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BEST CONSTANT AND MOUNTAIN-PASS SOLUTIONS FOR A

SUPERCRITICAL HARDY-SOBOLEV PROBLEM IN THE

PRESENCE OF SYMMETRIES

HUSSEIN MESMAR

1. Introduction

Let (M, g) be a compact Riemannian manifold without boundary of dimension
n ≥ 3. Given a, h ∈ C0(M) and a weight ω > 0 a.e., 2 < q < p, we are interested
in the existence of distributional solutions u ∈ H2

1 (M) to the nonlinear problem

(1)

{
∆gu+ a(x)u = ω(x)up−1 + h(x)uq−1 in M,
u > 0 in M

where ∆g := −divg(∇) is the Laplacian with minus sign convention and H2
1 (M) is

the Sobolev space defined as the completion of C∞(M) for the norm

u 7→ ∥u∥H2
1
:=
√

∥u∥22 + ∥∇u∥22

where the norms ∥ · ∥q on the Lebesgue spaces Lq(M) are taken with respect to the
Riemannian element of volume dvg. The classical Sobolev embedding yields

H2
1 (M) ↪→ Lp(M) continuously iff 1 ≤ p ≤ 2⋆ :=

2n

n− 2
, compactly iff p < 2⋆

and it is classical that, when ω ≡ 1, problem (1) has a variational structure when
p ≤ 2⋆. The difficulty is in the critical case p = 2⋆ where many methods have
been developed since the pioneer contributions of Aubin [2], Trudinger [19] and
Schoen [17].

In the present paper, we add a nonconstant weight and we consider a supercrit-
ical case which breaks the variational structure. In order to get a supercritical
exponent, following Moser [15] and Hebey-Vaugon [10], we impose the invariance
of the problem under the action of isometries in order to lower in some sense the
dimension of the manifold. Let G be a closed subgroup of the group of isometries
Isomg(M) of (M, g) and k = minx∈M dimGx, where Gx denotes the orbit of a
point x ∈ M under the action of G. We say that a function ϕ : M → R is G-
invariant if ϕ ◦ σ(x) = ϕ(x) for any x ∈ M and σ ∈ G. If G acts freely, then M/G
has the structure of a manifold of dimension (n−k): therefore the critical exponent
on M/G is 2(n−k)

n−k−2 > 2⋆, and, by going back on M , artificially, classical variational

methods allows to get G−invariant solutions to (1) with a supercritical exponent.

In the present work, we consider the more intricate case where G does not act freely.
We make the fundamental Assumption 8 on G inspired by the work of Saintier [16]
(more details are in Section 2): note that under this assumption, we cannot consider
problem (1) on the quotient M/G since it is not necessarily a manifold.
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We fix x0 ∈ M and s ∈ [0, 2). We define 2⋆(k, s) = 2(n−k−s)
n−k−2 , 2⋆(k) = 2⋆(k, 0) and

we consider q ∈ (2, 2⋆(k)). We investigate the existence of a solution u ∈ H2
1 (M)

to

(2)

{
∆gu+ au = u2⋆(k,s)−1

dg(x,Gx0)s
+ huq−1 in M,

u > 0 in M

where dg is the Riemannian distance on (M, g). We refer to Djadli [6] for consider-
ations on the case s = 0. Solutions to (2) are critical points of the functional

u 7→ Jq(u) =
1

2

∫
M

(|∇u|2g + au2)dvg −
1

2⋆(k, s)

∫
M

|u|2⋆(k,s)

dg(x,Gx0)s
dvg −

1

q

∫
M

h|u|qdvg

which is defined for u ∈ H2
1 (M) ∩ L2⋆(k,s)(M,d(·, Gx0)−s). Our problem is super-

critical from the viewpoint of Hardy-Sobolev embedding. Namely

H2
1 (M) ↪→ Lp(M,d(·, x0)−s) continuously if 1 ≤ p ≤ 2⋆(0, s) =

2(n− s)

n− 2
.

Since 2⋆(k, s) > 2⋆(0, s) is supercritical as soon as k > 0, there is no embedding
fromH2

1 (M) into L2⋆(k,s)(M,d(·, x0)−s) and the problem does not have a variational
formulation in the space H2

1 (M). To overcome this difficulty, we work on

H2
1,G(M) := {u ∈ H2

1 (M)/ u ◦ σ(x) = u(x) for all σ ∈ G a.e x ∈M}.

In the sequel, Lp
G(M,dg(x,Gx0)

−sdvg) is the weighted space of G−invariant func-
tions endowed with the norm ||f ||p,s = |||f |pdg(., Gx0)−s||1. Our first result is an
improvement of the integrability:

Theorem 1 (Mesmar). Let (M, g) be a compact Riemannian manifold without
boundary of dimension n ≥ 3 and G a subgroup of isometries of (M, g). We suppose
that Assumption 8 is verified, and we give ourselves k and Gx0 as in these hypoth-
esis. Assume that k ≥ 2 and n − k ≥ 3. Then, for any p ∈ [1, 2⋆(k, s)], H2

1,G(M)

is continuously embedded in Lp
G(M,

dvg
dg(x,Gx0)s

). Moreover if 1 ≤ p < 2⋆(k, s) the

embedding is compact.

Note that the case s = 0 was handled by Faget [7] and the case k = 0 was
handled by Jaber [12]. From this inclusion, we define the first best constant of the
Hardy-Sobolev inequalities in the presence of isometries. It follows from Theorem
1 that there exists L,B > 0 such that for all u ∈ H2

1,G(M):

||u||22⋆(k,s),s ≤ L||∇u||22 +B||u||22(3)

We define the first best constant to be

L0 = L0(M, g, n, k, s, x0) = inf{L ≥ 0 such that ∃B s.t. (3) holds ∀u ∈ H2
1,G(M)}

Definition 2. For m ≥ 3 we define the best constant of Euclidean Sobolev space

1

Ks(m)
= inf

ϕ∈D2
1(Rm)\{0}

∫
Rm |∇ϕ|2dX(∫

Rm

|ϕ|2⋆(k,s)

|X|s dX
) 2

2⋆(k,s)

> 0(4)

where D2
1(Rm) is the completion of C∞

c (Rm) for ∥∇ · ∥2.
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Aubin [2] and Talenti [18] have computed the best constant K0(m), and Lieb
[13] has computed Ks(m) explicitly for s > 0. We denote by 2⋆ = 2⋆(0, 0) and
2⋆(k) = 2⋆(k, 0). We define

A := min{Volg(O)/O principal orbit of dimension k},

Faget [7] proved that the best constant for G-invariant Sobolev inequality is

L0(M, g, n, k, 0, x0) =
K0(n− k)

A1− 2
2⋆(k)

.(5)

When s > 0, Jaber [12] showed that

L0(M, g, n, 0, s, x0) = Ks(n) =
1

(n− 2)(n− s)

(
1

2− s
wn−1

Γ2(n−2
2−s )

Γ( 2(n−s)
2−s )

)− 2−s
n−s

where Γ is the Euler function. In this article, we use these properties to prove that

Theorem 3 (Mesmar). Let (M, g) a compact Riemannian manifold without bound-
ary of dimension n ≥ 3 and G a subgroup of isometries of (M, g). We suppose that
Assumption 8 is verified, and we give ourselves k and Gx0 as in these hypothesis.
For all k ∈ [1, n− 2), s ∈ (0, 2) we have

L0(M, g, n, k, s, x0) =
Ks(n− k)

A1− 2
2⋆(k,s)

.

In particular, for all ϵ > 0, there exists Bϵ , such that for all u ∈ H2
1,G(M), we

have that

||u||22⋆(k,s),s ≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

)
||∇u||22 +Bϵ||u||22(6)

In the sequel, for any k ∈ N, Ck
G(M) denotes the space of functions in Ck(M)

that are G−invariant. In the spirit of Aubin [2], we are then in position to get
solutions to (2) when h ≡ 0:

Theorem 4 (Mesmar). Let (M, g) be a compact Riemannian manifold without
boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We
suppose that Assumption 8 is verified, and we define k := minx∈M dimGx and Gx0
as in these hypothesis. We let a ∈ C0

G(M) be such that ∆g + a is coercive and that

inf
u∈H2

1,G(M)\{0}

∫
M
(|∇u|2 + au2)dvg(∫

M
|u|2⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

<
Ks(n− k)

A1− 2
2⋆(k,s)

−1

.

Then the infimum is achieved by a positive function u ∈ H2
1,G(M) ∩ C0,α(M) ∩

C1,ν
loc (M \ {Gx0}) for all α ∈ (0,min{1, 2− s}), ν ∈ (0, 1). Up to multiplication by

a constant, u satisfies

(7)

{
∆gu+ au = u2⋆(k,s)−1

dg(x,Gx0)s
in M,

u > 0 in M

We are then left with proving the strict inequality above. Via test-function
estimates, we are able to realize it to obtain the following:
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Theorem 5 (Mesmar). Let (M, g) be a compact Riemannian manifold without
boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We
suppose that Assumption 8 is verified, and we define k := minx∈M dimGx and Gx0
as in these hypothesis. We let a ∈ C0

G(M) be such that ∆g + a is coercive. We
assume that n− k ≥ 4 and that

ā(x̄0) <
(n− k − 2)(6− s)

12(2n− 2k − 2− s)
Scalg̃(x̄0)−

(n− k − 2)(n− k − 4)

4(2n− 2k − 2− s)

∆g̃ f̄(x̄0)

f̄(x̄0)

Then there exists a positive G−invariant solution to (7).

We now consider the existence of a positive G−invariant solution for the per-
turbed problem (2). Such solutions are critical points for

v 7→ J+
q (v) =

1

2

∫
M

(|∇v|2g + av2)dvg −
1

2⋆(k, s)

∫
M

v
2⋆(k,s)
+

dg(x,Gx0)s
dvg −

1

q

∫
M

hvq+dvg

(8)

Using Ambrosetti-Rabinowitz’s Mountain-Pass-Lemma [1], we get the following:

Theorem 6 (Mesmar). Let (M, g) be a compact Riemannian manifold without
boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We
suppose that Assumption 8 is verified, and we define k := minx∈M dimGx and Gx0
as in these hypothesis. We let a, h ∈ C0

G(M) be such that h ≥ 0 and ∆g + a is
coercive. If there exists u0 ∈ H2

1,G(M), u0 ̸≡ 0, u ≥ 0 such that

(9) sup
t≥0

J+
q (tu0) <

(2− s)

2(n− k − s)

Ks(n− k)

A1− 2
2⋆(k,s)

−n−k−s
2−s

Then the perturbed Hardy-Sobolev equation admits a non-trivial solution in C0
G(M)∩

H2
1,G(M). In addition, we have u > 0 in M and u ∈ C0,α ∩ C1,ν

loc (M \ {Gx0}), for
all α ∈ (0,min{1, 2− s}), ν ∈ (0, 1).

We are left with going below a specific threshold. Here again, this is performed
via test-functions estimates. We then obtain the following existence result:

Theorem 7 (Mesmar). Let (M, g) be a compact Riemannian manifold without
boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We
suppose that Assumption 8 is verified, and we define k := minx∈M dimGx and Gx0
as in these hypothesis. We let a, h ∈ C0

G(M) be such that h ≥ 0 and ∆g + a is
coercive. We suppose that

(1) n− k ≥ 4;
(2) q > n−k

n−k−2 ;

(3) h(x0) > 0.

Then the perturbed Hardy-Sobolev equation:

∆gu+ au =
u2

⋆(k,s)−1

dg(x,Gx0)s
+ huq−1 ; u > 0 inM

admits a non-trivial solution in C0
G(M) ∩ H2

1,G(M). In addition u ∈ C0,α(M) ∩
C1,ν

loc (M \ {Gx0}), for all α ∈ (0,min{1, 2− s}), ν ∈ (0, 1).

This paper is from the PhD thesis of the author. He thanks Frédéric Robert for
fruitful encouragements and remarks on this work.
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2. Preliminaries on manifolds invariant by a group of isometries

Let (M, g) be a compact Riemannian manifold without boundary of dimension
n, G a closed group of isometries of (M, g) and k := min

x∈M
dimGx ≥ 1 where Gx is

the orbit of point x under the action of G. Let x0 ∈ G be such that dimGx0 = k.

Let us now recall some known geometric results and fix some notations. These
results are in the book by Bredon [4]: we refer to Hebey-Vaugon [10], Faget [7] and
Saintier [16] for the following exposition. Let G′ be a closed subgroup of Isomg(M):
then G′ is a Lie group. On the other hand for all x ∈ M , we denote x̄ := Π(x)
where Π : M −→ M/G′ the canonical surjection. We define G′x := {gx/g ∈ G′}
the orbit of x under G′ and S′x := {g ∈ G′/g(x) = x} the stabilizer of x under G′.
Note that G′x is a compact submanifold isomorphic to the quotient group G′/S′x,
and we define a principal orbit G′x if its stabilizer is minimal (∀y ∈M , S′y contains
a conjugate subgroup of S′x), in particular the principal orbits are of maximum
dimension but the converse is not true.

Define Ω :=
⋃
OP where the union is taken on all principal orbits. Then Ω is a

dense open set of M and Ω/G′ is a smooth manifold that can be endowed with
a Riemannian distance ḡ such that the surjection Ω −→ Ω/G′ is a Riemannian
submersion. We define

g̃ = v̄
2

n−k−2 ḡ(10)

with v̄(x̄) = vol(Π−1(x̄)) = vol(G′x). We assume that k = min
x∈M

dimGx ≥ 1. In the

present paper, we make the following fundamental assumption:

Assumption 8. For any Gx0, a G-orbit of minimal dimension k, we can find
δ > 0, and G′ a closed subgroup of Isomg(M) such that:

(1) G′x0 = Gx0;
(2) For all x ∈ Bδ(Gx0) := {y ∈M/dg(y;Gx0) < δ}, then G′x is principal and

G′x ⊂ Gx.

In particular dimG′x = dimGx0 = k, ∀x ∈ Bδ(Gx0).

We now consider the quotient N := Bδ(Gx0)/G
′ that turns to be a (n −

k)−Riemannian manifold. This manifold is then equiped with the metrics ḡ and
g̃. We let η ∈ C∞

c (R) be such that 0 ≤ η ≤ 1, η(x) = 1 for x ∈ B(0; 1)

and η(x) = 0 for x ∈ B(0; 2)c. For all x̄1 ∈ N and δ′ ∈ (0,
ig̃(N)

2 ), we define

ηx̄1,δ′(x̄) = η(δ−1dg̃(x̄1, x̄)) for all x̄ ∈ N .

3. Properties of Lp(M,dg(x,Gx0)
−sdvg): proof of Theorem 1

We let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, G a
group of isometries of M , x0 ∈M such that Gx0 is an orbit of minimal dimension
k ∈ [1, n− 2), and s ∈ (0, 2). We assume that Assumption 8 is verified.

We prove the continuous embedding of Theorem 1. By Hebey-Vaugon [10], the first
Sobolev inclusion in the presence of symmetries (the case where s = 0), implies the
existence of a positive constant C such that

||u||2⋆(k) ≤ C||u||H2
1,G(M) for all u ∈ H2

1,G(M).(11)
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Hardy’s inequality on Rn−k writes∫
Rn−k

ϕ2

|X|2
dX ≤ 4

(n− k − 2)2

∫
Rn−k

|∇ϕ|2dX, ∀ϕ ∈ C∞
c (Rn−k)(12)

Let u ∈ C∞
G (M) be such that there exists r0 > 0, such that supp u ⊂ Br0(Gx0) .

We denote ū = u ◦ Π, where Π is the projection of x on the (n − k)-Riemannian
manifold N := Br0(Gx0)/G

′. By (12), there exists C1 > 0 such that∫
N

ū2

dḡ(x̄, x̄0)2
dvḡ ≤ C1||∇ū||22.

On the other hand, there exists C2, C3 ≥ 0 such that∫
M

u2

dg(x,Gx0)2
dvg =

∫
N

ū2

dḡ(x̄, x̄0)2
v̄dvḡ ≤ C2

∫
N

ū2

dḡ(x̄, x̄0)2
dvḡ

And

||∇u||22 ≤ C3||∇ū||22
We put together these three inequalities. Then, for any u ∈ C∞

G (M) such that
supp u ⊂ Br0(Gx0), there exists C > 0 such that

∫
M

u2

dg(x,Gx0)2
dvg ≤ C||u||2H2

1,G(M)

Let us now set p = p(s) > 1 satisfying 1
p + s

2 = 1. For a function u ∈ C∞
G (M)

such that supp u ⊂ Br0(Gx0), by Hölder, we have∫
M

|u|2
⋆(k,s)−s

(
u

dg(x,Gx0)

)s

dvg ≤
(∫

M

|u|
2(2⋆(k,s)−s)

2−s dvg

) 1
p
(

u2

dg(x,Gx0)2
dvg

) s
2

Since 2(2⋆(k,s)−s)
2−s = 2⋆(k), raising the previous inequality to the power 2

2∗(k,s) we
get(∫

M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤
(∫

M

|u|
2−s)

2⋆(k,s) dvg

) 2−s
2⋆(k,s)

(
u2

dg(x,Gx0)2
dvg

) s
2⋆(k,s)

Grouping this inequality with (11) and using 2⋆(k)(2−s)
2 2⋆(k,s) + s

2⋆(k,s) = 1, we get(∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤ C
(
||u||2H2

1,G(M)

) 2⋆(k)(2−s)
2 2⋆(k,s)

C ′
(
||u||2H2

1,G(M)

) s
2∗(k,s)

≤ C ′′||u||2H2
1,G(M)(13)

Where C,C ′, C ′′ are strictly positive constants only depends on M , k, and s. By
density of C∞

G (M), we get that (13) holds for all u ∈ H2
1,G(M), which proves the

continuous embedding of Theorem 1.

We split the proof of the compactness embedding of Theorem 1 into two steps:

Step I: Let us first show that we have H2
1,G(M) ↪→ Lq(M,dg(x,Gx0)

−sdvg). We

fix u ∈ H2
1,G(M), by Hölder’s inequality we have that

||u||q,s ≤ ||u||2⋆(k,s)

(∫
M

dvg
dg(x,Gx0)s

) 1
q−

1
2⋆(k,s)



SUPERCRITICAL HARDY-SOBOLEV PROBLEMS WITH SYMMETRIES 7

With (13), we get that

||u||q,s ≤ C||u||H2
1,G(M)

(∫
M

dvg
dg(x,Gx0)s

) 1
q−

1
2⋆(k,s)

where C is independent of u. Hence the continuous injection follows.

Step II: Now let us prove the compactness of the embedding. Let (ui)i∈N be
a bounded sequence in H2

1,G(M). The reflexivity of H2
1,G(M) and the Rellich-

Kondrakov theorem yields the existence of u ∈ H2
1,G(M) such that, up to a subse-

quence also denoted by (ui)i, we have that

(1) ui ⇀ u weakly in H2
1,G(M)

(2) ui → u strongly in L2(M)
(3) ui(x) → u(x) for a.e x ∈M .

Let us fix ϵ > 0. For all i ∈ N, R > 0, we define

Ωi(R) := {x ∈M / |ui(x)− u(x)| < R}

On the one hand, the continuous injection of the previous part and by the fact that
(ui) is bounded in H2

1,G(M) yield C,C ′ > 0 such as∫
M\Ωi(R)

|ui − u|q dvg
dg(x,Gx0)s

≤ 1

R2⋆(k,s)−q

∫
Ωi(A)

|ui − u|2
⋆(k,s) dvg

dg(x,Gx0)s

≤ C

R2⋆(k,s)−q
||ui − u||2

⋆(k,s)

H2
1,G(M)

≤ C ′(n, k, s, u)

R2⋆(k,s)−q

There exists R0 = R0(ϵ) such that for all R > R0 we have

C ′′(n, k, s, u)

R2⋆(k,s)−q
<
ϵ

2

On the other hand, let us set the sequence of functions (fi)i∈N defined on M by

fi(x) =
|ui(x)− u(x)|q

dg(x,Gx0)s
1Ωi(R)(x) for i ∈ N and a.e. x ∈M.

Then, by Lebesgue’s theorem, we deduce that there exists i0 = i0(ϵ) > 0 , such
that for all i > i0 we have that ∫

M

fidvg <
ϵ

2
.

Then, for all R > R0, and i > i0, we have that

||ui − u||qq,s =
∫
M

|ui − u|q dvg
dg(x,Gx0)s

=

∫
M\Ωi(R)

|ui − u|q dvg
dg(x,Gx0)s

+

∫
M

fidvg < ϵ

Hence (ui)i∈N converges u in the space Lq(M,dg(x,Gx0)
−sdvg). This proves the

compactness of the embedding when q < 2⋆(k, s).

This ends the proof of Theorem 1.
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4. Best constants on Riemannian manifolds up to ϵ

This section is devoted to the proof of Theorem 3. We let (M, g) and G as in
Assumption 8. Given ϵ > 0, we prove (6), that is the existence of Bϵ > 0 such that

||u||22⋆(k,s),s ≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

)
||∇u||22 +Bϵ||u||22 for all u ∈ H2

1,G(M)

We follow the work of Jaber [11] who proved this inequality for k = 0.

Step I: Construction of a finite covering of N = Br0(Gx0)/G
′ by exponential balls.

We put the (n − k)−Riemannian manifold (N, ḡ). For δ the Euclidean metric on
Rn−k and by compactness criterion of M (more details in Jaber [11], Proposition
1.2.1 and Appendix I), and therefore on N , we have for all x̄ ∈ N , and all ρ > 0,

there exists r = r(x, ρ) ∈ (0,
iḡ(N)

2 ) , such that lim
ρ→0

r(x, ρ) = 0 and the exponential

map (B2r(x̄), exp
−1
x̄ ) satisfies the following properties:

(14)


(1− ρ)δ ≤ ḡ ≤ (1 + ρ)δ
(1− ρ)

m
2 dx ≤ dvḡ ≤ (1 + ρ)

m
2 dx

D−1
δ |T |δ ≤ |T |ḡ ≤ Dδ|T |δ for all 1-covariant tensor T on N

With lim
ρ→+∞

Dδ = 1.

Step II: We prove that for all ϵ > 0, there exists r0 > 0 such that for all u ∈
C∞

c (Br0(Gx0)) that is G−invariant, we have:

||u||22⋆(k,s),s ≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)
||∇u||22(15)

By the definition of the best Sobolev constant (4), we have for all Φ ∈ C∞
c (Rn−k)(∫

Rn−k

|Φ|2⋆(k,s)

|X|sξ
dX

) 2
2⋆(k,s)

≤ Ks(n− k)

∫
Rn−k

|∇Φ|2ξdX,(16)

where ξ denotes the Euclidean metric on Rn−k. We let r0 > 0 that will be fixed
later. Let u ∈ C∞

c (Br0(Gx0)) be G−invariant. Define N := Br0(Gx0)/G ⊂ Rn−k

equipped with its metric ḡ. We note ū = u ◦Π where Π is the canonical projection
from (M, g) to (N, ḡ) (see Assumption 8). It follows from (14) applied on N and
(16) that

||ū||2
L2⋆(k,s)(N,

dvḡ
dḡ(x̄,x̄0)

)
≤ (1 + ρ)

n−k
2⋆(k,s)Ks(n− k)

∫
Rn−k

|∇(ū ◦ expx̄0
)|2δdX

≤ D2
ρ(1 + ρ)

n−k
2⋆(k,s) (1− ρ)−

n−k
2 Ks(n− k)

∫
N

|∇ū|2ḡdvḡ

Since lim
ρ→0

D2
ρ(1 + ρ)

n−k
2⋆(k,s) (1− ρ)−

n−k
2 = 1, it follows that for all ϵ > 0, there exists

ρ0 > 0 such that for all 0 < ρ < ρ0, we have(∫
Br0

(x̄0)

|ū|2
⋆(k,s) dvḡ

dḡ(x̄, x̄0)s

) 2
2∗(k,s)

≤
(
Ks(n− k) +

ϵ

2

)∫
Br0

(x̄0)

|∇ū|2ḡdvḡ
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According to Faget [7] (formula (1.10)), for any function f ∈ C∞
G (M), and for any

ϵ > 0 , there exists UGx0
a neighborhood of Gx0, such that∫

UGx0

fdvg ≤ 1 + ϵ

1− ϵ
V ol(Gx0)

∫
UGx0

/G

f̄dvḡ

And also ∫
UGx0

|∇f |2gdvg ≥ 1− ϵ

(1 + ϵ)2
V ol(Gx0)

∫
UGx0

/G

|∇f̄ |2ḡdvḡ

Let us then set r0 small enough such that Br0(Gx0) ⊂ UGx0
, we will have

(∫
Br0

(Gx0)

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤
(
1 + ϵ

1− ϵ
V ol(Gx0)

) 2
2⋆(k,s)

(∫
Br0 (x̄0)

|ū|2
⋆(k,s) dvḡ

dḡ(x̄, x̄0)s

) 2
2⋆(k,s)

≤
(
1 + ϵ

1− ϵ
V ol(Gx0)

) 2
2∗(k,s) (

Ks(n− k) +
ϵ

2

)∫
Br0 (x̄0)

|∇ū|2ḡdvḡ

≤
(
1 + ϵ

1− ϵ

) 2
2⋆(k,s)

+2

V ol(Gx0)
2

2⋆(k,s)
−1
(
Ks(n− k) +

ϵ

2

)∫
M

|∇u|2gdvg

≤
(
1 + ϵ

1− ϵ

) 2
2⋆(k,s)

+2

A
2

2⋆(k,s)
−1
(
Ks(n− k) +

ϵ

2

)∫
M

|∇u|2gdvg

And this is true for any ϵ > 0. So for all ϵ > 0 we have that (15) holds.

Step III: We prove that for all ϵ > 0 , r0 > 0 and u ∈ C∞
c (M \ Br0(Gx0))

G−invariant, there exists Bs,ϵ > 0 such that:

||u||22⋆(k,s),s ≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)
||∇u||22 +Bs,ϵ||u||22(17)

For all x1 ∈M , such that dg(x1, Gx0) > r0, we set u ∈ C∞
c (Br1(Gx1))G−invariant.

Then for all x in the support of u, we have that dg(x,Gx0) ≥ r0 > 0. Therefore,(∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

=

(∫
Br1 (Gx1)

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤ 1

r0
2s

2⋆(k,s)

(∫
Br1

(Gx1)

|u|2
⋆(k,s)dvg

) 2
2⋆(k,s)

Since 2⋆(k, s) < 2⋆(k), by Faget [7], the embeddingH2
1,G(M) ↪→ L2⋆(k,s) is compact.

Then for all β > 0, there exists Bβ > 0 such that for all u ∈ H2
1,G(M), we have

||u||22⋆(k,s) ≤ β||∇u||22 +Bβ ||u||22,

which yields (17).

Step IV: We show (6) for all u ∈ C∞
G (M). To do this, let ϕ ∈ C∞

c (R+) be such
that 0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for all x ≤ 1 and ϕ(x) = 0 for all x ≥ 2. For all
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δ > 0, we set η := ϕ
(

dg(x,Gx0)
2δ

)
∈ C∞

c (Bδ(Gx0)). Note that η and (1 − η) are

G-invariant, and furthermore there exists H > 0 such that

|∇η 1
2 |g , |∇(1− η)

1
2 |g ≤ H(18)

Let ϵ > 0, and set u ∈ C∞
G (M). Since 2⋆(k,s)

2⋆(k) > 1, so according to Minkowski

inequality we have:(∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤ ||ηu2 + (1− η)u2|| 2⋆(k,s)
2 ,s

≤ ||ηu2|| 2⋆(k,s)
2 ,s

+ ||(1− η)u2|| 2⋆(k,s)
2 ,s

≤
(∫

M

|η 1
2u|2

⋆(k,s) dvg
dg(x,Gx0)s

) 2
2⋆(k,s)

+

(∫
M

|(1− η)
1
2u|2

⋆(k,s) dvg
dg(x,Gx0)s

) 2
2⋆(k,s)

By (15), and (17), for all ϵ > 0, there exists Bs,ϵ > 0 such that(∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)∫
M

(
|∇(η

1
2u)|2g + |∇((1− η)

1
2u)|g

)
dvg +Bs,ϵ||u||22

=

(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)∫
M

(
η

1
2 |∇u|g + |u||∇η 1

2 |g
)2

dvg

+

(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)∫
M

(
(1− η)

1
2 |∇u|g + |u||∇(1− η)

1
2 |g
)2

dvg +Bs,ϵ||u||22

≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)(∫
M

(
η|∇u|2g + 2η

1
2 |∇u|g|u|g|∇η

1
2 |g + |u|2|∇η 1

2 |2g
)
dvg

+

∫
M

(
(1− η)|∇u|2g + 2η

1
2 |∇u|g|u|g|∇(1− η)

1
2 |g + |u|2|∇(1− η)

1
2 |2g
)
dvg

)
+Bs,ϵ||u||22

With (18), we get(∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)(
||∇u||22 + 4H||∇u||2||u||2 + 2H2||u||22

)
+Bs,ϵ||u||22(19)

Let ϵ0 be such that(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)
(1 + ϵ0) ≤

Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

And using the fact that

4H||∇u||2||u||2 ≤ ϵ0||∇u||22 +
(2H)2

ϵ0
||u||22
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Using (19), we get(∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)
(1 + ϵ0)||∇u||22 +Bϵ||u||22

≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

)∫
M

|∇u|2gdvg +Bϵ

∫
M

|u|2dvg

with

Bϵ =

(
(2H)2

ϵ0
+ 2H2

)(
Ks(n− k)

A1− 2
2⋆(k,s)

+
ϵ

2

)
+Bs,ϵ

Which completes this step.

Part V: By density of C∞
G (M) in H2

1,G(M), we get that (6) holds for all u ∈
H2

1,G(M), which proves (6).

It follows from (6) that

(20) L0(M, g, n, k, s, x0) ≤
Ks(n− k)

A1− 2
2⋆(k,s)

.

We prove the reverse inequality. Take L1 > 0 such that there exists BL1 such that

||u||2L2⋆(k,s)(N,dg̃(x̄,x̄0)s)
≤ L1||∇u||22 +BL1 ||u||

2
2(21)

for all u ∈ H2
1,G(M). We take Φ ∈ C∞

c (Rn−k) and we let (Φµ)µ>0 be the family in

C∞
c (N) defined for all µ > 0 small enough satisfying µ ≤ ρ0

R by:

Φµ(x̄) = Φ(µ−1 exp−1
x̄0

(x̄))

where the exponential map is taken with respect to the metric g̃) onN := Bδ(x̄0)/G.
Applying inequality (21) to our sequence Φµ, we write:

||Φµ||2L2⋆(k,s)(N,dg̃(x̄,x̄0)s)
≤ L1||∇Φµ||22 +BL1

||Φµ||22(22)

Let ϵ > 0. By compactness criterion of N̄ , there exists Rϵ > 0, such that for all
p ∈ BRϵ(0) ⊂ Rn−k we have:

(1− ϵ)ξ ≤ (exp∗x̄0
g̃)(p) ≤ (1 + ϵ)ξ

in the sense of bilinear forms. We fix µ0 = µ0(ϵ) such that for all µ < µ0, we have
Rµ < Rϵ. Then for all µ < µ0, with a change of variables, we write

(∫
BµR(x̄0)

|Φµ|2
⋆(k,s) dvg̃

dg̃(x̄, x̄0)s

) 2
2⋆(k,s)

≥ (1− ϵ)
n−k

2⋆(k,s)

(∫
BµR(x̄0)

|Φ|2⋆(k,s)(µ−1 exp−1
x̄0

(x))

dg̃(x̄, x̄0)s
dv(exp−1

x̄0
)∗ξ

) 2
2⋆(k,s)

= µn−k−2(1− ϵ)
n−k

2⋆(k,s)

(∫
BR(0)

|Φ|2⋆(k,s)(X)

|X|s
dX

) 2
2⋆(k,s)

(23)
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And further∫
N

|∇Φµ|2g̃dvg̃ =

∫
BµR(x̄0)

|∇Φ
(
µ−1 exp−1

x̄0
(x)
)
|2g̃dvg̃

≤ (1 + ϵ)
m
2

∫
BµR(x̄0)

|∇Φ
(
µ−1 exp−1

x̄0
(x)
)
|2
(exp−1

x̄0
)∗ξ
dv(exp−1

x̄0
)∗ξ

=
(1 + ϵ)

m
2

1− ϵ
µm−2

∫
BR(0)

|∇Φ|2δdX(24)

With the same arguments, we show that∫
N

Φ2
µdvg̃ ≤ (1 + ϵ)

n−k
2 µn−k

∫
BR(0)

Φ2dX(25)

Combining (23), (24) and (25) and (22) we will have for all ϵ > 0, µ < µ0 than

(∫
BR(0)

|Φ|2⋆(k,s)(X)

|X|s
dX

) 2
2⋆(k,s)

≤ (1 + ϵ)
n−k

2

(1− ϵ)
n−k

2⋆(k,s)

[
L1

(1− ϵ)

∫
BR(0)

|∇Φ|2δdX + µ2BL1

∫
BR(0)

Φ2dX

]
Passing ϵ→ 0 and µ→ 0, we get(∫

BR(0)

|Φ|2⋆(k,s)(X)

|X|s
dX

) 2
2⋆(k,s)

≤ L1

∫
BR(0)

|∇Φ|2δdX(26)

It then follows from the definition (4) that

L1 ≥ Ks(n− k)(27)

Now, let L ∈ R be such that there exists BL such that

||u||22⋆(k,s),s ≤ L||∇u||22 +BL||u||22 for all u ∈ H2
1,G(M).

Define the family x 7→ ϕµ(x) = Φµ(x̄) in C
∞
G (M), where Φµ is as above. We have

||ϕµ||22⋆(k,s),s =

(∫
BµR(Gx0)

|ϕµ|2
⋆(k,s) dvg

dg(x, x0)s

) 2
2⋆(k,s)

=

(∫
BµR(x̄0)

v̄
−2

n−k−2 |Φµ|2
⋆(k,s) dvg̃

dg̃(x̄, x̄0)s

) 2
2⋆(k,s)

≤ (A+ CRµ)
−1+ 2

2⋆(k,s)

(∫
BµR(x̄0)

|Φµ|2
⋆(k,s) dvg̃

dg̃(x̄, x̄0)s

) 2
2⋆(k,s)

(28)

And by definition of g̃, we have∫
N

|∇Φµ|2g̃dvg̃ =

∫
M

|∇ϕµ|2gdvg

Using (26) in (28), we have

||ϕµ||22⋆(k,s),s ≤ (A+ c′Rµ)
1− 2

2⋆(k,s)L

∫
M

|∇ϕµ|2gdvg
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We then apply (21) on Φµ with L1 = (A + c′Rµ)
1− 2

2⋆(k,s)L. By using (27), we get

that L ≥ Ks(n−k)

A
1− 2

2⋆(k,s)
, and then L0(M, g, n, k, s, x0) ≥ Ks(n−k)

A
1− 2

2⋆(k,s)
. With (20), we get

the result and Theorem 3 is proved.

Remarque 9. In the case s = 0, this result still holds as proved by Faget [7].

Remarque 10. Theorem 3 does not allow to conclude if L0 is achieved or not, in
other words for the moment we do not know if (6) holds for ϵ = 0.

5. Applications of the Mountain-Pass Lemma: proof of Theorems 6
and 7

This section is devoted to the proof of the existence Theorems 6 and 7. We will
need the following computational lemma:

Lemma 11. For all q ∈ (2, 2⋆(k, s)), there exists C1 = C1(q) > 0, C2 = C2(q) > 0,
and C3 = C3(q) > 0 such that for all x, y ∈ R∣∣|x+ y|q − |x|q − q|x|q−2xy

∣∣ ≤ C1

∣∣|x|q−2|y|2 + |y|q
∣∣

|(x+ y)|x+ y|q − x|x|q| ≤ C2

∣∣|x|q|y|+ |y|q+1
∣∣

||x|q − |y|q − |x− y|q| ≤ C3

(
|x|q−1|x− y|+ |x− y|q−1|y|

)
Lemma 12. Let (X, gX) be a compact Riemannian manifold, (fk)k∈N a sequence
of bounded functions in Lp(X) with p > 1. If (fk)k∈N converges almost everywhere
to a function f , then f ∈ Lp(X) and (fk)k∈N converges weakly to f in Lp(X)

Proof. A proof, inspired by Hebey, is in Jaber ( [11], Lemma 6.5.1). □

We use the following version of the Mountain-Pass Lemma by Ambrosetti-Rabinowitz
seen in Jaber [12]: Concerning terminology, we say that a sequence (uN )N∈N ∈ E
is a Palais-Smale sequence (PS) for J ∈ C1(E) at the level β ∈ R if J(uN ) → β
and J ′(uN ) → 0 strongly in the dual E′

Theorem 13 (Ambrosetti-Rabinowitz [1]). Let J ∈ C1(E,R), where (E, | · ∥E) is
a Banach space. We assume that

(1) J(0) = 0
(2) There exists α, r > 0 such that J(v) ≥ α for all v ∈ E verifying ||v||E = r
(3) There exists v0 ∈ E such that lim sup

t→+∞
J(tv0) < 0

We consider t0 > 0 large enough such that ||t0v0||E > r and J(t0v0) < 0. Then J
admits a Palais-Smale sequence at level β0, where

β0 = min
γ∈Γ

max
t∈[0,1]

J(γ(t))

and Γ =
{
γ ∈ C0 ([0, 1], E) /γ(0) = 0, γ(1) = t0v0

}
. In particular, 0 < β0 ≤ sup

t≥0
J(tv0).

Proposition 14. For all u0 ∈ H2
1,G(M), u0 ̸≡ 0, u0 ≥ 0, there exists β0 =

β0(u0) > 0 and a sequence (uN )n∈N ∈ H2
1,G(M) which is a Palais-Smale sequence

for the functional Jq at level β0. Moreover β0 ≤ sup
t≥0

Jq(tu0).
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Proof. We take E = H2
1,G(M) and J = Jq ∈ C1(E,R) in Theorem 13. Since

Jq(0) = 0, we have (1). Concerning (2), the coercivity of the operator ∆g + a
and the Sobolev and Cotsiolis-Ledoux inclusions [5] imply that there exist Ci > 0,
i = 1, 2, 3 such that for all v ∈ H2

1,G(M), we have:

Jq(v) ≥ C1||v||2H2
1,G(M) − C2||v||2

⋆(k,s)

H2
1,G(M)

− C3||v||qH2
1,G(M)

(29)

We consider the real function f(r) = C1−C2r
2⋆(k,s)−2−C3r

q−2. As q, 2⋆(k, s) > 2,
then f(r) → C1 when r → 0. In other words, there exists r0 > 0, such that for all
r < r0, f(r) >

C1

2 . So, for all v ∈ H2
1,G(M), satisfying ||v||H2

1,G(M) =
r0
2 , by (29)

we have Jq(v) ≥ C1r
2
0

8 . Regarding (3), for u0 ∈ H2
1,G(M) \ {0}, we have that

Jq(tu0) =
t2

2

∫
M

(
|∇u0|2 + au0

)
dvg −

t∗(k, s)

2⋆(k, s)

∫
M

|u0|2
⋆(k,s) dvg

dg(x,Gx0)s

− tq

q

∫
M

h|u0|q
dvg

dg(x,Gx0)s

:=at2 − bt2
⋆(k,s) − ctq

=t2
⋆(k,s)

(
at2−2⋆(k,s) − b− ctq−2⋆(k,s)

)
≤ t2

⋆(k,s)
(
at2−2⋆(k,s) − b

)
Where a, b > 0 and c ≥ 0. Then Jq(tu0) → −∞ and (iii) holds.

Let t0 > 0, β0 = β0(u0) and Γ as in the Mountain Pass lemma. Then for all γ ∈ Γ,

we have that supt∈[0,1] Jq(γ(t)) ≥ λ, where λ = C1
r20
8 , hence β0 ≥ λ > 0. So for

t0 > 0 large enough, our Proposition is proven. □

Proposition 15. Let p, q > 0 such that p+q = 2⋆(k, s), u ∈ H2
1,G(M), f ∈ L∞(M),

and (wn)N∈N a bounded sequence in H2
1,G(M) which almost converges everywhere

to w ∈ H2
1,G(M). Then, up to a subsequence, we have

lim
n→∞

∫
M

f |u|pwq
n

dvg
dg(x,Gx0)s

=

∫
M

f |u|pwq dvg
dg(x,Gx0)s

Proof. Let r = 2⋆(k,s)
p > 1 and r′ are conjugate. The inclusion of Theorem 1,

implies that there exists C = C(M, g, k, s) > 0 such that

||v||
L2⋆(k,s)(M,

dvg
dg(x,Gx0)s

)
≤ C||v||H2

1,G(M) for all v ∈ H2
1,G(M).

Hence, f |u|p ∈ Lr(M,
dvg

dg(x,Gx0)s
). On the other hand |||wn|q||Lr′ (M,

dvg
dg(x,Gx0)s

)
=

||wn||q
L2⋆(k,s)(M,

dvg
dg(x,Gx0)s

)
, hence the sequence (|wn|q)N∈N is bounded, and we apply

Lemma 12 and verify that (|wn|q)N∈N converges weakly to (|w|q)N∈N in Lr′(M,
dvg

dg(x,Gx0)s
).

This completes the proof of this proposition. □

Proposition 16. Let (M, g) and G be as in the Assumption 8. Let a, h ∈ C0
G(M) be

such that ∆g+a is coercive and h ≥ 0. Let (uN )N∈N ∈ H2
1,G(M) be a Palais-Smale

sequence for for Jq at level β ∈ R. We assume that

β < cn,k,s
Ks(n− k)

A1− 2
2⋆(k,s)

−n−k−s
2−s

, with cn,k,s =
2− s

2(n− k − s)
.
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Then there exists u ∈ H2
1,G(M) such that Jq(u) = β and up to a subsequence (uN )

converges strongly to u in H2
1,G(M). Moreover J ′

q(u) = 0 and Jq(u) = β.

Proof. We let (uN )N∈N ∈ H2
1,G(M) be as in the statement, that is

(30) Jq(uN ) → β and J ′
q(uN ) → 0 strongly in H2

1,G(M)
′
,

where β is as above. Note that, for all ψ ∈ H2
1,G(M), we have

⟨J ′
q(uN ), ψ⟩ =

∫
M

((∇uN ,∇ψ)g + auNψ) dvg −
∫
M

ψuN |uN |2
⋆(k,s)−2 1

dg(x,Gx0)s
dvg

−
∫
M

hψuN |uN |q−2dvg(31)

We proceed here in 4 steps:

Step I: We prove that the sequence (uN )N∈N is bounded in H2
1,G(M). Indeed,

since the operator ∆g + a is coercive, there exists C > 0 such that

||uN ||2H2
1,G(M) ≤ C

∫
M

(|∇uN |2g + au2N )dvg

≤ C

[
2Jq(uN ) +

2

2⋆(k, s)

∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s
+

2

q

∫
M

h|uN |qdvg
]

(32)

On the other hand, from (31) we get that

o(||uN ||H2
1,G(M)) = ⟨J ′

q(uN ), uN ⟩

=

∫
M

(|∇uN |2g + au2N )dvg −
∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s
−
∫
M

h|uN |qdvg

Putting the previous equality in Jq, we have

2Jq(uN ) =

(
1− 2

2⋆(k, s)

)∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s

+

(
1− 2

q

)∫
M

h|uN |qdvg + o(||uN ||H2
1,G(M))(33)

By combining (32) and (33), we get

||uN ||2H2
1,G(M) ≤ C

[∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s
+

∫
M

h|uN |qdvg
]

+ o(||uN ||H2
1,G(M))(34)

Using (33), (30) and the fact that h ≥ 0(
1− 2

2⋆(k, s)

)∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s

= 2β −
(
1− 2

q

)∫
M

h|uN |qdvg + o(||uN ||H2
1,G(M))

≤ 2β + o(||uN ||H2
1,G(M))

This implies that∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s
= O(1) + o(||uN ||H2

1,G(M))(35)
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and(
1− 2

q

)∫
M

h|uN |qdvg = 2β − 2

2⋆(k, s)

∫
M

|uN |2
⋆(k,s) dvg

dg(x,Gx0)s
+ o(||uN ||H2

1,G(M))

= O(1) + o(||uN ||H2
1,G(M))(36)

Grouping (34), (35) and (36) we get that

||uN ||2H2
1,G(M) = O(1) + o(||uN ||H2

1,G(M)).

And then ||uN ||H2
1,G(M) is bounded. This completes the proof of this step.

Step II: We claim that, up to extraction, there exists u ∈ H2
1,G(M) such that

(1) uN ⇀ u weakly in H2
1,G(M)

(2) uN → u strongly in Lp1(M) for all p1 ∈ [2, 2⋆[,

(3) uN → u strongly in Lp2(M,
dvg

dg(x,Gx0)s
) for all p2 ∈ [2, 2⋆(k, s)[,

(4) uN (x) → u(x) for a.e x ∈M .

Moreover, J ′
q(u) = 0.

The existence of u is a consequence of the boundedness of (uN ) and the compactness
of the subcritical embeddings. Passing to the limit in J ′

q(uN ) = o(1) yields J ′
q(u) =

0: we refer to Jaber [12] and Mesmar [14] for details.

Step III: We prove that for the subsequence of (uN )N∈N in Step II, we have that

||∇(uN − u)||22 =

∫
M

|uN − u|2
⋆(k,s)

dg(x,Gx0)s
dvg + o(1), and(37)

cn,k,s||∇(uN − u)||22 ≤ β + o(1), with cn,k,s =
2− s

2(n− k − s)
,(38)

Indeed, we set wN = uN − u. Lemma 11 yields the existence of C > 0 such that∣∣∣|uN |2
⋆(k,s) − |u|2

⋆(k,s) − |wN |2
⋆(k,s)

∣∣∣ ≤ C
(
|u|2

⋆(k,s)−1|wN |+ |u| |wN |2
⋆(k,s)−1

)
Using this inequality, and applying Proposition 15 to the sequence (wN ), we get

∫
M

(
|uN |2

⋆(k,s) − |uN − u|2
⋆(k,s)

) dvg
dg(x,Gx0)s

=

∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s
+ o(1).

(39)

Let us test J ′
q(uN )− J ′

q(u) on uN − u

o(1) =⟨J ′
q(uN )− J ′

q(u), uN − u⟩

=

∫
M

(|∇(uN − u)|2g + a(uN − u)2)dvg +

∫
M

h(uN − u)
[
uN |uN |q−2 − u|u|q−1

]
dvg

−
∫
M

(uN − u)
[
uN |uN |2

⋆(k,s)−2 − u|u|2
⋆(k,s)−2

] dvg
dg(x,Gx0)s

=

∫
M

(|∇(uN − u)|2g + a(uN − u)2)dvg

−
∫
M

(
|uN |2

⋆(k,s) − uuN |uN |2
⋆(k,s)−2 + |u|2

∗(k,s) − uuN |u|2
⋆(k,s)−2

) dvg
dg(x,Gx0)s

−
∫
M

h
(
|uN |q + |u|q − uuN |uN |q−2 − uuN |u|q−2

)
dvg

(40)
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On the other hand, Lemma 12 yields

lim
n→+∞

∫
M

uuN |uN |2
⋆(k,s)−2 dvg

dg(x,Gx0)s
=

∫
M

|u|2
⋆(k,s) dvg

dg(x,Gx0)s

= lim
n→+∞

∫
M

uuN |u|q−2 dvg
dg(x,Gx0)s

and

lim
n→+∞

∫
M

huuN |uN |q−2 dvg
dg(x,Gx0)s

=

∫
M

h |u|q dvg
dg(x,Gx0)s

= lim
n→+∞

∫
M

huuN |u|q−2 dvg
dg(x,Gx0)s

Also, the weak convergence of (uN ) to u in H2
1,G(M), the last equalities, as well as

(39) and (40) imply (37). The weak and strong convergence of Step II imply

Jq(uN )− Jq(u) =
1

2

∫
M

(
|∇uN |2g − |∇u|2g

)
dvg + o(1)

− 1

2⋆(k, s)

∫
M

(
|uN |2

⋆(k,s) − |u|2
⋆(k,s)

) dvg
dg(x,Gx0)s

=

(
1

2
− 1

2⋆(k, s)

)∫
M

(
|∇uN |2g − |∇u|2g

)
dvg + o(1)(41)

Since ⟨J ′
q(u), u⟩ = 0, we have that

Jq(u) =

(
1

2
− 1

2⋆(k, s)

)∫
M

u2
⋆(k,s) 1

dg(x,Gx0)s
dvg +

(
1

2
− 1

q

)∫
M

huqdvg,

and then Jq(u) ≥ 0 since h ≥ 0. Moreover lim
n→+∞

Jq(uN ) = β. Then (41) yields

cn,k,s

∫
M

(
|∇uN |2g − |∇u|2g

)
dvg ≤ β + o(1)(42)

By weak convergence of uN , we have that∫
M

|∇(uN − u)|2gdvg =

∫
M

|∇uN |2gdvg +
∫
M

|∇u|2gdvg − 2

∫
M

(∇u,∇ϕ)gdvg

=

∫
M

(
|∇uN |2g − |∇u|2g

)
dvg + o(1)(43)

Combining (42) and (43) yields (38).

Step IV: It remains to show that

lim
N→∞

∫
M

|∇uN |2gdvg =

∫
M

|∇u|2gdvg

It follows from Theorem 3 that for all ϵ > 0 there exists Bϵ > 0 such that(∫
M

|v|2⋆(k,s)

dg(x,Gx0)s
dvg

) 2
2⋆(k,s)

≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

)
||∇v||22 +Bϵ||v||22.

for all u ∈ H2
1,G(M). Let us test this inequality for v = uN − u, using the fact that

uN converges to u strongly in L2(M)

||uN − u||2
⋆(k,s)

L2⋆(k,s)(M,
dvg

dg(x,Gx0)s
)
≤
(
Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

) 2⋆(k,s)
2

||∇(uk − u)||2
⋆(k,s)

2 + o(1)
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Let us use this result with (37)

o(1) = ||∇(uN − u)||22 −
∫
M

|uN − u|2
∗(k,s) dvg

dg(x,Gx0)s

= ||∇(uN − u)||22

[
1−

(∫
M

|uN − u|2
⋆(k,s) dvg

dg(x,Gx0)s

)
||∇(uN − u)||−2

2

]

≥ ||∇(uN − u)||22

1− (Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

) 2⋆(k,s)
2

||∇(uN − u)||2
⋆(k,s)−2

2 + o(1)


this inequality and (38) imply

o(1) ≥ ||∇(uk − u)||22

1− (Ks(n− k)

A1− 2
2⋆(k,s)

+ ϵ

) 2⋆(k,s)
2

(
β

cn,k,s

) 2⋆(k,s)−2
2

+ o(1)


Like β < cn,k,s

Ks(n−k)

A
1− 2

2⋆(k,s)

−n−k−s
2−s

, then it follows from the previous inequality that

for ϵ small enough, there exists C > 0 such that ||∇(uN − u)||22 ≤ o(1). Hence the
result. This proves Proposition 16. □

We are now in position to prove Theorem 6.

Proof of Theorem 6: We do the proof in steps:
Step I: Suppose there is u0 ∈ H2

1,G(M), u0 ̸≡ 0, u0 ≥ 0 such that (9) holds. It

follows from Propositions 14 and 16 that there exists u ∈ H2
1,G(M) \ {0} such that

Jq(u) = β > 0, hence u ̸≡ 0 , and J ′
q(u) = 0, which satisfies (2) in the weak sense.

Step II: (Regularity) Arguing as in Ghoussoub-Robert [8] or Jaber [11], we get

that u ∈ C0,α ∩C1,ν
loc (M \ {Gx0}), for all α ∈ (0,min{1, 2− s}), ν ∈ (0, 1). We refer

to Mesmar [14] for a detailed proof.

Step III: (Positivity) For all u ∈ H2
1,G(M) we set u+(x) := max{u(x), 0} and

u−(x) := max{−u(x), 0} for a.e. x ∈ M . Doing the same analysis as for Jq, we
show that (J+

q )′(u) ≡ 0, where for all v ∈ H2
1,G(M) we set

J+
q (v) =

1

2

∫
M

(|∇v|2g + av2)dvg

− 1

2⋆(k, s)

∫
M

|v+|2
⋆(k,s)−1v+

dg(x,Gx0)s
dvg −

1

q

∫
M

h|v+|q−1v+dvg

In particular, ⟨(J+
q )′(u), u−⟩ = 0, hence

0 =−
∫
M

(|∇u−|2g + au2−)dvg +

∫
M

|u+|2
⋆(k,s)−1 u−

dg(x,Gx0)s
dvg +

∫
M

h|v+|q−1u−dvg

Therefore
∫
M
(|∇u−|2g + au2−)dvg = 0. Using that ∆g + a is coercive, we get that

||u−||H2
1,G(M) =0, so u ≥ 0. By the maximum principle for elliptic operators [3], we

get that u > 0 on M \Gx0
. This proves Theorem 6. □
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6. Proof of Theorems 7, 4 and 5

6.1. Test-function estimates. To go below the threshold (9), we construct test-
functions modeled on the extremal for the Hardy-Sobolev inequality (5) given by

(44) ϕ : X ∈ Rm 7→
(
1 + |X|2−s

)−m−2
2−s , m := n− k.

Given (M, g) and G which satisfy the Assumption 8 of Section 2. We define the
test functions (ūϵ)ϵ>0 for all ϵ > 0, x̄ ∈ N := Bδ(Gx0)/G

′ by

ūϵ(x̄) :=

(
ϵ

2−s
2

ϵ2−s + dg̃(x̄, x̄0)2−s

)m−2
2−s

where m := n− k ≥ 3(45)

where g̃ is defined in (10).

Lemma 17. Let (X, g) be a compact Riemannian manifold of dimension m ≥ 3,
and (Bρ0(x0), exp

−1
x0

) an exponential ball centered at x0 and of radius ρ ∈ (0, ig(X)).
So setting x = expx0

(rθ), for all x ∈ Bρ0(x0), we have that

∫
Sm−1

f ◦ expx0
(x)
√

det(g)(x)dθ = wm−1

[
f(x0)−

(
∆gf(x0)

2m
+
f(x0)

6m
Scalg(x0)

)]
+O(r3)

(46)

For all f ∈ C0(X), where r = dg(x, x0) and dθ and wm−1 are respectively is the
area element and the volume of the unit sphere Sm−1 of Rm.

Proof. Using the Cartan expansion of the metric g to order 2 (for the proof see
Hebey [9]) for any point x ∈ Bρ0(x0), that is

gij(x) = δij +
1

3
Riαβjx

αxβ +O(r3).

With this expansion and a Taylor expansion of f , straightforward computations
yield the result. □

Remarque 18. In the exponential map
(
N, exp−1

x̄0

)
, we pass to the polar coordi-

nates (r, θ) such that for all x̄ ∈ N , we have r = dḡ(x̄, x̄0) and θ ∈ Sm−1 . So we
have for all x̄ ∈ Bρ0(x̄0)

dvg̃(x̄) =
√
det(g̃)(x̄)dx̄ =

√
det(g̃)(x̄)rm−1dθ(47)

with dx̄ = (exp−1
x̄0

)∗(dX), and with Gauss’s Lemma, we have that g̃1i(x̄) = δ1i.

Lemma 19. For ϕ as in (44), we have that

||∇ūϵ||2L2(N) =

{ ∫
Rm |∇ϕ|2dX −

∫
Rm |X|2|∇ϕ|2dX

6m Scalg̃(x̄0)ϵ
2 + o(ϵ2) if m ≥ 5∫

Rm |∇ϕ|2dX − w3

6 Scalg̃(x̄0)ϵ
2 ln( 1ϵ ) +O(ϵ2) if m = 4

Proof. Since ūϵ is a radial function, so by the Gauss Lemma above, for all x̄ ∈ N

|∇ūϵ|2g̃ = g̃ij∇iūϵ∇j ūϵ = g̃rr(∇rūϵ)
2

= (m− 2)2ϵm−2 r2(1−s)

(ϵ2−s + r2−s)
2(m−s)

2−s
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We integrate |∇ūϵ|2g̃ over N using (47) and Cartan expansion (46) and by changing
the variable r = ϵρ, we write∫

N

|∇ūϵ|2g̃dvg̃ = (m− 2)2ϵm−2wn−k−1

∫ ρ0

0

rm+1

(
1− Scalg̃(x̄0)

6m r2 +O(r3)
)

r2s (ϵ2−s + r2−s)
2(m−s)

2−s

dr

= (m− 2)2wm−1

∫ ρ0
ϵ

0

ρm+1

(
1− Scalg̃(x̄0)

6m (ϵρ)2 +O((ϵρ)3)
)

ρ2s (1 + ρ2−s)
2(m−s)

2−s

dρ

:= A(ϵ)− (m− 2)2

6m
Scalg̃(x̄0)wm−1B(ϵ) + C(ϵ)(48)

where

A(ϵ) := (m− 2)2wm−1

∫ ρ0
ϵ

0

ρm+1dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

B(ϵ) = ϵ2
∫ ρ0

ϵ

0

ρm+3dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

and C(ϵ) = O

(∫ ρ0
ϵ

0

ρm+1(ϵρ)3dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

)
Step I: We first compute A(ϵ):

A(ϵ) = (m− 2)2wm−1

[∫ +∞

0

ρm+1dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

−
∫ +∞

ρ0
ϵ

...

]

=

∫
Rm

|∇ϕ|2dX − (m− 2)2wm−1

∫ +∞

ρ0
ϵ

ρm+1dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

=

∫
Rm

|∇ϕ|2dX +O(ϵm−2)(49)

Step II: On the other hand, ρ 7→ ρm+3

ρ2s(1+ρ2−s)
2(m−s)

2−s

∈ L1(Rm) as soon as m ≥ 5.

Therefore for m ≥ 5, we have that

B(ϵ) = ϵ2
∫ ρ0

ϵ

0

ρm+3dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

− ϵ2
∫ +∞

ρ0
ϵ

ρm+3dρ

ρ2s (1 + ρ2−s)
2(m−s)

2−s

= ϵ2(m− 2)−2w−1
m−1

∫
Rm

|X|2|∇ϕ|2dX +O(ϵm−2)

When m = 4:

B(ϵ) = ϵ2
∫ 1

0

ρ7dρ

ρ2s (1 + ρ2−s)
2(4−s)
2−s

+ ϵ2
∫ ρ0

ϵ

1

ρ7dρ

ρ2s (1 + ρ2−s)
2(4−s)
2−s

= O(ϵ2) + ϵ2

(∫ ρ0
ϵ

1

dρ

ρ
+

∫ ρ0
ϵ

1

ρ7

ρ2s

[
1

(1 + ρ2−s)
2(4−s)
2−s

− 1

(ρ2−s)
2(4−s)
2−s

]
dρ

)

= O(ϵ2) + ϵ2 ln
(ρ0
ϵ

)
+ ϵ2

∫ ρ0
ϵ

1

ρ7−2sO( 1
ρ2−s )

(1 + ρ2−s)
2(4−s)
2−s

dρ

And then

B(ϵ) =

{
ϵ2(m− 2)2w−1

m−1

∫
Rm |X|2|∇ϕ|2dX +O(ϵm−2) if m ≥ 5

O(ϵ2) + ϵ2 ln( 1ϵ ) if m = 4
(50)
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Step III: Finally straightforward computations yield

C(ϵ) =

{
o(ϵ2) if m ≥ 5
O(ϵ2) if m = 4

(51)

Grouping (49), (50) and (51) in (48), we get the expected estimate. □

Lemma 20. Let f ∈ C2(N) be such that ∂if(x̄0) = 0 for i = 1, ...,m, m :=
n− k ≥ 4, then∫

N

f |ūϵ|2
⋆(k,s)

dg̃(x̄, x̄0)s
dvg̃ =f(x0)

∫
Rn−k

|ϕ|2⋆(k,s)

|X|s
dX

− ϵ2
(
∆g̃f(x0)

2m
+
f(x0)

6m
Scalg̃

)∫
Rn−k

|X|2−s|ϕ|2
⋆(k,s)dX

+ o(ϵ2)

Proof. We compute ||ūϵ||2
⋆(k,s)

L2⋆(k,s)(N,dg̃(x̄,x̄0)−sdvg̃)
using (47) and the Cartan expan-

sion (46) and performing a change of variable r = ϵρ∫
N

f |ūϵ|2
⋆(k,s) dvg̃

dg̃(x̄, x̄0)s
= wm−1

∫ ρ0
ϵ

0

ρm−1

(
f(x̄0)−Dg,f (ϵρ)

2 +O((ϵρ)3)
)

ρs (1 + ρ2−s)
2(ms)
2−s

dρ

= f(x̄0)A
′(ϵ)−Dg,fwm−1B

′(ϵ) +O (C ′(ϵ))(52)

where

Dg,f :=
∆g̃f(x0)

2m
+
f(x0)

6m
Scalg̃ ; A

′(ϵ) := wm−1

∫ ρ0
ϵ

0

ρm−1dρ

ρs (1 + ρ2−s)
2(m−s)

2−s

;

B′(ϵ) := ϵ2
∫ ρ0

ϵ

0

ρm+3dρ

ρs (1 + ρ2−s)
2(m−s)

2−s

; C ′(ϵ) :=

∫ ρ0
ϵ

0

ρm−1(ϵρ)3dρ

ρs (1 + ρ2−s)
2(m−s)

2−s

Arguing as in the proof of Lemma 19, we get that

A′(ϵ) =

∫
Rn−k

|ϕ|2⋆(k,s)

|X|s
dX +O(ϵm−s)

B′(ϵ) = ϵ2w−1
m−1

∫
Rm

|X|2−s|ϕ|2
⋆(k,s)dX +O(ϵm−s)

and

C ′(ϵ) =

 O(ϵ3) if m ≥ 5; m = 4 and s < 1
O(ϵ3 ln( 1ϵ ) if m = 4 and s = 1
O(ϵm−s) if m = 4 and s > 1

By gathering these identities in (52), we will have the announced result. □

Arguing as in the above proof of Lemma 19, we get that:

Lemma 21. For all g ∈ C0(N), and q ∈ (0, 2⋆(k)) we have

∫
N

g|ūϵ|qdvg̃ =


ϵm− q(m−2)

2 g(x̄0)
∫
Rm |ϕ|qdX + o(ϵm− q(m−2)

2 ) if q > 2⋆(k)
2

ϵ
m
2 ln( 1ϵ )g(x̄0)wm−1 +O(ϵ

m
2 ln 1

ϵ ) if q = 2⋆(k)
2

O
(
ϵ

q(m−2)
2 (m−2)

)
if q < 2⋆(k)

2
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In particular, when q = 2, we get that∫
N

gū2ϵdvg̃ =

{
ϵ2g(x̄0)

∫
Rn−k |ϕ|2dX + o(ϵ2) si m ≥ 5

g(x̄0)w3ϵ
2 ln( 1ϵ ) +O(ϵ2) if m = 4

Lemma 22. For m = n− k ≥ 5, and ϕ as in (44), we define

k1 :=

∫
Rm |ϕ|2dX∫

Rm |∇ϕ|2dX

k2 := − 1

2⋆(k, s)3m

∫
Rm |X|2−s|ϕ|2⋆(k,s)dX∫

Rm

|ϕ|2⋆(k,s)

|X|s dX
+

1

6m

∫
Rm |X|2|∇ϕ|2dX∫

Rm |∇ϕ|2dX

k3 :=
1

2⋆(k, s)m

∫
Rm |X|2−s|ϕ|2⋆(k,s)dX∫

Rm

|ϕ|2⋆(k,s)

|X|s dX

We have that

(53)
k2
k1

= c′n,k,s =
(m− 2)(6− s)

12(2m− 2− s)
and

k3
k1

= c′′n,k,s =
(m− 2)(m− 4)

4(2m− 2− s)
.

Proof. Let p, q > 0 such that p−q > 1. We consider Iqp =
∫ +∞
0

tqdt
(1+t)p , an integration

by parts shows that Iqp = p
q+1I

q+1
p+1 . Moreover, one can easily show that Iqp =

Iqp+1 + Iq+1
p+1 . These two relations allow us to find the following results which will

be useful for the calculation of our main ratios:

Iqp+1 =
p− q − 1

p
Iqp and Iq+1

p+1 =
q + 1

p− q − 1
Iqp+1(54)

Now, we will calculate the ratio k2

k1
using (54). Passing in polar coordinates (r, θ),

and setting t = r2−s such that dr = 1
2−s t

− 1−s
2−s dt, we will have∫

Rm

|ϕ|2dX = wm−1

∫ +∞

0

rm−1dr

(1 + r2−s)
2(m−2)

2−s

=
wm−1

2− s

∫ +∞

0

t
m

2−s−1

(1 + t)
2(m−2)

2−s

dt(55)

Similarly, we can prove that∫
Rm

|X|2|∇ϕ|2dX =
(m− 2)2wm−1

2− s

∫ +∞

0

t
m

2−s+1

(1 + t)
2(m−2)

2−s +2
dt(56)

Using (55) and (56) and (54), for q = m
2−s − 1, p = 2(m−2)

2−s , we will have∫
Rm |X|2|∇ϕ|2dX∫

Rm |ϕ|2dX
=

(m−2)2

2−s wm−1I
q+2
p+2

wm−1

2−s I
q
p

=
m(m− 2)(m+ 2− s)

2(2m− 2− s)
(57)

In a similar way, we will have for p = 2(m−2)
2−s , q = m

2−s − 1∫
Rm |X|2−s|ϕ|2⋆(k,s)dX∫

Rm |ϕ|2dX
=
Iq+1
p+2

Iqp
=

m(m− 4)

2(m− 2)(2m− 2− s)
(58)

and for p = 2(m−s)
2−s , q = m−s

2−s − 1∫
Rm |∇ϕ|2dX∫

Rm

|ϕ|2⋆(k,s)

|X|s dX
= (m− 2)2

q + 1

p− 1− q − 1
= (m− 2)(m− s)(59)

By combining (57), (58), and (59), we get (53). □
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6.2. Proof of Theorem 7. We now go back to the initial manifold (M, g). For
ρ > 0, we let N := BGx0

(ρ0)/G
′ = Bx̄0

(ρ0) that is a Riemmanian manifold of
dimension m ≥ 4. We take the family (ūϵ)ϵ>0 defined as on (45), and we define

uϵ(x) =



(
ϵ

2−s
2

ϵ2−s + dg̃(x̄, x̄0)2−s

)m−2
2−s

if x ∈ Bρ0(Gx0)(
ϵ

2−s
2

ϵ2−s + ρ2−s
0

)m−2
2−s

if x ∈M \Bρ0(Gx0)

Note that uϵ ∈ H2
1,G(M). Let Jq be as in (8). For all ϵ > 0, and t ≥ 0, we get

Jq(tuϵ) =
t2

2

∫
M

(|∇uϵ|2g + au2ϵ)dvg −
t2

⋆(k,s)

2⋆(k, s)

∫
M

u
2⋆(k,s)
ϵ

dg(x,Gx0)s
dvg −

tq

q

∫
M

huqϵdvg

=
t2

2
Aϵ −

t2
⋆(k,s)

2⋆(k, s)
Bϵ −

tq

q
Cϵ(60)

Where

Aϵ :=

∫
N

(|∇ūϵ|2g̃ + āū2ϵ)dvg̃ +

∫
M\Bρ0 (Gx0)

(|∇uϵ|2g + auϵ
2)dvg

Bϵ :=

∫
N

f̄ |ūϵ|2
⋆(k,s) dvg̃

dg̃(x̄, x̄0)s
+

∫
M\Bρ0

(Gx0)

uϵ
2⋆(k,s) dvg

dg(x,Gx0)s

Cϵ :=

∫
N

h̄|ūϵ|qdvg̃ +
∫
M\Bρ0

(Gx0)

huϵ
qdvg

with h̄(x̄) = v̄−
2

n−k−2h(Π(x)), ā(x̄) = v̄−
2

n−k−2 a(Π(x)), and f̄(x̄) = v̄−
2−s

n−k−2 (Π(x))
Outside the ball centered in Gx0, we have that∫

M\Bρ0 (Gx0)

(|∇uϵ|2g + auϵ
2)dvg = O(ϵm−2)∫

M\Bρ0
(Gx0)

uϵ
2⋆(k,s) dvg

dg(x,Gx0)s
= O(ϵm−s)∫

M\Bρ0
(Gx0)

huϵ
qdvg = O(ϵ

q(m−2)
2 )

By using the equalities above, and Lemmas 19 and 20 we get

Aϵ =

{ ∫
Rm |∇ϕ|2dX −

∫
Rm |X|2|∇ϕ|2dX

6m Scalg̃(x̄0)ϵ
2 + ϵ2ā(x̄0)

∫
Rm |ϕ|2dX + o(ϵ2) if m ≥ 5∫

R4 |∇ϕ|2dX − w3

6 Scalg̃(x̄0)ϵ
2 ln( 1ϵ ) + ā(x̄0)w3ϵ

2 ln( 1ϵ ) + o(ϵ2 ln( 1ϵ )) if m = 4

Bϵ =f̄(x̄0)

∫
Rm

|ϕ|2⋆(k,s)

|X|s
dX − ϵ2

(
∆g̃ f̄(x̄0)

2m
+
f̄(x̄0)

6m
Scalg̃

)∫
Rm

|X|2−s|ϕ|2
⋆(k,s)dX + o(ϵ2)

Cϵ =


ϵm− q(m−2)

2 h̄(x̄0)
∫
Rm |ϕ|qdX + o

(
ϵm− q(m−2)

2

)
si q > 2⋆(k)

2

ϵ
m
2 ln( 1ϵ )h̄(x̄0)wm−1 + o(ϵ2 ln( 1ϵ )) si q = 2⋆(k)

2

O
(
ϵ

q(m−2)
2

)
si q < 2⋆(k)

2
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Hence, when ϵ→ 0

Aϵ → A0 :=

∫
Rm

|∇ϕ|2dX , Bϵ → B0 := f(x0)

∫
Rm

|ϕ|2⋆(k,s)

|X|s
dX , et Cϵ → 0

Step I: We prove that for all ϵ > 0, there exists a unique tϵ > 0 such that
sup
t≥0

Jq(tuϵ) = Jq(tϵuϵ), and that

tϵ = Tϵ(1− α0Cϵ + o(Cϵ)),(61)

where Tϵ = (AϵB
−1
ϵ )

1
2⋆(k,s)−2 , α0 > 0, and the sequence tϵ converges and its limit

t0 verifies t
2⋆(k,s)
0 B0 = A0.

Indeed,
dJq(tuϵ)

dt vanishes for t = 0 or else for tϵ > 0 such that Aϵ = fϵ(tϵ), where

fϵ(t) := t2
⋆(k,s)−2Bϵ + tq−2Cϵ. Since Aϵ > 0, Bϵ, Cϵ ≥ 0, Cϵ > 0, a straightforward

analysis of fϵ yields tϵ → t0 := (A0B
−1
0 )

1
2⋆(k,s)−2 when ϵ → 0. Furthermore, we

have that

tϵ =
(
AϵB

−1
ϵ − tq−2

ϵ CϵB
−1
ϵ

) 1
2⋆(k,s)−2

= Tϵ
(
1− tq−2

ϵ A−1
ϵ Cϵ

) 1
2⋆(k,s)−2 = Tϵ (1− α0Cϵ + o(Cϵ))

With α0 =
tq−2
0 A−1

0

2⋆(k,s)−2 . This completes our step.

Step II: We show that with subsequence near (uϵ)ϵ>0, we have

Jq(tϵuϵ) = cn,k,s (I(uϵ))
2⋆(k,s)

2⋆(k,s)−2 − T q
0

q
Cϵ + o(Cϵ)(62)

With cn,k,s =
2−s

2(n−k−s) and

I(uϵ) =

∫
M
(|∇uϵ|2 + auϵ)dvg(∫

M
|uϵ|2⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

Indeed, the expansions (60) and (61) of Jq(tuϵ) and tϵ imply

Jq(tϵuϵ) =
t2ϵ
2
Aϵ −

t
2⋆(k,s)
ϵ

2⋆(k, s)
Bϵ −

tqϵ
q
Cϵ

=
T 2
ϵ

2
Aϵ −

T
2⋆(k,s)
ϵ

2⋆(k, s)
Bϵ + α0(−T 2

ϵ Aϵ + T 2⋆(k,s)
ϵ Bϵ + T q

ϵ Cϵ)Cϵ −
T q
ϵ

q
Cϵ + o(Cϵ)

The explicit definition of Tϵ then yields (62).

Step III: We prove that

Ks(n− k)

A1− 2
2⋆(k,s)

I(uϵ) = 1 +{ (
k1ā(x̄0)− k2Scalg̃(x̄0) + k3

∆g̃ f̄(x̄0)

f̄(x̄0)

)
ϵ2 + o(ϵ2) si m ≥ 5,

w3

(∫
R4 |∇ϕ|2dX

)−1 (
ā(x̄0)− 1

6Scalg̃
)
ϵ2 ln( 1ϵ ) + o

(
ϵ2 ln( 1ϵ )

)
if m = 4,

Where k1, k2, k3 are constants as in Lemma 22. We distinguish 2 cases:

Case III.a: m = 4. In this case we have

I(uϵ) =
C1 + C2w3ϵ

2 ln( 1ϵ )o
(
ϵ2 ln( 1ϵ )

)
(C3 + C4ϵ2 + o(ϵ2))

2
2⋆(k,s)
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with

C1 =
∫
R4 |∇ϕ|2dX; C2 = ā(x̄0)− 1

6Scalg̃(x̄0); C3 = f̄(x̄0)
∫
R4

|ϕ|2
⋆(k,s)

|X|s dX;

C4 = −
(
f̄(x̄0)

24
Scalg̃(x̄0) +

∆g̃ f̄(x̄0)

8

)∫
Rn−k

|X|2−s|ϕ|2
⋆(k,s)dX.

It then follows that:

I(uϵ) =
1

C
2

2⋆(k,s)

3

C1 + C2w3ϵ
2 ln( 1ϵ )2 + o

(
ϵ2 ln( 1ϵ )

)(
1 + C4

C3
ϵ2 + o(ϵ2)

) 2
2⋆(k,s)


=

(
Ks(n− k)

A1− 2
2⋆(k,s)

)−1(
1 +

C2

C1
w3ϵ

2 ln

(
1

ϵ

)
+ o

(
ϵ2 ln(

1

ϵ
)

))
The proposition is proved in this case.

Case III.b: m ≥ 5. In this case we have

I(uϵ) =
C1 + C2ϵ

2 + o(ϵ2)

(C3 + C4ϵ2 + o(ϵ2))
2

2⋆(k,s)

with

C1 =
∫
Rm |∇ϕ|2dX; C2 = ā(x̄0)

∫
Rm| |ϕ|

2dX − 1
6mScalg̃(x̄0)

∫
Rm |X|2|∇ϕ|2dX;

C3 = f̄(x̄0)
∫
Rm

|ϕ|2
⋆(k,s)

|X|s dX; C4 = −
(

f̄(x̄0)
6m Scalg̃(x̄0) +

∆g̃ f̄(x̄0)
2m

) ∫
Rm |X|2−s|ϕ|2⋆(k,s)dX.

It follows that:

I(uϵ) =
1

C
2

2⋆(k,s)

3

 C1 + C2ϵ
2 + o(ϵ2)(

1 + C4

C3
ϵ2 + o(ϵ2)

) 2
2⋆(k,s)


=

C1

C
2

2⋆(k,s)

3

+
C1

C
2

2⋆(k,s)

3

(
C2

C1
− 2C4

2⋆(k, s)C3

)
ϵ2 + o(ϵ2)

Since ϕ is an extremal for the Hardy-Sobolev inequality (4), we get that

C2

C1
− 2C4

2⋆(k, s)C3
= k1ā(x̄0)−k2Scalg̃(x̄0)+k3

∆g̃ f̄(x̄0)

f̄(x̄0)
and

C1

C
2

2⋆(k,s)

3

=
Ks(n− k)−1

A1− 2
2⋆(k,s)

Lemma 22 completes the proof of this case.

Step IV: We show that there exists a constant c > 0 such that

Jq(tϵuϵ) ≤ cn,k,s

(
Ks(n− k)

A1− 2
2⋆(k,s)

) 2⋆(k,s)
2⋆(k,s)−2

− c h(x0)ϵ
m− q(m−2)

2 + o(ϵm− q(m−2)
2 )

Indeed, for m ≥5

I(uϵ) ≤
Ks(n− k)

A1− 2
2⋆(k,s)

−1

+ k5

(
ā(x̄0)− c′n,k,sScalg̃(x̄0) + c′′n,k,s

∆g̃ f̄(x̄0)

f̄(x̄0)

)
ϵ2 + o(ϵ2)

(63)

with, as in (53),

c′n,k,s =
(m− 2)(6− s)

12(2m− 2− s)
and c′′n,k,s =

(m− 2)(m− 4)

4(2m− 2− s)
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Consequently, there exists k5 := k5(m, s) > 0 such that

Jq(tϵuϵ)

≤ cn,k,s

(
Ks(n− k)

A1− 2
2⋆(k,s)

) 2⋆(k,s)
2⋆(k,s)−2

+ k6

(
ā(x̄0)− c′n,k,sScalg̃(x̄0) + c′′n,k,s

∆g̃ f̄(x̄0)

f̄(x̄0)

)
ϵ2

+ o(ϵ2)− T q
0

q
Cϵ + o(Cϵ)(64)

with

Cϵ = ϵm− q(m−2)
2 h̄(x̄0)

∫
Rn−k

|ϕ|qdX +O
(
ϵ

q(m−2)
2

)
+ o(ϵm− q(m−2)

2 )

Now m− q(m−2)
2 < 2, it follows that ϵ2 = o(ϵm− q(m−2)

2 ) which proves our equality.
For m = 4, by the previous steps there exists k6 := k6(m, s) > 0 such that

I(uϵ) ≤
Ks(n− k)

A1− 2
2⋆(k,s)

−1

+ k5
(
ā(x̄0)− c′n,k,sScalg̃(x̄0)

)
ϵ2 ln

(
1

ϵ

)
+ o

(
ϵ2 ln

(
1

ϵ

))
This implies that

Jq(tϵuϵ)

≤ cn,k,s

(
Ks(n− k)

A1− 2
2⋆(k,s)

) 2⋆(k,s)
2⋆(k,s)−2

+ k6
(
ā(x̄0)− c′n,k,sScalg̃(x̄0)

)
ϵ2 ln

(
1

ϵ

)
+ o

(
ϵ2 ln

(
1

ϵ

))
− T q

0

q
Cϵ + o(Cϵ)(65)

In this case

Cϵ = ϵ4−qh̄(x̄0)

∫
Rn−k

|ϕ|qdX + o(ϵ4−q)

Then ϵ2 ln( 1ϵ ) = o(Cϵ) which proves the rest of our step. We can now conclude.
Since h(x0) > 0 in (63), we get the conditions of Theorem 6, and this implies the
conclusion of Theorem 7.

6.3. Proof of Theorems 4 and 5. We note that if h ≡ 0, then (62) becomes

Jq(tϵuϵ) = cn,k,s (I(uϵ))
2⋆(k,s)

2⋆(k,s)−2

Therefore, if

inf
u∈H2

1\{0}

∫
M
(|∇uϵ|2 + auϵ)dvg(∫

M
|uϵ|2⋆(k,s) dvg

dg(x,Gx0)s

) 2
2⋆(k,s)

<
Ks(n− k)

A1− 2
2⋆(k,s)

−1

,

by following the same argument in Step II of the proof of Theorem 7, we get that
the conditions of Theorem 6 are verified, and this implies the conclusion of Theorem
4. Moreover, if

ā(x̄0) <
(n− k − 2)(6− s)

12(2n− 2k − 2− s)
Scalg̃(x̄0)−

(n− k − 2)(n− k − 4)

4(2n− 2k − 2− s)

∆g̃ f̄(x̄0)

f̄(x̄0)

Then we can deduce from (64) and (65) the proof of Theorem 5.
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