 

0.05 

± 

0.03 

0.31 

± 

0.29 

10.0 

± 

1.91 

7.79 

± 

2.62 

0.60 

± 

0.25 

0.51 

± 

0.27 

0.09 

± 

0.08 

3.53 

± 

1.05 

60.9 

± 

27.5 

Squids 

Enoploteuthidae MAD-

Ridge 

2 8.04 −18.6 0.05 

± 

0.01 

0.02 80.6 2.08 0.07 2.82 14.4 48.2 1.45 1.87 0.07 5.13 67.7 

 Reunion 

Is 

7   0.09 

± 

0.05 

0.20 

± 

0.12 

57.0 

± 

15.2 

18.4 

± 

8.26 

0.21 

± 

0.10 

0.50 

± 

0.21 

39.0 

± 

14.2 

34.5 

± 

9.62 

2.85 

± 

2.11 

1.06 

± 

0.43 

0.20 

± 

0.04 

7.32 

± 

2.03 

97.7 

± 

14.6 
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Abraliopsis sp. La 

Pérouse 

11 10.5 

± 

0.45 

−18.4 

± 

0.48 

0.07 

± 

0.02 

0.07 

± 

0.10 

81.0 

± 

30.7 

0.77 

± 

1.03 

0.12 

± 

0.09 

1.33 

± 

1.30 

27.3 

± 

16.7 

233.5 

± 

218.8 

1.79 

± 

1.03 

0.96 

± 

0.54 

0.22 

± 

0.21 

6.38 

± 

2.53 

145.6 

± 

84.1 

 MAD-

Ridge 

6 9.50 

± 

0.48 

−18.3 

± 

0.59 

0.10 

± 

0.02 

0.07 

± 

0.07 

26.9 

± 

15.4 

4.60 

± 

5.41 

0.17 

± 

0.15  

3.09 

± 

1.85 

19.0 

± 

4.37 

41.6 

± 

17.3 

2.88 

± 

1.30 

0.45 

± 

0.15 

0.28 

± 

0.26 

5.23 

± 

2.41 

85.5 

± 

22.5 

 Reunion 

Is 

4   0.06 

± 

0.01 

0.23 

± 

0.27 

50.1 

± 

6.67 

12.4 

± 

7.29 

0.29 

± 

0.22 

0.25 

± 

0.03 

33.6 

± 

19.0 

28.3 

± 

11.1 

4.97 

± 

2.53 

0.80 

± 

0.04 

0.14 

± 

0.08 

10.8 

± 

9.33 

68.3 

± 

9.95 

Histioteuthidae                  

Histioteuthis spp. La 

Pérouse 

2 11.7 −19.1 

± 

0.01 

0.06 

± 

0.002 

0.05 91.0 2.35 0.13 1.33 19.1 123.7  3.71 1.13 0.62 5.88 117.3 

 MAD-

Ridge 

1    0.02 51.5 0.07 0.03 1.71 26.9 33.8 2.30 0.56 0.13 2.29 78.6 

 Reunion 

Is 

3   0.07 

± 

0.01 

0.14 

± 

0.04 

71.5 

± 

16.7 

6.66 

± 

5.70 

0.13 

± 

0.04 

1.70 

± 

1.38 

26.2 

± 

10.6 

125.4 

± 

84.4 

2.98 

± 

1.55 

2.03 

± 

1.55 

0.42 

± 

0.23 

6.35 

± 

3.13 

153.9 

± 

49.5 

Onychoteuthidae                  

Onychoteuthis sp. Reunion 

Is 

9   0.05 

± 

0.02 

0.14 

± 

0.08 

63.4 

± 

30.2 

34.9 

± 

30.2 

0.16 

± 

0.05 

0.26 

± 

0.07 

25.9 

± 

11.8 

33.7 

± 

28.1 

3.61 

± 

3.37 

0.91 

± 

0.32 

0.11 

± 

0.03 

6.63 

± 

0.90 

86.9 

± 

16.2 

Pyroteuthidae                  
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Pyroteuthis sp. Reunion 

Is 

2   0.14 0.52 43.6 8.19 0.18 1.37 48.0 48.4 4.47 3.45 0.19 14.1 97.6 

Fishes 

Diretmidae                  

Diretmus 

argenteus 

MAD-

Ridge 

1 8.82 −19.9 0.31 0.02 34.9 0.03 0.04 0.53 1.62 14.2 2.04 0.73 0.04 4.19 27.6 

Neoscopelidae                  

Neoscopelus 

macrolepidotus 

MAD-

Ridge 

2 10.8 −19.2 0.42 0.03 7.58 0.03 0.04 1.79 2.70 18.7 0.86 1.00 0.07 2.74 27.5 

Neoscopelus 

microchir 

MAD-

Ridge 

2 11.0 −19.1 0.46 0.05 44.2 0.05 0.05 0.51 2.80 19.1 0.50 0.26 0.06 3.11 30.7 

Myctophidae                  

Benthosema 

fibulatum 

MAD-

Ridge 

2 9.75 −18.7 0.32 0.02 17.0 0.08 0.06 0.63 4.01 36.2 0.70 0.42 0.02 4.67 25.0 

Benthosema 

suborbitale 

MAD-

Ridge 

1    0.09 4.39 0.48 0.10 1.99  68.7  1.32 0.51 3.70  

Bolinichthys 

photothorax 

La 

Pérouse 

2 10.9 −18.7  0.09 23.3 0.10 0.09 0.84 4.44 33.3 0.93 0.55 0.09 5.56 38.1 

Ceratoscopelus 

warmingii 

La 

Pérouse 

1   0.09 0.02  0.37 0.15 0.46 2.57 40.5 1.75 0.66 0.04 4.79 25.6 
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 MAD-

Ridge 

6 8.00 

± 

0.73 

−18.8 

± 

0.45 

0.11 

± 

0.04 

0.05 

± 

0.02 

4.62 

± 

0.66 

0.20 

± 

0.09 

0.12 

± 

0.02 

0.44 

± 

0.20 

5.62 

± 

1.19 

40.6 

± 

6.73 

3.26 

± 

1.81 

0.82 

± 

0.35 

0.17 

± 

0.12 

3.63 

± 

0.84 

50.4 

± 

14.0 

Myctophidae sp. Reunion 

Is 

3   0.09 

± 

0.05 

0.08 

± 

0.08 

8.36 

± 

1.69 

0.23 

± 

0.14 

0.19 

± 

0.08 

0.87 

± 

0.72 

5.29 

± 

2.79 

43.6 

± 

22.0 

0.84 

± 

0.52 

0.69 

± 

0.28 

0.09 

± 

0.07 

4.56 

± 

1.95 

42.5 

± 

37.5 

Diaphus 

brachycephalus 

MAD-

Ridge 

2 10.8 −19.2 0.17 0.04 11.1 0.12 0.07 0.45 4.41 23.0 1.65 0.67 0.06 5.9 54.4 

Diaphus 

diadematus 

MAD-

Ridge 

4 9.52 

± 

0.27 

−19.9 

± 

0.19 

0.12 

± 

0.14 

0.06 

± 

0.01 

8.23 

± 

3.24 

0.37 

± 

0.20 

0.08 

± 

0.01 

1.62 

± 

0.99 

5.69 

± 

0.80 

55.6 

± 

20.8 

2.34 

± 

0.64 

0.83 

± 

0.34 

0.19 

± 

0.04 

5.90 

± 

2.31 

90.9 

± 

26.9 

Diaphus effulgens MAD-

Ridge 

2 10.3 −19.1 

± 

0.21 

0.32 

± 

0.16 

0.02 4.04 0.06 0.03 0.57 2.42 17.9 0.66 0.31 0.02 2.91 21.8 

Diaphus knappi MAD-

Ridge 

2 10.2 −19.4 0.12 0.02 9.62 0.03 0.06 1.25 5.37 18.4 1.53 0.85 0.25 3.62 28.3 

Diaphus lucidus La 

Pérouse 

3   0.34 

± 

0.03 

0.02 

± 

0.00 

6.48 

± 

0.17 

0.06 

± 

0.08 

0.05 

± 

0.01 

0.24 

± 

010 

3.08 

± 

0.69 

24.8 

± 

1.82 

0.80 

± 

0.35 

0.42 

± 

0.24 

0.03 

± 

0.01 

2.98 

± 

0.36 

17.0 

± 

4.58 

 MZC 2 11.3 −19.2 0.23 0.03 4.01 0.10 0.04 0.41 4.78 39.2 0.74 0.33 0.07 3.40 36.6 

Diaphus 

metoclampus 

MZC 2 12.1 −19.6 0.36 0.02 5.90 0.09 0.03 0.74 3.20 20.7 0.63 0.81 0.02 4.13 24.6 
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Diaphus mollis MAD-

Ridge 

4 10.6 

± 

1.01 

−19.3 

± 

0.02 

0.22 

± 

0.11 

0.03 

± 

0.01 

15.7 

± 

1.61 

0.34 

± 

0.38 

0.09 

± 

0.06 

1.23 

± 

0.49 

3.18 

± 

0.51 

32.2 

± 

16.7 

1.44 

± 

0.50 

0.83 

± 

0.42 

0.04 

± 

0.02 

5.44 

± 

2.06 

35.5 

± 

16.0 

Diaphus 

perspicillatus 

La 

Pérouse 

1 11.1 −19.2 0.39 0.04 4.30 0.28 0.11 0.38 5.12 41.0 0.60 0.25 0.04 6.04 35.0 

 MAD-

Ridge 

8 10.2 

± 

0.55 

−19.0 

± 

0.20 

0.37 

± 

0.11 

0.02 

± 

0.01 

5.30 

± 

1.09 

0.31 

± 

0.22 

0.10 

± 

0.04 

1.18 

± 

0.97 

4.93 

± 

24.1 

51.7 

± 

9.17 

1.60 

± 

0.73 

0.69 

± 

0.17 

0.05 

± 

0.03 

6.60 

± 

1.14 

31.4 

± 

9.55 

 MZC 2 10.9 −19.1 0.16 0.02 3.52 0.05 0.06 0.43 6.73 51.4 1.24 0.39 0.04 4.78 38.1 

Diaphus 

richardsoni 

MAD-

Ridge 

2 9.44 −19.5 0.09 0.04 9.59 0.16 0.09 0.77 7.03 80.2 1.52 1.00 0.08 4.91 59.6 

 MZC 2 10.9 −19.3 0.11 0.02 7.06 0.18 0.08 0.50 5.75 33.5 1.86 0.74 0.02 3.27 49.9 

Diaphus 

suborbitalis 

MAD-

Ridge 

6 11.2 

± 

0.25 

−18.8 

± 

0.49 

0.31 

± 

0.22 

0.02 

± 

0.00 

5.13 

± 

0.72 

0.09 

± 

0.06 

0.04 

± 

0.01 

2.20 

± 

2.25 

2.96 

± 

0.57 

37.0 

± 

29.1 

0.94 

± 

0.23 

1.50 

± 

0.98 

0.03 

± 

0.01 

3.72 

± 

0.88 

29.1 

± 

14.5 

Hygophum 

hygomii 

MAD-

Ridge 

12 9.95 

± 

0.95  

−19.2 

± 

0.65 

0.19 

± 

0.06 

0.02 

± 

0.01 

3.89 

± 

1.21 

0.09 

± 

0.09 

0.07 

± 

0.02 

0.55 

± 

0.37 

3.83 

± 

1.93 

28.4 

± 

15.1 

2.07 

± 

1.47 

0.41 

± 

0.17 

0.05 

± 

0.05 

3.59 

± 

1.13 

29.1 

± 

10.4 

 MZC 2 9.63 −19.5 0.09 0.03 3.48 0.04 0.05 1.01 4.95 15.6 1.33 0.48 0.03 2.13 49.4 

Lampanyctus sp. La 

Pérouse 

2 10.2 −18.5 0.10 0.13 6.03 0.50 0.13 1.47 5.15 49.1 1.07 0.63 0.13 4.91 49.1 
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Lampanyctus 

alatus 

MAD-

Ridge 

5 8.52 

± 

0.28 

−18.6 

± 

0.33 

0.19 

± 

0.06 

0.04 

± 

0.02 

5.86 

± 

1.25 

0.55 

± 

0.14 

0.06 

± 

0.01 

1.23 

± 

0.47 

5.86 

± 

2.00 

41.1 

± 

14.3  

1.51 

± 

0.15 

0.68 

± 

0.09 

0.21 

± 

0.14 

4.57 

± 

0.80 

55.3 

± 

19.5 

Lobianchia 

dofleini 

MZC 2 12.6 −18.6 0.22 0.03 3.23 0.37 0.06 0.82 6.05 40.1 1.31 0.78 0.06 5.43 40.1 

Lobianchia 

gemellarii 

La 

Pérouse 

1   0.48 0.06 5.60 0.36 0.08 0.59 5.97 57.9 1.14 0.66 0.09 6.65 29.5 

 MAD-

Ridge 

4 10.3 −19.1 0.24 0.04 

± 

0.01 

4.82 

± 

1.87 

0.22 

± 

0.12 

0.06 

± 

0.10 

1.21 

± 

0.35 

10.4 

± 

2.55 

56.1 

± 

9.67 

1.54 

± 

0.28 

1.03 

± 

0.46 

0.15 

± 

0.15 

5.51 

± 

1.00 

57.4 

± 

13.3 

Myctophum 

fissunovi 

MAD-

Ridge 

3 9.84 

± 

0.17 

−19.2 

± 

0.25 

0.10 

± 

0.01 

0.02 

± 

0.01 

4.51 

± 

1.29 

0.09 

± 

0.06 

0.07 

± 

0.02 

1.02 

± 

0.55 

2.87 

± 

0.33 

32.7 

± 1.1 

0.93 

± 

0.07 

0.52 

± 

0.41 

0.03 

± 

0.01 

1.96 

± 

0.42 

24.8 

± 

4.34 

Myctophum 

nitidulum 

MAD-

Ridge 

2 9.46 −19.3 0.20 0.02 10.2 0.02 0.14 1.67 2.82 36.5 0.79 0.54 0.25 2.19 17.5 

Notoscopelus 

resplendens 

MAD-

Ridge 

2 8.08 −18.4 0.10 0.06 4.01 0.29 0.13 1.01 8.32 66.7 6.58 0.92 0.41 4.15 81.6 

 MZC 2 10.4 −19.5 0.12 0.02 5.05 0.10 0.07 1.12 5.38 30.3 1.86 0.65 0.04 2.29 36.5 

Scopelopsis 

multipunctatus 

MAD-

Ridge 

2 10.0 −20.3 0.08 0.07 

± 

0.02 

10.3 

± 

3.56 

0.30 

± 

0.14 

0.13 

± 

0.00 

0.97 

± 

0.20 

9.99 

± 

3.28 

39.7 

± 

0.88 

2.77 

± 

0.18 

0.86 

± 

0.06 

0.12 

± 

0.01 

3.08 

± 

0.08 

53.3 

± 

0.09 

 MZC 2 10.2 −19.6 0.04 0.03 6.33 0.12 0.06 1.24 4.20 38.2 1.68 0.8 0.09 1.98 60.8 

Carangidae                  
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Decapterus 

macarellus 

MAD-

Ridge 

2 6.16 −18.4 0.03 0.02 5.22 0.02 0.05 0.46 2.81 26.8 0.65 0.14 0.03 2.15 28.4 

 MZC 2 7.46 −18.7 0.04 0.02 3.82 0.02 0.04 0.70 4.23 19.0 0.59 0.26 0.02 1.69 29.4 

 Reunion 

Is 

3   0.04 

± 

0.01 

0.01 

± 

0.01 

7.01 

± 

0.76 

0.43 

± 

0.30 

0.03 

± 

0.01 

0.14 

± 

0.08 

5.00 

± 

0.64 

30.0 

± 

8.59 

0.38 

± 

0.07 

0.08 

± 

0.02 

0.01 

± 

0.01 

4.07 

± 

0.54 

34.6 

± 

3.43 

Gonostomatidae                  

Diplophos 

rebainsi 

MAD-

Ridge 

2    0.06 26.2 0.57 0.06 0.91 9.51 66.6 2.65 0.56 0.11 3.60 52.7 

Diplophos taenia MAD-

Ridge 

1 9.86 −18.9 0.21 0.01 15.8 0.14 0.02 0.66 1.85 15.5 3.83 0.30 0.03 2.11 22.7 

 MZC 2 8.77 −19.4 0.08 0.02 11.9 0.26 0.04 1.45 5.88 23.9 2.00 0.46 0.05 2.20 32.8 

Margrethia 

obtusirostra 

MAD-

Ridge 

2    0.11 9.60 0.20 0.11 2.04 9.80 54.3 0.87  0.12 4.12 63.3 

Sigmops elongatus La 

Pérouse 

1   0.08 0.02 12.7 0.05 0.03 0.56 0.92 10.2 1.37 0.33 0.02 3.76 20.4 

 MAD-

Ridge 

8 10.7 

± 

0.42 

  0.06 

± 

0.03 

17.2 

± 

3.44 

0.24 

± 

0.18 

0.07 

± 

0.03 

3.27 

± 

1.62 

7.51 

± 

3.99 

37.9 

± 

11.8 

2.44 

± 

0.75 

1.33 

± 

0.58 

0.08 

± 

0.04 

3.23 

± 

0.75 

54.1 

± 

20.2 

 MZC 2 12.0 −18.3 0.26 0.02 10.9 0.06 0.03 0.62 3.29 15.7 1.17 0.41 0.02 3.18 29.2 

 Reunion 

Is 

24   0.23 

± 

0.25 

0.03 

± 

0.03 

15.0 

± 

3.14 

0.18 

± 

0.17 

0.04 

± 

0.03 

0.50 

± 

0.43 

2.64 

± 

1.44 

20.1 

± 

11.4 

0.59 

± 

0.37 

0.31 

± 

0.17 

0.05 

± 

0.03 

3.99 

± 

0.62 

28.3 

± 

12.6 
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Sternoptychidae                  

Argyropelecus 

aculeatus 

La 

Pérouse 

1   0.15 0.05  0.77 0.63 0.65 3.07 50.7 3.68 1.22 0.06 5.39 36.2 

 MAD-

Ridge 

11 10.8 

± 

1.04 

−18.4 

± 

0.42 

0.55 

± 

0.42 

0.06 

± 

0.07 

60.9 

± 

31.0 

0.18 

± 

0.18 

0.18  

0.23 

1.58 

± 

1.34 

5.59 

± 

4.58 

47.7 

± 

29.3 

3.28 

± 

2.94 

0.85 

± 

0.52 

0.10 

± 

0.07 

4.03 

± 

2.57 

53.9 

± 

28.7 

 Reunion 

Is 

1   0.08 0.12  1.08 0.27         

Argyropelecus 

hemigymnus 

MAD-

Ridge 

1    0.07 25.3 0.21 0.09  5.11 87.6 3.06 2.48 0.26 3.25  

Stomiidae                  

Astronesthes sp. La 

Pérouse 

1 9.39 −18.0 0.11 0.08 6.09 0.39 0.08 0.75 8.88 30.2 1.68 0.56 0.08 3.86 54.6 

 MAD-

Ridge 

1 10.1 −18.0 0.76 0.02 5.78 0.11 0.04 0.38 2.24 12.3 2.04 0.32 0.02 3.37 24.3 

Chauliodus sloani La 

Pérouse 

1   0.11 0.03 17.9 0.23 0.05 0.28 1.66 11.2 1.23 0.55 0.03 3.53 26.1 

 MAD-

Ridge 

6 10.9 

± 

0.47 

−18.9 

± 

0.13 

0.11 

± 

0.01 

0.04 

± 

0.02 

12.0 

± 

6.21 

0.09 

± 

0.07 

0.05 

± 

0.04 

0.82 

± 

0.57 

3.10 

± 

1.23 

20.5 

± 

14.3  

1.93 

± 

0.84 

0.47 

± 

0.25 

0.13 

± 

0.14 

2.73 

± 

0.82 

43.8 

± 

18.2 

 MZC 2 10.8 −19.1 0.11 0.03 5.69 0.08 0.03 1.02 2.42 19.7 1.24 0.51 0.06 2.37 27.2 
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 Reunion 

Is 

1   0.10 0.03 12.3 0.20 0.03 0.26 1.74 10.9 0.77 0.40 0.07 3.20 18.8 

Echiostoma 

barbatum 

MAD-

Ridge 

6 9.48 

± 

1.11 

−18.5 

± 

0.30 

0.15 

± 

0.06 

0.04 

± 

0.01 

8.29 

± 

1.42 

0.69 

± 

0.47 

0.10 

± 

0.02 

1.78 

± 

0.69 

4.50 

± 

1.38 

41.2 

± 

19.3 

5.44 

± 

2.03 

1.36 

± 

0.29 

0.09 

± 

0.05 

3.20 

± 

0.45 

76.8 

± 

20.9 

 MZC 1 10.5 −18.5 0.12 0.03 6.74 0.77 0.08 1.47 4.79 72.5 3.46 0.70 0.06 2.97 61.8 

Eustomias sp. MAD-

Ridge 

3    0.04 

± 

0.02 

10.9 

± 

0.33 

0.81 

± 

0.28 

0.09 

± 

0.03 

1.08 7.47 

± 

2.25 

56.4 

± 

28.8 

3.65 0.69 0.14 

± 

0.07 

3.30 

± 

0.67 

57.6 

± 

14.9 

 MZC 1 9.65 −18.5 0.06 0.02 17.9 0.31 0.06 1.00 4.06 17.2 3.43 0.49 0.07 4.43 51.2 

Melanostomias sp. MAD-

Ridge 

3 9.81 

± 

0.81 

−18.1 

± 

0.53 

0.20 

± 

0.07 

0.04 

± 

0.02 

12.3 

± 

4.74 

0.41 

± 

0.20 

0.10 

± 

0.05 

0.31 5.23 

± 

1.61 

12.6 5.10 

± 

2.60 

1.15 

± 

0.82 

0.13 

± 

0.08 

2.93 

± 

0.40 

61.7 

± 

5.43 

 MZC 1 11.1 −18.3 0.26 0.01 6.81 0.38 0.05 1.41 3.33 26.4 5.42 0.61 0.06 2.72 50.3 

Leptostomias sp. Reunion 

Is 

1   0.26 0.14 4.47 0.29 0.14 1.37 6.07 54.8  0.86 0.17 5.48 69.0 

Photonectes sp. La 

Pérouse 

2 11.8 −18.1 0.22 0.03 7.75 0.28 0.05 0.21 2.51 8.47 1.72 0.38 0.04 2.96 27.7 

Photostomias sp. La 

Pérouse 

1 11.1 −18.4 0.14 0.04 12.3  0.11 0.41 3.18 16.2 7.49 1.05 0.07 3.43 44.5 

Stomias boa La 

Pérouse 

1 10.8 −18.4 0.13 0.01 9.61 0.34 0.04 0.24 1.97 5.98 1.38 0.33 0.03 3.18 27.2 
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Stomias 

longibarbatus 

MAD-

Ridge 

1 12.0 −18.3 0.38 0.01 5.93 0.93 0.04 0.56 2.65   0.44 0.21 2.80 52.7 

 MZC 1 11.8 −18.6 0.90 0.02 3.15 0.15 0.05  1.99 61.2 6.03 0.89 0.04 3.26 41.3 
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Table 3. The relative importance of the principal component axes, PC4 and PC5, in trace 

element loadings in myctophid samples collected from La Pérouse and MAD-Ridge 

seamounts, Reunion Island and the southern Mozambique Channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable PC4 PC5 

Hg -0.051 0.239 

Ag 0.404 -0.201 

As 0.700 0.497 

Cd -0.041 -0.210 

Co 0.298 -0.383 

Cr 0.027 -0.044 

Cu -0.146 -0.002 

Fe -0.148 0.057 

Mn -0.422 0.314 

Ni 0.056 -0.175 

Pb -0.028 0.549 

Se 0.083 0.168 

Zn -0.146 -0.023 
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Table 4. Metal-metal correlations (Cu-Zn, Cu-Cd, Cu-Pb, Cu-Ni, Cu-Fe, Zn-Cd, Zn-Pb, Zn-

Ni, Zn-Fe, Cd-Ni, Cd-Fe, Pb-Ni, Pb-Fe, and Ni-Fe) in µg g-1 dw in crustaceans, fishes and 

squids at all four study sites. The Pearson correlation coefficients R are given and significant 

values at α < 0.05 are asterisk marked. 

Broad category Trace 

element 

Cu Zn Cd Pb Ni 

Crustaceans       

 Zn 0.43*     

 Cd −0.17 −0.06    

 Pb 0.11 0.19    

 Ni 0.07 0.09 0.70* 0.27  

 Fe 0.40* 0.28 −0.18 0.33* 0.22 

       

Fishes       

 Zn 0.62*     

 Cd 0.25* 0.41*    

 Pb 0.43* 0.57*    

 Ni 0.32* 0.44* 0.23* 0.33*  

 Fe 0.55* 0.46* 0.30* 0.42* 0.47* 

       

Squids       

 Zn 0.36*     

 Cd 0.18 −0.19    

 Pb 0.10 0.45*    

 Ni 0.24 0.26 −0.02 0.22  

 Fe 0.04 0.50* −0.27 0.26 0.10 
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Figure 1(a). Map of the south-western Indian Ocean showing trawl locations at La Pérouse 

seamount, Reunion Island, MAD-Ridge seamount and the south-western Mozambique 

Channel (MZC). Longhurst’s (1998) biogeochemical provinces are delimited by black solid 

lines and are labelled as EAFR (East African Coastal Province) and ISSG (Indian South 

Subtropical Gyre). The western African, Madagascar and Mascarene landmasses are shown in 

grey. (b) La Pérouse and (c) MAD-Ridge trawl stations (red crosses) are further plotted on the 

bathymetry with the color bar representing the depth (m) below the sea surface. 
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Figure 2 Boxplots of the trace element concentrations Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, 

Se, and Zn (µg g-1 dw) in crustaceans, fishes and squids from the study sites (La Pérouse, 

MAD-Ridge, Mozambique Channel-MZC and Reunion Island). The median (thick black line 

in box plots), interquartile range (the lower and upper boundaries), the spread (thin lines 

extending from box plots) and outliers (red stars) are shown.
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Figure 3. Mean and standard deviation of the trace elements Ag, As, Cd, Co, Cr, Cu, Fe, Mn, 

Ni, Pb, Se, and Zn (µg g-1 dw) in myctophids collected from the study sites (La Pérouse, MAD-

Ridge, Mozambique Channel-MZC and Reunion Island).
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(a) 

 

(b) 

 

 

Figure 4(a). Mean (black dots) and minimum and maximum values of the trace elements Ag, 

As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn (µg g-1 dw) in myctophids (red bars) and all 

other fishes, crustaceans and squid specimens (blue bars) at the four study sites La Pérouse, 

MAD-Ridge, Mozambique Channel-MZC and Reunion Island. (b) Principal component 

analysis biplots of the trace element concentrations in myctophids, with the 2 major axes (PC4 

and PC5). The direction and length of the blue lines mark the direction and rate of steepest 

increase of the given trace element.
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Figure 5. Trace element (Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) concentrations 

(µg g-1 dw) in crustaceans, fishes and squids vs. body size (abdomen and carapace length for 

crustaceans, standard length for fishes and dorsal mantle length for squids) in mm, from all 

four study sites. The Pearson correlation coefficients R and p-values are shown. Significant 

relationships between trace element and body size are shown by the red stars.
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Figure 6. The relationships between Se and Hg (µg g-1 dw) and the link between the ratio Se:Hg 

and body size (mm) in crustaceans, fishes and squids from all four study sites. The Pearson 

correlation coefficients R and p-values are shown. The significant correlation is shown by the 

red star.
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Figure 7. The relationships between the trace elements Ag, Cd, Cu and Zn with Se (µg g-1 dw) 

in crustaceans, fishes and squids from all four study sites. The Pearson correlation coefficients 

R and p-values are shown. Significant correlations are shown by the red stars.
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Supplementary Material 

 

Table S1. Mean ± Standard deviation of certified and measured trace element concentrations 

(µg g-1 dry weight) in reference materials TORT−3 and DOLT−5. 

 

 

 

 

Element TORT−3 DOLT−5 

Certified 

values 

Measured 

values 

Certified 

values 

Measured 

values 

Cd 42.3 ± 1.8 0.99 ± 0.004 14.5 ± 0.6 0.94 ± 0.004 

Pb 0.225 ± 0.018 0.74 ± 0.002 0.16 ± 0.03 0.88 ± 0.007 

As 59.5 ± 3.8 1.04 ± 0.003 34.6 ± 2.4 0.96 ± 0.003 

Co 1.06 0.97 ± 0.004 0.27 ± 0.03 0.99 ± 0.16 

Ni 5.30 ± 0.24 0.88 ± 0.003 1.71 ± 0.56  

Se 10.9 ± 1.0 1.11 ± 0.006 8.3 ± 1.8 1.02 ± 0.04 

Zn 136 ± 6 0.99 ± 0.004 105.3 ± 5.4 1.03 ± 0.005 

Ag   2.05 ± 0.08 0.67 ± 0.001 

Cr 1.95 ± 0.24 0.90 ± 0.008 2.35 ± 0.58  

Cu 497 ± 22 0.90 ± 0.005 35.0 ± 2.4 0.99 ± 0.004 

Fe 179 ± 8 0.92 ± 0.007 1070 ± 80 0.95 ± 0.004 

Mn 15.6 ± 1.0 0.93 ± 0.005 8.91 ± 0.70  


