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Introduction

Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3. Given a, h ∈ C 0 (M ) and a weight ω > 0 a.e., 2 < q < p, we are interested in the existence of distributional solutions u ∈ H 2 1 (M ) to the nonlinear problem

(1) ∆ g u + a(x)u = ω(x)u p-1 + h(x)u q-1 in M, u > 0 in M where ∆ g := -div g (∇) is the Laplacian with minus sign convention and H 2 1 (M ) is the Sobolev space defined as the completion of C ∞ (M ) for the norm

u → ∥u∥ H 2 1 := ∥u∥ 2 2 + ∥∇u∥ 2 2
where the norms ∥ • ∥ q on the Lebesgue spaces L q (M ) are taken with respect to the Riemannian element of volume dv g . The classical Sobolev embedding yields

H 2 1 (M ) → L p (M ) continuously iff 1 ≤ p ≤ 2 ⋆ := 2n n -2 , compactly iff p < 2 ⋆
and it is classical that, when ω ≡ 1, problem (1) has a variational structure when p ≤ 2 ⋆ . The difficulty is in the critical case p = 2 ⋆ where many methods have been developed since the pioneer contributions of Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], Trudinger [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF] and Schoen [START_REF] Schoen | On the number of constant scalar curvature metrics in a conformal class[END_REF].

In the present paper, we add a nonconstant weight and we consider a supercritical case which breaks the variational structure. In order to get a supercritical exponent, following Moser [START_REF] Moser | On a nonlinear problem in differential geometry[END_REF] and Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF], we impose the invariance of the problem under the action of isometries in order to lower in some sense the dimension of the manifold. Let G be a closed subgroup of the group of isometries Isom g (M ) of (M, g) and k = min x∈M dim Gx, where Gx denotes the orbit of a point x ∈ M under the action of G. We say that a function ϕ :

M → R is G- invariant if ϕ • σ(x) = ϕ(x)
for any x ∈ M and σ ∈ G. If G acts freely, then M/G has the structure of a manifold of dimension (n -k): therefore the critical exponent on M/G is 2(n-k) n-k-2 > 2 ⋆ , and, by going back on M , artificially, classical variational methods allows to get G-invariant solutions to [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] with a supercritical exponent.

In the present work, we consider the more intricate case where G does not act freely. We make the fundamental Assumption 8 on G inspired by the work of Saintier [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF] (more details are in Section 2): note that under this assumption, we cannot consider problem [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] on the quotient M/G since it is not necessarily a manifold.

We fix x 0 ∈ M and s ∈ [0, 2). We define 2 ⋆ (k, s) = 2(n-k-s) n-k-2 , 2 ⋆ (k) = 2 ⋆ (k, 0) and we consider q ∈ (2, 2 ⋆ (k)). We investigate the existence of a solution u ∈ H 2 1 (M ) to [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] ∆ g u + au = u 2 ⋆ (k,s)-1 dg(x,Gx0) s + hu q-1 in M, u > 0 in M where d g is the Riemannian distance on (M, g). We refer to Djadli [START_REF] Djadli | Nonlinear elliptic equations involving critical Sobolev exponent on compact Riemannian manifolds in presence of symmetries[END_REF] for considerations on the case s = 0. Solutions to [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] are critical points of the functional

u → J q (u) = 1 2 M (|∇u| 2 g + au 2 )dv g - 1 2 ⋆ (k, s) M |u| 2 ⋆ (k,s) d g (x, Gx 0 ) s dv g - 1 q M
h|u| q dv g which is defined for u ∈ H 2 1 (M ) ∩ L 2 ⋆ (k,s) (M, d(•, Gx 0 ) -s ). Our problem is supercritical from the viewpoint of Hardy-Sobolev embedding. Namely

H 2 1 (M ) → L p (M, d(•, x 0 ) -s ) continuously if 1 ≤ p ≤ 2 ⋆ (0, s) = 2(n -s) n -2 .
Since 2 ⋆ (k, s) > 2 ⋆ (0, s) is supercritical as soon as k > 0, there is no embedding from H 2 1 (M ) into L 2 ⋆ (k,s) (M, d(•, x 0 ) -s ) and the problem does not have a variational formulation in the space H 2 1 (M ). To overcome this difficulty, we work on H 2 1,G (M ) := {u ∈ H 2 1 (M )/ u • σ(x) = u(x) for all σ ∈ G a.e x ∈ M }.

In the sequel, L p G (M, d g (x, Gx 0 ) -s dv g ) is the weighted space of G-invariant functions endowed with the norm ||f || p,s = |||f | p d g (., Gx 0 ) -s || 1 . Our first result is an improvement of the integrability: Theorem 1 (Mesmar). Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3 and G a subgroup of isometries of (M, g). We suppose that Assumption 8 is verified, and we give ourselves k and Gx 0 as in these hypothesis. Assume that k ≥ 2 and n -k ≥ 3. Then, for any p ∈ [1, 2 ⋆ (k, s)], H 2 1,G (M ) is continuously embedded in L p G (M, dvg dg(x,Gx0) s ). Moreover if 1 ≤ p < 2 ⋆ (k, s) the embedding is compact.

Note that the case s = 0 was handled by Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] and the case k = 0 was handled by Jaber [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF]. From this inclusion, we define the first best constant of the Hardy-Sobolev inequalities in the presence of isometries. It follows from Theorem 1 that there exists L, B > 0 such that for all u ∈ H 2 1,G (M ):

||u|| 2 2 ⋆ (k,s),s ≤ L||∇u|| 2 2 + B||u|| 2 2 (3) 
We define the first best constant to be

L 0 = L 0 (M, g, n, k, s, x 0 ) = inf{L ≥ 0 such that ∃B s.t. (3) holds ∀u ∈ H 2 1,G (M )} Definition 2.
For m ≥ 3 we define the best constant of Euclidean Sobolev space

1 K s (m) = inf ϕ∈D 2 1 (R m )\{0} R m |∇ϕ| 2 dX R m |ϕ| 2 ⋆ (k,s) |X| s dX 2 2 ⋆ (k,s)
Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] and Talenti [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] have computed the best constant K 0 (m), and Lieb [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] has computed K s (m) explicitly for s > 0. We denote by 2 ⋆ = 2 ⋆ (0, 0) and 2 ⋆ (k) = 2 ⋆ (k, 0). We define

A := min{Vol g (O)/ O principal orbit of dimension k},
Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] proved that the best constant for G-invariant Sobolev inequality is

L 0 (M, g, n, k, 0, x 0 ) = K 0 (n -k) A 1-2 2 ⋆ (k) . (5) 
When s > 0, Jaber [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] showed that

L 0 (M, g, n, 0, s, x 0 ) = K s (n) = 1 (n -2)(n -s) 1 2 -s w n-1 Γ 2 ( n-2 2-s ) Γ( 2(n-s) 2-s ) -2-s n-s
where Γ is the Euler function. In this article, we use these properties to prove that Theorem 3 (Mesmar). Let (M, g) a compact Riemannian manifold without boundary of dimension n ≥ 3 and G a subgroup of isometries of (M, g). We suppose that Assumption 8 is verified, and we give ourselves k and Gx 0 as in these hypothesis. For all k ∈ [1, n -2), s ∈ (0, 2) we have

L 0 (M, g, n, k, s, x 0 ) = K s (n -k) A 1-2 2 ⋆ (k,s)
.

In particular, for all ϵ > 0, there exists B ϵ , such that for all u ∈ H 2 1,G (M ), we have that

||u|| 2 2 ⋆ (k,s),s ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ ||∇u|| 2 2 + B ϵ ||u|| 2 2 (6)
In the sequel, for any k ∈ N, C k G (M ) denotes the space of functions in C k (M ) that are G-invariant. In the spirit of Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], we are then in position to get solutions to (2) when h ≡ 0: Theorem 4 (Mesmar). Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We suppose that Assumption 8 is verified, and we define k := min x∈M dimGx and Gx 0 as in these hypothesis. We let a ∈ C 0 G (M ) be such that ∆ g + a is coercive and that

inf u∈H 2 1,G (M )\{0} M (|∇u| 2 + au 2 )dv g M |u| 2 ⋆ (k,s) dvg dg(x,Gx0) s 2 2 ⋆ (k,s) < K s (n -k) A 1-2 2 ⋆ (k,s) -1
.

Then the infimum is achieved by a positive function

u ∈ H 2 1,G (M ) ∩ C 0,α (M ) ∩ C 1,ν loc (M \ {Gx 0 }) for all α ∈ (0, min{1, 2 -s}), ν ∈ (0, 1). Up to multiplication by a constant, u satisfies (7) ∆ g u + au = u 2 ⋆ (k,s)-1 dg(x,Gx0) s in M, u > 0 in M
We are then left with proving the strict inequality above. Via test-function estimates, we are able to realize it to obtain the following: Theorem 5 (Mesmar). Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We suppose that Assumption 8 is verified, and we define k := min x∈M dimGx and Gx 0 as in these hypothesis. We let a ∈ C 0 G (M ) be such that ∆ g + a is coercive. We assume that n -k ≥ 4 and that

ā(x 0 ) < (n -k -2)(6 -s) 12(2n -2k -2 -s) Scal g (x 0 ) - (n -k -2)(n -k -4) 4(2n -2k -2 -s) ∆ g f (x 0 ) f (x 0 )
Then there exists a positive G-invariant solution to [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF].

We now consider the existence of a positive G-invariant solution for the perturbed problem [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]. Such solutions are critical points for

v → J + q (v) = 1 2 M (|∇v| 2 g + av 2 )dv g - 1 2 ⋆ (k, s) M v 2 ⋆ (k,s) + d g (x, Gx 0 ) s dv g - 1 q M hv q + dv g (8) 
Using Ambrosetti-Rabinowitz's Mountain-Pass-Lemma [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF], we get the following:

Theorem 6 (Mesmar). Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We suppose that Assumption 8 is verified, and we define k := min x∈M dimGx and Gx 0 as in these hypothesis. We let a, h

∈ C 0 G (M ) be such that h ≥ 0 and ∆ g + a is coercive. If there exists u 0 ∈ H 2 1,G (M ), u 0 ̸ ≡ 0, u ≥ 0 such that (9) sup t≥0 J + q (tu 0 ) < (2 -s) 2(n -k -s) K s (n -k) A 1-2 2 ⋆ (k,s) -n-k-s

2-s

Then the perturbed Hardy-Sobolev equation admits a non-trivial solution in C 0 G (M )∩ H 2 1,G (M ). In addition, we have u > 0 in M and u ∈ C 0,α ∩ C 1,ν loc (M \ {Gx 0 }), for all α ∈ (0, min{1, 2 -s}), ν ∈ (0, 1).

We are left with going below a specific threshold. Here again, this is performed via test-functions estimates. We then obtain the following existence result: Theorem 7 (Mesmar). Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3 and G a closed subgroup of isometries of (M, g). We suppose that Assumption 8 is verified, and we define k := min x∈M dimGx and Gx 0 as in these hypothesis. We let a, h ∈ C 0 G (M ) be such that h ≥ 0 and ∆ g + a is coercive. We suppose that

(1) n -k ≥ 4; (2) q > n-k n-k-2 ; (3) h(x 0 ) > 0.
Then the perturbed Hardy-Sobolev equation:

∆ g u + au = u 2 ⋆ (k,s)-1 d g (x, Gx 0 ) s + hu q-1 ; u > 0 in M admits a non-trivial solution in C 0 G (M ) ∩ H 2 1,G (M ). In addition u ∈ C 0,α (M ) ∩ C 1,ν loc (M \ {Gx 0 }), for all α ∈ (0, min{1, 2 -s}), ν ∈ (0, 1).
This paper is from the PhD thesis of the author. He thanks Frédéric Robert for fruitful encouragements and remarks on this work.

Preliminaries on manifolds invariant by a group of isometries

Let (M, g) be a compact Riemannian manifold without boundary of dimension n, G a closed group of isometries of (M, g) and k := min x∈M dim Gx ≥ 1 where Gx is the orbit of point x under the action of G. Let x 0 ∈ G be such that dimGx 0 = k.

Let us now recall some known geometric results and fix some notations. These results are in the book by Bredon [4]: we refer to Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF], Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] and Saintier [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF] for the following exposition. Let G ′ be a closed subgroup of Isom g (M ): then G ′ is a Lie group. On the other hand for all x ∈ M , we denote x := Π(x) where Π : M -→ M/G ′ the canonical surjection. We define G ′ x := {gx/g ∈ G ′ } the orbit of x under G ′ and S ′ x := {g ∈ G ′ /g(x) = x} the stabilizer of x under G ′ . Note that G ′ x is a compact submanifold isomorphic to the quotient group G ′ /S ′ x, and we define a principal orbit G ′ x if its stabilizer is minimal (∀y ∈ M , S ′ y contains a conjugate subgroup of S ′ x), in particular the principal orbits are of maximum dimension but the converse is not true.

Define Ω := O P where the union is taken on all principal orbits. Then Ω is a dense open set of M and Ω/G ′ is a smooth manifold that can be endowed with a Riemannian distance ḡ such that the surjection Ω -→ Ω/G ′ is a Riemannian submersion. We define

g = v 2 n-k-2 ḡ (10) with v(x) = vol(Π -1 (x)) = vol(G ′ x). We assume that k = min x∈M dimGx ≥ 1.
In the present paper, we make the following fundamental assumption: Assumption 8. For any Gx 0 , a G-orbit of minimal dimension k, we can find δ > 0, and G ′ a closed subgroup of Isom g (M ) such that:

(1) G ′ x 0 = Gx 0 ;

(2) For all x ∈ B δ (Gx 0 ) := {y ∈ M/d g (y; Gx 0 ) < δ}, then G ′ x is principal and

G ′ x ⊂ Gx.
In particular dimG ′ x = dimGx 0 = k, ∀x ∈ B δ (Gx 0 ).

We now consider the quotient N := B δ (Gx 0 )/G ′ that turns to be a (nk)-Riemannian manifold. This manifold is then equiped with the metrics ḡ and g. We let η ∈ C ∞ c (R) be such that 0 ≤ η ≤ 1, η(x) = 1 for x ∈ B(0; 1) and η(x) = 0 for x ∈ B(0; 2) c . For all x1 ∈ N and δ ′ ∈ (0,

ig(N ) 2 ), we define η x1,δ ′ (x) = η(δ -1 d g ( x1 , x)) for all x ∈ N . 3. Properties of L p (M, d g (x, Gx 0 ) -s dv g ): proof of Theorem 1
We let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, G a group of isometries of M , x 0 ∈ M such that Gx 0 is an orbit of minimal dimension k ∈ [1, n -2), and s ∈ (0, 2). We assume that Assumption 8 is verified.

We prove the continuous embedding of Theorem 1. By Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF], the first Sobolev inclusion in the presence of symmetries (the case where s = 0), implies the existence of a positive constant C such that

||u|| 2 ⋆ (k) ≤ C||u|| H 2 1,G (M ) for all u ∈ H 2 1,G (M ). (11) Hardy's inequality on R n-k writes R n-k ϕ 2 |X| 2 dX ≤ 4 (n -k -2) 2 R n-k |∇ϕ| 2 dX, ∀ϕ ∈ C ∞ c (R n-k ) (12) Let u ∈ C ∞
G (M ) be such that there exists r 0 > 0, such that supp u ⊂ B r0 (Gx 0 ) . We denote ū = u • Π, where Π is the projection of x on the (n -k)-Riemannian manifold N := B r0 (Gx 0 )/G ′ . By [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF], there exists

C 1 > 0 such that N ū2 d ḡ (x, x0 ) 2 dv ḡ ≤ C 1 ||∇ū|| 2 2 .
On the other hand, there exists

C 2 , C 3 ≥ 0 such that M u 2 d g (x, Gx 0 ) 2 dv g = N ū2 d ḡ (x, x0 ) 2 vdv ḡ ≤ C 2 N ū2 d ḡ (x, x0 ) 2 dv ḡ And ||∇u|| 2 2 ≤ C 3 ||∇ū|| 2 2
We put together these three inequalities. Then, for any

u ∈ C ∞ G (M ) such that supp u ⊂ B r0 (Gx 0 ), there exists C > 0 such that M u 2 d g (x, Gx 0 ) 2 dv g ≤ C||u|| 2 H 2 1,G (M )
Let us now set p = p(s) > 1 satisfying

1 p + s 2 = 1. For a function u ∈ C ∞ G (M ) such that supp u ⊂ B r0 (Gx 0 ), by Hölder, we have M |u| 2 ⋆ (k,s)-s u d g (x, Gx 0 ) s dv g ≤ M |u| 2(2 ⋆ (k,s)-s) 2-s dv g 1 p u 2 d g (x, Gx 0 ) 2 dv g s 2 Since 2(2 ⋆ (k,s)-s) 2-s = 2 ⋆ (k)
, raising the previous inequality to the power

2 2 * (k,s) we get M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ M |u| 2-s) 2 ⋆ (k,s) dv g 2-s 2 ⋆ (k,s) u 2 d g (x, Gx 0 ) 2 dv g s 2 ⋆ (k,s)
Grouping this inequality with (11) and using

2 ⋆ (k)(2-s) 2 2 ⋆ (k,s) + s 2 ⋆ (k,s) = 1, we get M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ C ||u|| 2 H 2 1,G (M ) 2 ⋆ (k)(2-s) 2 2 ⋆ (k,s) C ′ ||u|| 2 H 2 1,G (M ) s 2 * (k,s) ≤ C ′′ ||u|| 2 H 2 1,G (M ) (13) 
Where C, C ′ , C ′′ are strictly positive constants only depends on M , k, and s. By density of C ∞ G (M ), we get that ( 13) holds for all u ∈ H 2 1,G (M ), which proves the continuous embedding of Theorem 1.

We split the proof of the compactness embedding of Theorem 1 into two steps:

Step I: Let us first show that we have

H 2 1,G (M ) → L q (M, d g (x, Gx 0 ) -s dv g ). We fix u ∈ H 2 1,G (M )
, by Hölder's inequality we have that

||u|| q,s ≤ ||u|| 2 ⋆ (k,s) M dv g d g (x, Gx 0 ) s 1 q - 1 2 ⋆ (k,s)
With ( 13), we get that

||u|| q,s ≤ C||u|| H 2 1,G (M ) M dv g d g (x, Gx 0 ) s 1 q - 1 2 ⋆ (k,s)
where C is independent of u. Hence the continuous injection follows.

Step II: Now let us prove the compactness of the embedding. Let (u i ) i∈N be a bounded sequence in H 2 1,G (M ). The reflexivity of H 2 1,G (M ) and the Rellich-Kondrakov theorem yields the existence of u ∈ H 2 1,G (M ) such that, up to a subsequence also denoted by (u i ) i , we have that [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] 

u i ⇀ u weakly in H 2 1,G (M ) (2) u i → u strongly in L 2 (M ) (3) u i (x) → u(x) for a.e x ∈ M . Let us fix ϵ > 0. For all i ∈ N, R > 0, we define Ω i (R) := {x ∈ M / |u i (x) -u(x)| < R}
On the one hand, the continuous injection of the previous part and by the fact that

(u i ) is bounded in H 2 1,G (M ) yield C, C ′ > 0 such as M \Ωi(R) |u i -u| q dv g d g (x, Gx 0 ) s ≤ 1 R 2 ⋆ (k,s)-q Ωi(A) |u i -u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s ≤ C R 2 ⋆ (k,s)-q ||u i -u|| 2 ⋆ (k,s) H 2 1,G (M ) ≤ C ′ (n, k, s, u) R 2 ⋆ (k,s)-q
There exists R 0 = R 0 (ϵ) such that for all R > R 0 we have

C ′′ (n, k, s, u) R 2 ⋆ (k,s)-q < ϵ 2
On the other hand, let us set the sequence of functions (f i ) i∈N defined on M by

f i (x) = |u i (x) -u(x)| q d g (x, Gx 0 ) s 1 Ωi(R) (x) for i ∈ N and a.e. x ∈ M.
Then, by Lebesgue's theorem, we deduce that there exists i 0 = i 0 (ϵ) > 0 , such that for all i > i 0 we have that

M f i dv g < ϵ 2 .
Then, for all R > R 0 , and i > i 0 , we have that

||u i -u|| q q,s = M |u i -u| q dv g d g (x, Gx 0 ) s = M \Ωi(R) |u i -u| q dv g d g (x, Gx 0 ) s + M f i dv g < ϵ
Hence (u i ) i∈N converges u in the space L q (M, d g (x, Gx 0 ) -s dv g ). This proves the compactness of the embedding when q < 2 ⋆ (k, s).

This ends the proof of Theorem 1.

Best constants on Riemannian manifolds up to ϵ

This section is devoted to the proof of Theorem 3. We let (M, g) and G as in Assumption 8. Given ϵ > 0, we prove [START_REF] Djadli | Nonlinear elliptic equations involving critical Sobolev exponent on compact Riemannian manifolds in presence of symmetries[END_REF], that is the existence of B ϵ > 0 such that

||u|| 2 2 ⋆ (k,s),s ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ ||∇u|| 2 2 + B ϵ ||u|| 2 2 for all u ∈ H 2 1,G (M )
We follow the work of Jaber [START_REF] Jaber | Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes: Influence de la géométrie[END_REF] who proved this inequality for k = 0.

Step I: Construction of a finite covering of N = B r0 (Gx 0 )/G ′ by exponential balls.

We put the (n -k)-Riemannian manifold (N, ḡ). For δ the Euclidean metric on R n-k and by compactness criterion of M (more details in Jaber [START_REF] Jaber | Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes: Influence de la géométrie[END_REF], Proposition 1.2.1 and Appendix I), and therefore on N , we have for all x ∈ N , and all ρ > 0, there exists r = r(x, ρ) ∈ (0,

iḡ(N )
2 ) , such that lim ρ→0 r(x, ρ) = 0 and the exponential map (B 2r (x), exp -1 x ) satisfies the following properties:

(14)    (1 -ρ)δ ≤ ḡ ≤ (1 + ρ)δ (1 -ρ) m 2 dx ≤ dv ḡ ≤ (1 + ρ) m 2 dx D -1 δ |T | δ ≤ |T | ḡ ≤ D δ |T | δ for all 1-covariant tensor T on N With lim ρ→+∞ D δ = 1.
Step II: We prove that for all ϵ > 0, there exists r 0 > 0 such that for all u ∈ C ∞ c (B r0 (Gx 0 )) that is G-invariant, we have:

||u|| 2 2 ⋆ (k,s),s ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 ||∇u|| 2 2 (15) 
By the definition of the best Sobolev constant (4), we have for all

Φ ∈ C ∞ c (R n-k ) R n-k |Φ| 2 ⋆ (k,s) |X| s ξ dX 2 2 ⋆ (k,s) ≤ K s (n -k) R n-k |∇Φ| 2
ξ dX, [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF] where ξ denotes the Euclidean metric on R n-k . We let r 0 > 0 that will be fixed later. Let u ∈ C ∞ c (B r0 (Gx 0 )) be G-invariant. Define N := B r0 (Gx 0 )/G ⊂ R n-k equipped with its metric ḡ. We note ū = u • Π where Π is the canonical projection from (M, g) to (N, ḡ) (see Assumption 8). It follows from ( 14) applied on N and (16) that

||ū|| 2 L 2 ⋆ (k,s) (N, dv ḡ d ḡ (x,x 0 ) ) ≤ (1 + ρ) n-k 2 ⋆ (k,s) K s (n -k) R n-k |∇(ū • exp x0 )| 2 δ dX ≤ D 2 ρ (1 + ρ) n-k 2 ⋆ (k,s) (1 -ρ) -n-k 2 K s (n -k) N |∇ū| 2 ḡ dv ḡ Since lim ρ→0 D 2 ρ (1 + ρ) n-k 2 ⋆ (k,s) (1 -ρ) -n-k 2 = 1
, it follows that for all ϵ > 0, there exists ρ 0 > 0 such that for all 0 < ρ < ρ 0 , we have

Br 0 (x0) |ū| 2 ⋆ (k,s) dv ḡ d ḡ (x, x0 ) s 2 2 * (k,s) ≤ K s (n -k) + ϵ 2 Br 0 (x0) |∇ū| 2 ḡ dv ḡ
According to Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] (formula (1.10)), for any function f ∈ C ∞ G (M ), and for any ϵ > 0 , there exists U Gx0 a neighborhood of Gx 0 , such that

U Gx 0 f dv g ≤ 1 + ϵ 1 -ϵ V ol(Gx 0 ) U Gx 0 /G f dv ḡ
And also

U Gx 0 |∇f | 2 g dv g ≥ 1 -ϵ (1 + ϵ) 2 V ol(Gx 0 ) U Gx 0 /G |∇ f | 2 ḡ dv ḡ
Let us then set r 0 small enough such that B r0 (Gx 0 ) ⊂ U Gx0 , we will have

Br 0 (Gx0) |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ 1 + ϵ 1 -ϵ V ol(Gx 0 ) 2 2 ⋆ (k,s) Br 0 (x0) |ū| 2 ⋆ (k,s) dv ḡ d ḡ (x, x0 ) s 2 2 ⋆ (k,s) ≤ 1 + ϵ 1 -ϵ V ol(Gx 0 ) 2 2 * (k,s) K s (n -k) + ϵ 2 Br 0 (x0) |∇ū| 2 ḡ dv ḡ ≤ 1 + ϵ 1 -ϵ 2 2 ⋆ (k,s) +2 V ol(Gx 0 ) 2 2 ⋆ (k,s) -1 K s (n -k) + ϵ 2 M |∇u| 2 g dv g ≤ 1 + ϵ 1 -ϵ 2 2 ⋆ (k,s) +2 A 2 2 ⋆ (k,s) -1 K s (n -k) + ϵ 2 M |∇u| 2 g dv g
And this is true for any ϵ > 0. So for all ϵ > 0 we have that (15) holds.

Step III: We prove that for all ϵ > 0 , r 0 > 0 and u ∈ C ∞ c (M \ B r0 (Gx 0 )) G-invariant, there exists B s,ϵ > 0 such that:

||u|| 2 2 ⋆ (k,s),s ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 ||∇u|| 2 2 + B s,ϵ ||u|| 2 2 (17) 
For all

x 1 ∈ M , such that d g (x 1 , Gx 0 ) > r 0 , we set u ∈ C ∞ c (B r1 (Gx 1 )) G-invariant.
Then for all x in the support of u, we have that

d g (x, Gx 0 ) ≥ r 0 > 0. Therefore, M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) = Br 1 (Gx1) |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ 1 r 0 2s 2 ⋆ (k,s) Br 1 (Gx1) |u| 2 ⋆ (k,s) dv g 2 2 ⋆ (k,s) Since 2 ⋆ (k, s) < 2 ⋆ (k), by Faget [7], the embedding H 2 1,G (M ) → L 2 ⋆ (k,s) is compact. Then for all β > 0, there exists B β > 0 such that for all u ∈ H 2 1,G (M ), we have ||u|| 2 2 ⋆ (k,s) ≤ β||∇u|| 2 2 + B β ||u|| 2 2
, which yields [START_REF] Schoen | On the number of constant scalar curvature metrics in a conformal class[END_REF].

Step IV: We show (6) for all u ∈ C ∞ G (M ). To do this, let ϕ ∈ C ∞ c (R + ) be such that 0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for all x ≤ 1 and ϕ(x) = 0 for all x ≥ 2. For all δ > 0, we set η := ϕ dg(x,Gx0) 2δ

∈ C ∞ c (B δ (Gx 0 )). Note that η and (1 -η) are G-invariant, and furthermore there exists H > 0 such that

|∇η 1 2 | g , |∇(1 -η) 1 2 | g ≤ H (18) Let ϵ > 0, and set u ∈ C ∞ G (M ). Since 2 ⋆ (k,s) 2 ⋆ (k) > 1
, so according to Minkowski inequality we have:

M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ ||ηu 2 + (1 -η)u 2 || 2 ⋆ (k,s) 2 ,s ≤ ||ηu 2 || 2 ⋆ (k,s) 2 ,s + ||(1 -η)u 2 || 2 ⋆ (k,s) 2 ,s ≤ M |η 1 2 u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) + M |(1 -η) 1 2 u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s)
By [START_REF] Moser | On a nonlinear problem in differential geometry[END_REF], and ( 17), for all ϵ > 0, there exists B s,ϵ > 0 such that

M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 M |∇(η 1 2 u)| 2 g + |∇((1 -η) 1 2 u)| g dv g + B s,ϵ ||u|| 2 2 = K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 M η 1 2 |∇u| g + |u||∇η 1 2 | g 2 dv g + K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 M (1 -η) 1 2 |∇u| g + |u||∇(1 -η) 1 2 | g 2 dv g + B s,ϵ ||u|| 2 2 ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 M η|∇u| 2 g + 2η 1 2 |∇u| g |u| g |∇η 1 2 | g + |u| 2 |∇η 1 2 | 2 g dv g + M (1 -η)|∇u| 2 g + 2η 1 2 |∇u| g |u| g |∇(1 -η) 1 2 | g + |u| 2 |∇(1 -η) 1 2 | 2 g dv g + B s,ϵ ||u|| 2 2
With (18), we get

M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 ||∇u|| 2 2 + 4H||∇u|| 2 ||u|| 2 + 2H 2 ||u|| 2 2 + B s,ϵ ||u|| 2 2 (19) 
Let ϵ 0 be such that

K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 (1 + ϵ 0 ) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ
And using the fact that

4H||∇u|| 2 ||u|| 2 ≤ ϵ 0 ||∇u|| 2 2 + (2H) 2 ϵ 0 ||u|| 2 2
Using (19), we get

M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s 2 2 ⋆ (k,s) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 (1 + ϵ 0 )||∇u|| 2 2 + B ϵ ||u|| 2 2 ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ M |∇u| 2 g dv g + B ϵ M |u| 2 dv g with B ϵ = (2H) 2 ϵ 0 + 2H 2 K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 + B s,ϵ
Which completes this step.

Part V: By density of C ∞ G (M ) in H 2 1,G ( 
M ), we get that ( 6) holds for all u ∈ H 2 1,G (M ), which proves (6). It follows from ( 6) that

(20) L 0 (M, g, n, k, s, x 0 ) ≤ K s (n -k) A 1-2 2 ⋆ (k,s)
.

We prove the reverse inequality. Take L 1 > 0 such that there exists B L1 such that

||u|| 2 L 2 ⋆ (k,s) (N,dg(x,x0) s ) ≤ L 1 ||∇u|| 2 2 + B L1 ||u|| 2 2 (21) for all u ∈ H 2 1,G (M ). We take Φ ∈ C ∞ c (R n-k
) and we let (Φ µ ) µ>0 be the family in C ∞ c (N ) defined for all µ > 0 small enough satisfying µ ≤ ρ0 R by: Φ µ (x) = Φ(µ -1 exp -1 x0 (x)) where the exponential map is taken with respect to the metric g) on N := B δ (x 0 )/G. Applying inequality (21) to our sequence Φ µ , we write:

||Φ µ || 2 L 2 ⋆ (k,s) (N,dg(x,x0) s ) ≤ L 1 ||∇Φ µ || 2 2 + B L1 ||Φ µ || 2 2 (22)
Let ϵ > 0. By compactness criterion of N , there exists R ϵ > 0, such that for all p ∈ B Rϵ (0) ⊂ R n-k we have:

(1 -ϵ)ξ ≤ (exp * x0 g)(p) ≤ (1 + ϵ)ξ in the sense of bilinear forms. We fix µ 0 = µ 0 (ϵ) such that for all µ < µ 0 , we have Rµ < R ϵ . Then for all µ < µ 0 , with a change of variables, we write

B µR (x0) |Φ µ | 2 ⋆ (k,s) dv g d g (x, x0 ) s 2 2 ⋆ (k,s) ≥ (1 -ϵ) n-k 2 ⋆ (k,s) B µR (x0) |Φ| 2 ⋆ (k,s) (µ -1 exp -1 x0 (x)) d g (x, x0 ) s dv (exp -1 x0 ) * ξ 2 2 ⋆ (k,s) = µ n-k-2 (1 -ϵ) n-k 2 ⋆ (k,s) B R (0) |Φ| 2 ⋆ (k,s) (X) |X| s dX 2 2 ⋆ (k,s) (23) 
And further

N |∇Φ µ | 2 g dv g = B µR (x0) |∇Φ µ -1 exp -1 x0 (x) | 2 g dv g ≤ (1 + ϵ) m 2 B µR (x0) |∇Φ µ -1 exp -1 x0 (x) | 2 (exp -1 x0 ) * ξ dv (exp -1 x0 ) * ξ = (1 + ϵ) m 2 1 -ϵ µ m-2 B R (0) |∇Φ| 2 δ dX (24)
With the same arguments, we show that

N Φ 2 µ dv g ≤ (1 + ϵ) n-k 2 µ n-k B R (0) Φ 2 dX (25)
Combining ( 23), ( 24) and ( 25) and ( 22) we will have for all ϵ > 0, µ < µ 0 than

B R (0) |Φ| 2 ⋆ (k,s) (X) |X| s dX 2 2 ⋆ (k,s) ≤ (1 + ϵ) n-k 2 (1 -ϵ) n-k 2 ⋆ (k,s) L 1 (1 -ϵ) B R (0) |∇Φ| 2 δ dX + µ 2 B L1 B R (0) Φ 2 dX
Passing ϵ → 0 and µ → 0, we get

B R (0) |Φ| 2 ⋆ (k,s) (X) |X| s dX 2 2 ⋆ (k,s) ≤ L 1 B R (0) |∇Φ| 2 δ dX (26)
It then follows from the definition (4) that

L 1 ≥ K s (n -k) (27)
Now, let L ∈ R be such that there exists B L such that

||u|| 2 2 ⋆ (k,s),s ≤ L||∇u|| 2 2 + B L ||u|| 2 2 for all u ∈ H 2 1,G (M ). Define the family x → ϕ µ (x) = Φ µ (x) in C ∞ G (M )
, where Φ µ is as above. We have

||ϕ µ || 2 2 ⋆ (k,s),s = B µR (Gx0) |ϕ µ | 2 ⋆ (k,s) dv g d g (x, x 0 ) s 2 2 ⋆ (k,s) = B µR (x0) v -2 n-k-2 |Φ µ | 2 ⋆ (k,s) dv g d g (x, x0 ) s 2 2 ⋆ (k,s) ≤ (A + C R µ) -1+ 2 2 ⋆ (k,s) B µR (x0) |Φ µ | 2 ⋆ (k,s) dv g d g (x, x0 ) s 2 2 ⋆ (k,s) (28)
And by definition of g, we have

N |∇Φ µ | 2 g dv g = M |∇ϕ µ | 2 g dv g
Using ( 26) in (28), we have

||ϕ µ || 2 2 ⋆ (k,s),s ≤ (A + c ′ R µ) 1-2 2 ⋆ (k,s) L M |∇ϕ µ | 2 g dv g
We then apply (21) on Φ µ with

L 1 = (A + c ′ R µ) 1-2 2 ⋆ (k,s) L. By using (27), we get that L ≥ Ks(n-k) A 1- 2 2 ⋆ (k,s)
, and then L 0 (M, g, n, k, s, x 0 ) ≥ Ks(n-k)

A 1- 2 2 ⋆ (k,s)
. With (20), we get the result and Theorem 3 is proved.

Remarque 9. In the case s = 0, this result still holds as proved by Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF].

Remarque 10. Theorem 3 does not allow to conclude if L 0 is achieved or not, in other words for the moment we do not know if (6) holds for ϵ = 0.

Applications of the Mountain-Pass Lemma: proof of Theorems 6 and 7

This section is devoted to the proof of the existence Theorems 6 and 7. We will need the following computational lemma: Lemma 11. For all q ∈ (2, 2 ⋆ (k, s)), there exists

C 1 = C 1 (q) > 0, C 2 = C 2 (q) > 0, and C 3 = C 3 (q) > 0 such that for all x, y ∈ R |x + y| q -|x| q -q|x| q-2 xy ≤ C 1 |x| q-2 |y| 2 + |y| q |(x + y)|x + y| q -x|x| q | ≤ C 2 |x| q |y| + |y| q+1 ||x| q -|y| q -|x -y| q | ≤ C 3 |x| q-1 |x -y| + |x -y| q-1 |y| Lemma 12. Let (X, g X ) be a compact Riemannian manifold, (f k ) k∈N a sequence of bounded functions in L p (X) with p > 1. If (f k ) k∈N converges almost everywhere to a function f , then f ∈ L p (X) and (f k ) k∈N converges weakly to f in L p (X)
Proof. A proof, inspired by Hebey, is in Jaber ( [11], Lemma 6.5.1). □

We use the following version of the Mountain-Pass Lemma by Ambrosetti-Rabinowitz seen in Jaber [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF]: Concerning terminology, we say that a sequence (u N ) N ∈N ∈ E is a Palais-Smale sequence (PS) for J ∈ C 1 (E) at the level β ∈ R if J(u N ) → β and J ′ (u N ) → 0 strongly in the dual E ′ Theorem 13 (Ambrosetti-Rabinowitz [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]). Let J ∈ C 1 (E, R), where (E, | • ∥ E ) is a Banach space. We assume that (1) J(0) = 0 (2) There exists α, r > 0 such that J(v) ≥ α for all v ∈ E verifying ||v|| E = r (3) There exists v 0 ∈ E such that lim sup t→+∞ J(tv 0 ) < 0 We consider t 0 > 0 large enough such that ||t 0 v 0 || E > r and J(t 0 v 0 ) < 0. Then J admits a Palais-Smale sequence at level β 0 , where

β 0 = min γ∈Γ max t∈[0,1] J(γ(t)) and Γ = γ ∈ C 0 ([0, 1], E) /γ(0) = 0, γ(1) = t 0 v 0 . In particular, 0 < β 0 ≤ sup t≥0 J(tv 0 ). Proposition 14. For all u 0 ∈ H 2 1,G (M ), u 0 ̸ ≡ 0, u 0 ≥ 0, there exists β 0 = β 0 (u 0 ) > 0 and a sequence (u N ) n∈N ∈ H 2 1,G ( 
M ) which is a Palais-Smale sequence for the functional J q at level β 0 . Moreover β 0 ≤ sup t≥0 J q (tu 0 ).

Proof.

We take E = H 2 1,G (M ) and J = J q ∈ C 1 (E, R) in Theorem 13. Since J q (0) = 0, we have [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]. Concerning (2), the coercivity of the operator ∆ g + a and the Sobolev and Cotsiolis-Ledoux inclusions [START_REF] Cotsiolis | Ledoux-type rigidity results on manifolds with boundary in the presence of symmetries[END_REF] imply that there exist C i > 0, i = 1, 2, 3 such that for all v ∈ H 2 1,G (M ), we have:

J q (v) ≥ C 1 ||v|| 2 H 2 1,G (M ) -C 2 ||v|| 2 ⋆ (k,s) H 2 1,G (M ) -C 3 ||v|| q H 2 1,G (M ) (29) 
We consider the real function f (r) = C 1 -C 2 r 2 ⋆ (k,s)-2 -C 3 r q-2 . As q, 2 ⋆ (k, s) > 2, then f (r) → C 1 when r → 0. In other words, there exists r 0 > 0, such that for all r < r 0 , f (r)

> C1 2 . So, for all v ∈ H 2 1,G (M ), satisfying ||v|| H 2 1,G (M ) = r0 2 , by (29) we have J q (v) ≥ C1r 2 0 8 . Regarding (3), for u 0 ∈ H 2 1,G (M ) \ {0}, we have that J q (tu 0 ) = t 2 2 M |∇u 0 | 2 + au 0 dv g - t * (k, s) 2 ⋆ (k, s) M |u 0 | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s - t q q M h|u 0 | q dv g d g (x, Gx 0 ) s :=at 2 -bt 2 ⋆ (k,s) -ct q =t 2 ⋆ (k,s) at 2-2 ⋆ (k,s) -b -ct q-2 ⋆ (k,s) ≤ t 2 ⋆ (k,s) at 2-2 ⋆ (k,s) -b
Where a, b > 0 and c ≥ 0. Then J q (tu 0 ) → -∞ and (iii) holds.

Let t 0 > 0, β 0 = β 0 (u 0 ) and Γ as in the Mountain Pass lemma. Then for all γ ∈ Γ, we have that sup t∈[0,1] J q (γ(t)) ≥ λ, where λ = C 1 r 2 0 8 , hence β 0 ≥ λ > 0. So for t 0 > 0 large enough, our Proposition is proven. □ Proposition 15. Let p, q > 0 such that p+q = 2 ⋆ (k, s), u ∈ H 2 1,G (M ), f ∈ L ∞ (M ), and (w n ) N ∈N a bounded sequence in H 2 1,G (M ) which almost converges everywhere to w ∈ H 2 1,G (M ). Then, up to a subsequence, we have

lim n→∞ M f |u| p w q n dv g d g (x, Gx 0 ) s = M f |u| p w q dv g d g (x, Gx 0 ) s Proof. Let r = 2 ⋆ (k,s)
p > 1 and r ′ are conjugate. The inclusion of Theorem 1, implies that there exists C = C(M, g, k, s) > 0 such that

||v|| L 2 ⋆ (k,s) (M, dvg dg (x,Gx 0 ) s ) ≤ C||v|| H 2 1,G (M ) for all v ∈ H 2 1,G (M ). Hence, f |u| p ∈ L r (M, dvg dg(x,Gx0) s ). On the other hand |||w n | q || L r ′ (M, dvg dg (x,Gx 0 ) s ) = ||w n || q L 2 ⋆ (k,s) (M, dvg dg (x,Gx 0 ) s )
, hence the sequence (|w n | q ) N ∈N is bounded, and we apply Lemma 12 and verify that (|w n | q ) N ∈N converges weakly to (|w| q ) N ∈N in L r ′ (M, dvg dg(x,Gx0) s ). This completes the proof of this proposition. □ Proposition 16. Let (M, g) and G be as in the Assumption 8. Let a, h ∈ C 0 G (M ) be such that ∆ g + a is coercive and h ≥ 0. Let (u N ) N ∈N ∈ H 2 1,G (M ) be a Palais-Smale sequence for for J q at level β ∈ R. We assume that

β < c n,k,s K s (n -k) A 1-2 2 ⋆ (k,s) -n-k-s 2-s , with c n,k,s = 2 -s 2(n -k -s) .
Then there exists u ∈ H 2 1,G (M ) such that J q (u) = β and up to a subsequence (u N ) converges strongly to u in H 2 1,G (M ). Moreover J ′ q (u) = 0 and J q (u) = β.

Proof. We let (u N ) N ∈N ∈ H 2 1,G (M ) be as in the statement, that is

(30) J q (u N ) → β and J ′ q (u N ) → 0 strongly in H 2 1,G (M ) ′ ,
where β is as above. Note that, for all ψ ∈ H 2 1,G (M ), we have

⟨J ′ q (u N ), ψ⟩ = M ((∇u N , ∇ψ) g + au N ψ) dv g - M ψu N |u N | 2 ⋆ (k,s)-2 1 d g (x, Gx 0 ) s dv g - M hψu N |u N | q-2 dv g (31)
We proceed here in 4 steps:

Step I: We prove that the sequence (u N ) N ∈N is bounded in H 2 1,G (M ). Indeed, since the operator ∆ g + a is coercive, there exists C > 0 such that

||u N || 2 H 2 1,G (M ) ≤ C M (|∇u N | 2 g + au 2 N )dv g ≤ C 2J q (u N ) + 2 2 ⋆ (k, s) M |u N | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s + 2 q M h|u N | q dv g (32)
On the other hand, from (31) we get that

o(||u N || H 2 1,G (M ) ) = ⟨J ′ q (u N ), u N ⟩ = M (|∇u N | 2 g + au 2 N )dv g - M |u N | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s - M h|u N | q dv g
Putting the previous equality in J q , we have

2J q (u N ) = 1 - 2 2 ⋆ (k, s) M |u N | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s + 1 - 2 q M h|u N | q dv g + o(||u N || H 2 1,G (M ) ) (33) 
By combining (32) and (33), we get

||u N || 2 H 2 1,G (M ) ≤ C M |u N | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s + M h|u N | q dv g + o(||u N || H 2 1,G (M ) ) (34) 
Using ( 33), (30) and the fact that h ≥ 0

1 - 2 2 ⋆ (k, s) M |u N | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s = 2β -1 - 2 q M h|u N | q dv g + o(||u N || H 2 1,G (M ) ) ≤ 2β + o(||u N || H 2 1,G (M ) ) This implies that M |u N | 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s = O(1) + o(||u N || H 2 1,G (M ) ) (35) 
On the other hand, Lemma 12 yields

lim n→+∞ M u u N |u N | 2 ⋆ (k,s)-2 dv g d g (x, Gx 0 ) s = M |u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s = lim n→+∞ M u u N |u| q-2 dv g d g (x, Gx 0 ) s and lim n→+∞ M h u u N |u N | q-2 dv g d g (x, Gx 0 ) s = M h |u| q dv g d g (x, Gx 0 ) s = lim n→+∞ M h u u N |u| q-2 dv g d g (x, Gx 0 ) s
Also, the weak convergence of (u N ) to u in H 2 1,G (M ), the last equalities, as well as (39) and ( 40) imply (37). The weak and strong convergence of Step II imply

J q (u N ) -J q (u) = 1 2 M |∇u N | 2 g -|∇u| 2 g dv g + o(1) - 1 2 ⋆ (k, s) M |u N | 2 ⋆ (k,s) -|u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s = 1 2 - 1 2 ⋆ (k, s) M |∇u N | 2 g -|∇u| 2 g dv g + o(1) (41)
Since ⟨J ′ q (u), u⟩ = 0, we have that

J q (u) = 1 2 - 1 2 ⋆ (k, s) M u 2 ⋆ (k,s) 1 d g (x, Gx 0 ) s dv g + 1 2 - 1 q M hu q dv g ,
and then J q (u) ≥ 0 since h ≥ 0. Moreover lim

n→+∞ J q (u N ) = β. Then (41) yields c n,k,s M |∇u N | 2 g -|∇u| 2 g dv g ≤ β + o(1) (42) 
By weak convergence of u N , we have that

M |∇(u N -u)| 2 g dv g = M |∇u N | 2 g dv g + M |∇u| 2 g dv g -2 M (∇u, ∇ϕ) g dv g = M |∇u N | 2 g -|∇u| 2 g dv g + o(1) (43) 
Combining ( 42) and (43) yields (38).

Step IV: It remains to show that lim

N →∞ M |∇u N | 2 g dv g = M |∇u| 2 g dv g
It follows from Theorem 3 that for all ϵ > 0 there exists

B ϵ > 0 such that M |v| 2 ⋆ (k,s) d g (x, Gx 0 ) s dv g 2 2 ⋆ (k,s) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ ||∇v|| 2 2 + B ϵ ||v|| 2 2 .
for all u ∈ H 2 1,G (M ). Let us test this inequality for v = u N -u, using the fact that u N converges to u strongly in L 2 (M )

||u N -u|| 2 ⋆ (k,s) L 2 ⋆ (k,s) (M, dvg dg (x,Gx 0 ) s ) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 ⋆ (k,s) 2 ||∇(u k -u)|| 2 ⋆ (k,s) 2 + o(1)
Let us use this result with (37)

o(1) = ||∇(u N -u)|| 2 2 - M |u N -u| 2 * (k,s) dv g d g (x, Gx 0 ) s = ||∇(u N -u)|| 2 2 1 - M |u N -u| 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s ||∇(u N -u)|| -2 2 ≥ ||∇(u N -u)|| 2 2   1 - K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 ⋆ (k,s) 2 ||∇(u N -u)|| 2 ⋆ (k,s)-2 2 + o(1)  
this inequality and (38) imply

o(1) ≥ ||∇(u k -u)|| 2 2   1 - K s (n -k) A 1-2 2 ⋆ (k,s) + ϵ 2 ⋆ (k,s) 2 β c n,k,s 2 ⋆ (k,s)-2 2 + o(1)   Like β < c n,k,s Ks(n-k) A 1- 2 2 ⋆ (k,s)
n-k-s 2-s , then it follows from the previous inequality that for ϵ small enough, there exists C > 0 such that ||∇(u N -u)|| We are now in position to prove Theorem 6.

Proof of Theorem 6:

We do the proof in steps:

Step I: Suppose there is u 0 ∈ H 2 1,G (M ), u 0 ̸ ≡ 0, u 0 ≥ 0 such that (9) holds. It follows from Propositions 14 and 16 that there exists u ∈ H 2 1,G (M ) \ {0} such that J q (u) = β > 0, hence u ̸ ≡ 0 , and J ′ q (u) = 0, which satisfies (2) in the weak sense.

Step II: (Regularity) Arguing as in Ghoussoub-Robert [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF] or Jaber [START_REF] Jaber | Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes: Influence de la géométrie[END_REF], we get that u ∈ C 0,α ∩ C 1,ν loc (M \ {Gx 0 }), for all α ∈ (0, min{1, 2 -s}), ν ∈ (0, 1). We refer to Mesmar [START_REF] Mesmar | Phénomènes de concentration pour des équations elliptiques surcritiques[END_REF] for a detailed proof.

Step III: (Positivity) For all u ∈ H 2 1,G (M ) we set u + (x) := max{u(x), 0} and u -(x) := max{-u(x), 0} for a.e. x ∈ M . Doing the same analysis as for J q , we show that (J + q ) ′ (u) ≡ 0, where for all v ∈ H 2 1,G (M ) we set

J + q (v) = 1 2 M (|∇v| 2 g + av 2 )dv g - 1 2 ⋆ (k, s) M |v + | 2 ⋆ (k,s)-1 v + d g (x, Gx 0 ) s dv g - 1 q M h|v + | q-1 v + dv g In particular, ⟨(J + q ) ′ (u), u -⟩ = 0, hence 0 = - M (|∇u -| 2 g + au 2 -)dv g + M |u + | 2 ⋆ (k,s)-1 u - d g (x, Gx 0 ) s dv g + M h|v + | q-1 u -dv g Therefore M (|∇u -| 2 g + au 2 -)dv g = 0. Using that ∆ g + a is coercive, we get that ||u -|| H 2 1,G (M ) =0
, so u ≥ 0. By the maximum principle for elliptic operators [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF], we get that u > 0 on M \ G x0 . This proves Theorem 6. □ 6. Proof of Theorems 7, 4 and 5

6.1. Test-function estimates. To go below the threshold (9), we construct testfunctions modeled on the extremal for the Hardy-Sobolev inequality [START_REF] Cotsiolis | Ledoux-type rigidity results on manifolds with boundary in the presence of symmetries[END_REF] given by (44)

ϕ : X ∈ R m → 1 + |X| 2-s -m-2 2-s , m := n -k.
Given (M, g) and G which satisfy the Assumption 8 of Section 2. We define the test functions (ū ϵ ) ϵ>0 for all ϵ > 0, x

∈ N := B δ (Gx 0 )/G ′ by ūϵ (x) := ϵ 2-s 2 ϵ 2-s + d g (x, x0 ) 2-s m-2 2-s where m := n -k ≥ 3 ( 45 
)
where g is defined in [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF].

Lemma 17. Let (X, g) be a compact Riemannian manifold of dimension m ≥ 3, and (B ρ0 (x 0 ), exp -1 x0 ) an exponential ball centered at x 0 and of radius ρ ∈ (0, i g (X)). So setting x = exp x0 (rθ), for all x ∈ B ρ0 (x 0 ), we have that

S m-1 f • exp x0 (x) det(g)(x)dθ = w m-1 f (x 0 ) - ∆ g f (x 0 ) 2m + f (x 0 ) 6m Scal g (x 0 ) + O(r 3 ) (46) 
For all f ∈ C 0 (X), where r = d g (x, x 0 ) and dθ and w m-1 are respectively is the area element and the volume of the unit sphere S m-1 of R m .

Proof. Using the Cartan expansion of the metric g to order 2 (for the proof see Hebey [START_REF] Hebey | Nonlinear analysis on manifolds: Sobolev spaces and inequalities[END_REF]) for any point x ∈ B ρ0 (x 0 ), that is

g ij (x) = δ ij + 1 3 R iαβj x α x β + O(r 3 ).
With this expansion and a Taylor expansion of f , straightforward computations yield the result. □ Remarque 18. In the exponential map N, exp -1 x0 , we pass to the polar coordinates (r, θ) such that for all x ∈ N , we have r = d ḡ (x, x0 ) and θ ∈ S m-1 . So we have for all x ∈ B ρ0 (x 0 ) dv g (x) = det(g)(x)dx = det(g)(x)r m-1 dθ (47) with dx = (exp -1 x0 ) * (dX), and with Gauss's Lemma, we have that g1i (x) = δ 1i .

Lemma 19. For ϕ as in (44), we have that

||∇ū ϵ || 2 L 2 (N ) = R m |∇ϕ| 2 dX -R m |X| 2 |∇ϕ| 2 dX 6m Scal g (x 0 )ϵ 2 + o(ϵ 2 ) if m ≥ 5 R m |∇ϕ| 2 dX -w3 6 Scal g (x 0 )ϵ 2 ln( 1 ϵ ) + O(ϵ 2 ) if m = 4
Proof. Since ūϵ is a radial function, so by the Gauss Lemma above, for all x ∈ N

|∇ū ϵ | 2 g = gij ∇ i ūϵ ∇ j ūϵ = grr (∇ r ūϵ ) 2 = (m -2) 2 ϵ m-2 r 2(1-s) (ϵ 2-s + r 2-s ) 2(m-s) 2-s
We integrate |∇ū ϵ | 2 g over N using (47) and Cartan expansion (46) and by changing the variable r = ϵρ, we write

N |∇ū ϵ | 2 g dv g = (m -2) 2 ϵ m-2 w n-k-1 ρ0 0 r m+1 1 - Scalg(x0) 6m r 2 + O(r 3 ) r 2s (ϵ 2-s + r 2-s ) 2(m-s) 2-s dr = (m -2) 2 w m-1 ρ 0 ϵ 0 ρ m+1 1 - Scalg(x0) 6m (ϵρ) 2 + O((ϵρ) 3 ) ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s dρ := A(ϵ) - (m -2) 2 6m Scal g (x 0 )w m-1 B(ϵ) + C(ϵ) (48) 
where

A(ϵ) := (m -2) 2 w m-1 ρ 0 ϵ 0 ρ m+1 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s B(ϵ) = ϵ 2 ρ 0 ϵ 0 ρ m+3 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s and C(ϵ) = O ρ 0 ϵ 0 ρ m+1 (ϵρ) 3 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s
Step I: We first compute A(ϵ):

A(ϵ) = (m -2) 2 w m-1 +∞ 0 ρ m+1 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s - +∞ ρ 0 ϵ ... = R m |∇ϕ| 2 dX -(m -2) 2 w m-1 +∞ ρ 0 ϵ ρ m+1 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s = R m |∇ϕ| 2 dX + O(ϵ m-2 ) (49)
Step II: On the other hand, ρ → Therefore for m ≥ 5, we have that

B(ϵ) = ϵ 2 ρ 0 ϵ 0 ρ m+3 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s -ϵ 2 +∞ ρ 0 ϵ ρ m+3 dρ ρ 2s (1 + ρ 2-s ) 2(m-s) 2-s = ϵ 2 (m -2) -2 w -1 m-1 R m |X| 2 |∇ϕ| 2 dX + O(ϵ m-2 )
When m = 4:

B(ϵ) = ϵ 2 1 0 ρ 7 dρ ρ 2s (1 + ρ 2-s ) 2(4-s) 2-s + ϵ 2 ρ 0 ϵ 1 ρ 7 dρ ρ 2s (1 + ρ 2-s ) 2(4-s) 2-s = O(ϵ 2 ) + ϵ 2 ρ 0 ϵ 1 dρ ρ + ρ 0 ϵ 1 ρ 7 ρ 2s 1 (1 + ρ 2-s ) 2(4-s) 2-s - 1 (ρ 2-s ) 2(4-s) 2-s dρ = O(ϵ 2 ) + ϵ 2 ln ρ 0 ϵ + ϵ 2 ρ 0 ϵ 1 ρ 7-2s O( 1 ρ 2-s ) (1 + ρ 2-s ) 2(4-s)
2-s dρ And then

B(ϵ) = ϵ 2 (m -2) 2 w -1 m-1 R m |X| 2 |∇ϕ| 2 dX + O(ϵ m-2 ) if m ≥ 5 O(ϵ 2 ) + ϵ 2 ln( 1 ϵ ) if m = 4 (50)
In particular, when q = 2, we get that

N gū 2 ϵ dv g = ϵ 2 g(x 0 ) R n-k |ϕ| 2 dX + o(ϵ 2 ) si m ≥ 5 g(x 0 )w 3 ϵ 2 ln( 1 ϵ ) + O(ϵ 2 ) if m = 4
Lemma 22. For m = n -k ≥ 5, and ϕ as in (44), we define

k 1 := R m |ϕ| 2 dX R m |∇ϕ| 2 dX k 2 := - 1 2 ⋆ (k, s)3m R m |X| 2-s |ϕ| 2 ⋆ (k,s) dX R m |ϕ| 2 ⋆ (k,s) |X| s dX + 1 6m R m |X| 2 |∇ϕ| 2 dX R m |∇ϕ| 2 dX k 3 := 1 2 ⋆ (k, s)m R m |X| 2-s |ϕ| 2 ⋆ (k,s) dX R m |ϕ| 2 ⋆ (k,s) |X| s dX We have that (53) k 2 k 1 = c ′ n,k,s = (m -2)(6 -s) 12(2m -2 -s) and k 3 k 1 = c ′′ n,k,s = (m -2)(m -4) 4(2m -2 -s) .
Proof. Let p, q > 0 such that p-q > 1. We consider I q p = +∞ 0 t q dt (1+t) p , an integration by parts shows that I q p = p q+1 I q+1 p+1 . Moreover, one can easily show that I q p = I q p+1 + I q+1 p+1 . These two relations allow us to find the following results which will be useful for the calculation of our main ratios:

I q p+1 = p -q -1 p I q p and I q+1 p+1 = q + 1 p -q -1 I q p+1 (54) 
Now, we will calculate the ratio k2 k1 using (54). Passing in polar coordinates (r, θ), and setting t = r 2-s such that dr = 1 2-s t -1-s 2-s dt, we will have

R m |ϕ| 2 dX = w m-1 +∞ 0 r m-1 dr (1 + r 2-s ) 2(m-2) 2-s = w m-1 2 -s +∞ 0 t m 2-s -1 (1 + t) 2(m-2) 2-s dt (55)
Similarly, we can prove that

R m |X| 2 |∇ϕ| 2 dX = (m -2) 2 w m-1 2 -s +∞ 0 t m 2-s +1 (1 + t) 2(m-2) 2-s +2 dt (56)
Using (55) and ( 56) and (54), for q = m 2-s -1, p = 2(m-2) 2-s , we will have

R m |X| 2 |∇ϕ| 2 dX R m |ϕ| 2 dX = (m-2) 2 2-s w m-1 I q+2 p+2 wm-1 2-s I q p = m(m -2)(m + 2 -s) 2(2m -2 -s) (57) 
In a similar way, we will have for p

= 2(m-2) 2-s , q = m 2-s -1 R m |X| 2-s |ϕ| 2 ⋆ (k,s) dX R m |ϕ| 2 dX = I q+1 p+2 I q p = m(m -4) 2(m -2)(2m -2 -s) (58) and for p = 2(m-s) 2-s , q = m-s 2-s -1 R m |∇ϕ| 2 dX R m |ϕ| 2 ⋆ (k,s) |X| s dX = (m -2) 2 q + 1 p -1 -q -1 = (m -2)(m -s) (59)
By combining (57), (58), and (59), we get (53). □ 6.2. Proof of Theorem 7. We now go back to the initial manifold (M, g). For ρ > 0, we let N := B Gx0 (ρ 0 )/G ′ = B x0 (ρ 0 ) that is a Riemmanian manifold of dimension m ≥ 4. We take the family (ū ϵ ) ϵ>0 defined as on (45), and we define

u ϵ (x) =              ϵ 2-s 2 ϵ 2-s + d g (x, x0 ) 2-s m-2 2-s if x ∈ B ρ0 (Gx 0 ) ϵ 2-s 2 ϵ 2-s + ρ 2-s 0 m-2 2-s if x ∈ M \ B ρ0 (Gx 0 ) Note that u ϵ ∈ H 2 1,G ( 
M ). Let J q be as in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF]. For all ϵ > 0, and t ≥ 0, we get

J q (tu ϵ ) = t 2 2 M (|∇u ϵ | 2 g + au 2 ϵ )dv g - t 2 ⋆ (k,s) 2 ⋆ (k, s) M u 2 ⋆ (k,s) ϵ d g (x, Gx 0 ) s dv g - t q q M hu q ϵ dv g = t 2 2 A ϵ - t 2 ⋆ (k,s) 2 ⋆ (k, s) B ϵ - t q q C ϵ (60)
Where

A ϵ := N (|∇ū ϵ | 2 g + āū 2 ϵ )dv g + M \Bρ 0 (Gx0) (|∇u ϵ | 2 g + au ϵ 2 )dv g B ϵ := N f |ū ϵ | 2 ⋆ (k,s) dv g d g (x, x0 ) s + M \Bρ 0 (Gx0) u ϵ 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s C ϵ := N h|ū ϵ | q dv g + M \Bρ 0 (Gx0) hu ϵ q dv g with h(x) = v-2 n-k-2 h(Π(x)), ā(x) = v-2 n-k-2 a(Π(x)
), and f (x) = v-2-s n-k-2 (Π(x)) Outside the ball centered in Gx 0 , we have that

M \Bρ 0 (Gx0) (|∇u ϵ | 2 g + au ϵ 2 )dv g = O(ϵ m-2 ) M \Bρ 0 (Gx0) u ϵ 2 ⋆ (k,s) dv g d g (x, Gx 0 ) s = O(ϵ m-s ) M \Bρ 0 (Gx0) hu ϵ q dv g = O(ϵ q(m-2) 2 
) By using the equalities above, and Lemmas 19 and 20 we get

A ϵ = R m |∇ϕ| 2 dX -R m |X| 2 |∇ϕ| 2 dX 6m Scal g (x 0 )ϵ 2 + ϵ 2 ā(x 0 ) R m |ϕ| 2 dX + o(ϵ 2 ) if m ≥ 5 R 4 |∇ϕ| 2 dX -w3 6 Scal g (x 0 )ϵ 2 ln( 1 ϵ ) + ā(x 0 )w 3 ϵ 2 ln( 1 ϵ ) + o(ϵ 2 ln( 1 ϵ )) if m = 4 B ϵ = f (x 0 ) R m |ϕ| 2 ⋆ (k,s) |X| s dX -ϵ 2 ∆ g f (x 0 ) 2m + f (x 0 ) 6m Scal g R m |X| 2-s |ϕ| 2 ⋆ (k,s) dX + o(ϵ 2 ) C ϵ =        ϵ m-q(m-2) 2 h(x 0 ) R m |ϕ| q dX + o ϵ m-q(m-2) 2 si q > 2 ⋆ (k) 2 ϵ m 2 ln( 1 ϵ ) h(x 0 )w m-1 + o(ϵ 2 ln( 1 ϵ )) si q = 2 ⋆ (k) 2 O ϵ q(m-2) 2 si q < 2 ⋆ (k) 2 
Hence, when ϵ → 0

A ϵ → A 0 := R m |∇ϕ| 2 dX , B ϵ → B 0 := f (x 0 ) R m |ϕ| 2 ⋆ (k,s) |X| s dX , et C ϵ → 0
Step I: We prove that for all ϵ > 0, there exists a unique t ϵ > 0 such that sup t≥0 J q (tu ϵ ) = J q (t ϵ u ϵ ), and that

t ϵ = T ϵ (1 -α 0 C ϵ + o(C ϵ )), (61) 
where

T ϵ = (A ϵ B -1 ϵ ) 1 2 ⋆ (k,s)-2
, α 0 > 0, and the sequence t ϵ converges and its limit t 0 verifies t

2 ⋆ (k,s) 0 B 0 = A 0 . Indeed, dJq(tuϵ) dt vanishes for t = 0 or else for t ϵ > 0 such that A ϵ = f ϵ (t ϵ ), where f ϵ (t) := t 2 ⋆ (k,s)-2 B ϵ + t q-2 C ϵ . Since A ϵ > 0, B ϵ , C ϵ ≥ 0, C ϵ > 0, a straightforward analysis of f ϵ yields t ϵ → t 0 := (A 0 B -1 0 ) 1 2 ⋆ (k,s)-2 when ϵ → 0. Furthermore, we have that t ϵ = A ϵ B -1 ϵ -t q-2 ϵ C ϵ B -1 ϵ 1 2 ⋆ (k,s)-2 = T ϵ 1 -t q-2 ϵ A -1 ϵ C ϵ 1 2 ⋆ (k,s)-2 = T ϵ (1 -α 0 C ϵ + o(C ϵ )) With α 0 = t q-2 0 A -1 0 2 ⋆ (k,s)-2
. This completes our step.

Step II: We show that with subsequence near (u ϵ ) ϵ>0 , we have

J q (t ϵ u ϵ ) = c n,k,s (I(u ϵ )) 2 ⋆ (k,s) 2 ⋆ (k,s)-2 - T q 0 q C ϵ + o(C ϵ ) (62) With c n,k,s = 2-s 2(n-k-s) and I(u ϵ ) = M (|∇u ϵ | 2 + au ϵ )dv g M |u ϵ | 2 ⋆ (k,s) dvg dg(x,Gx0) s 2 2 ⋆ (k,s)
Indeed, the expansions (60) and (61) of J q (tu ϵ ) and t ϵ imply

J q (t ϵ u ϵ ) = t 2 ϵ 2 A ϵ - t 2 ⋆ (k,s) ϵ 2 ⋆ (k, s) B ϵ - t q ϵ q C ϵ = T 2 ϵ 2 A ϵ - T 2 ⋆ (k,s) ϵ 2 ⋆ (k, s) B ϵ + α 0 (-T 2 ϵ A ϵ + T 2 ⋆ (k,s) ϵ B ϵ + T q ϵ C ϵ )C ϵ - T q ϵ q C ϵ + o(C ϵ )
The explicit definition of T ϵ then yields (62).

Step III: We prove that It then follows that:

K s (n -k) A 1-
I(u ϵ ) = 1 C 2 2 ⋆ (k,s) 3    C 1 + C 2 w 3 ϵ 2 ln( 1 ϵ )2 + o ϵ 2 ln( 1 ϵ ) 1 + C4 C3 ϵ 2 + o(ϵ 2 ) 2 2 ⋆ (k,s)    = K s (n -k) A 1-2 2 ⋆ (k,s) -1 1 + C 2 C 1 w 3 ϵ 2 ln 1 ϵ + o ϵ 2 ln( 1 ϵ )
The proposition is proved in this case.

Case III.b: m ≥ 5. In this case we have

I(u ϵ ) = C 1 + C 2 ϵ 2 + o(ϵ 2 ) (C 3 + C 4 ϵ 2 + o(ϵ 2 )) 2 2 ⋆ (k,s) with C 1 = R m |∇ϕ| 2 dX; C 2 = ā(x 0 ) R m | |ϕ| 2 dX -1 6m Scal g (x 0 ) R m |X| 2 |∇ϕ| 2 dX; C 3 = f (x 0 ) R m |ϕ| 2 ⋆ (k,s) |X| s dX; C 4 = -f (x0) 6m Scal g (x 0 ) + ∆g f (x0) 2m
R m |X| 2-s |ϕ| 2 ⋆ (k,s) dX. It follows that:

I(u ϵ ) = 1 C 2 2 ⋆ (k,s) 3    C 1 + C 2 ϵ 2 + o(ϵ 2 ) 1 + C4 C3 ϵ 2 + o(ϵ 2 ) 2 2 ⋆ (k,s)    = C 1 C 2 2 ⋆ (k,s) 3 + C 1 C 2 2 ⋆ (k,s) 3 C 2 C 1 - 2C 4 2 ⋆ (k, s)C 3 ϵ 2 + o(ϵ 2 )
Since ϕ is an extremal for the Hardy-Sobolev inequality (4), we get that

C 2 C 1 - 2C 4 2 ⋆ (k, s)C 3 = k 1 ā(x 0 )-k 2 Scal g (x 0 )+k 3 ∆ g f (x 0 ) f (x 0 ) and C 1 C 2 2 ⋆ (k,s) 3 = K s (n -k) -1 A 1-2 2 ⋆ (k,s)
Lemma 22 completes the proof of this case.

Step IV: We show that there exists a constant c > 0 such that 

J q (t ϵ u ϵ ) ≤ c n,k,s K s (n -k) A 1-2 2 ⋆ (k,s) 2 ⋆ (k,s) 2 ⋆ (k,s)-2 -c h(x 0 )ϵ m-q(m-2) 2 + o(ϵ m-q(m-2)
∆ g f (x 0 ) f (x 0 ) ϵ 2 + o(ϵ 2 ) - T q 0 q C ϵ + o(C ϵ ) (64) with C ϵ = ϵ m-q(m-2) 2 h(x 0 ) R n-k |ϕ| q dX + O ϵ q(m-2) 2
+ o(ϵ m-q(m-2)

2

)
Now m -q(m-2)

2 < 2, it follows that ϵ 2 = o(ϵ m-q(m-2)

2

) which proves our equality. For m = 4, by the previous steps there exists k 6 := k 6 (m, s) > 0 such that

I(u ϵ ) ≤ K s (n -k) A 1-2 2 ⋆ (k,s) -1 + k 5 ā(x 0 ) -c ′ n,k,s Scal g (x 0 ) ϵ 2 ln 1 ϵ + o ϵ 2 ln 1 ϵ
This implies that

J q (t ϵ u ϵ ) ≤ c n,k,s K s (n -k) A 1-2 2 ⋆ (k,s) 2 ⋆ (k,s) 2 ⋆ (k,s)-2 + k 6 ā(x 0 ) -c ′ n,k,s Scal g (x 0 ) ϵ 2 ln 1 ϵ + o ϵ 2 ln 1 ϵ - T q 0 q C ϵ + o(C ϵ ) (65) 
In this case C ϵ = ϵ 4-q h(x 0 ) R n-k |ϕ| q dX + o(ϵ 4-q ) Then ϵ 2 ln( 1 ϵ ) = o(C ϵ ) which proves the rest of our step. We can now conclude. Since h(x 0 ) > 0 in (63), we get the conditions of Theorem 6, and this implies the conclusion of Theorem 7. 6.3. Proof of Theorems 4 and 5. We note that if h ≡ 0, then (62) becomes J q (t ϵ u ϵ ) = c n,k,s (I(u ϵ )) 

∆ g f (x 0 ) f (x 0 )
Then we can deduce from (64) and (65) the proof of 5.

2 2 ≤

 2 o[START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]. Hence the result. This proves Proposition 16.□

∈ L 1 (

 1 R m ) as soon as m ≥ 5.

2 2⋆ 1 6 1 6 4 |ϕ| 2 ⋆ 8 R

 211428 (k,s)I(u ϵ ) = 1 + k 1 ā(x 0 ) -k 2 Scal g (x 0 ) + k 3 ∆g f (x0) f (x0) ϵ 2 + o(ϵ 2 ) si m ≥ 5, w 3 R 4 |∇ϕ| 2 dX -1 ā(x 0 ) -Scal g ϵ 2 ln( 1 ϵ ) + o ϵ 2 ln( 1 ϵ ) if m = 4,Where k 1 , k 2 , k 3 are constants as in Lemma 22. We distinguish 2 cases:Case III.a: m = 4. In this case we haveI(u ϵ ) = C 1 + C 2 w 3 ϵ 2 ln( 1 ϵ )o ϵ 2 ln( 1 ϵ ) (C 3 + C 4 ϵ 2 + o(ϵ 2 )) with C 1 = R 4 |∇ϕ| 2 dX; C 2 = ā(x 0 ) -Scal g (x 0 ); C 3 = f (x 0 ) R (k,s) |X| s dX; C 4 = -f (x 0 ) 24 Scal g (x 0 ) + ∆ g f (x 0 ) n-k |X| 2-s |ϕ| 2 ⋆ (k,s) dX.

1 + 2 )A 1 - 2 2⋆

 1212 k 5 ā(x 0 ) -c ′ n,k,s Scal g (x 0 ) + c ′′ n,k,s ∆ g f (x 0 ) f (x 0 ) ϵ 2 + o(ϵ 2)(6 -s) 12(2m -2 -s) and c ′′ n,k,s = (m -2)(m -4) 4(2m -2 -s)Consequently, there exists k 5 := k 5 (m, s) > 0 such thatJ q (t ϵ u ϵ ) ≤ c n,k,s K s (n -k) (k,s) 2 ⋆ (k,s) 2 ⋆ (k,s)-2 + k 6 ā(x 0 ) -c ′ n,k,s Scal g (x 0 ) + c ′′ n,k,s

M (|∇u ϵ | 2 + 1 ,

 21 au ϵ )dv g M |u ϵ | 2 ⋆ (k,by following the same argument in Step II of the proof of Theorem 7, we get that the conditions of Theorem 6 are verified, and this implies the conclusion of Theorem 4. Moreover, ifā(x 0 ) < (n -k -2)(6 -s) 12(2n -2k -2 -s) Scal g (x 0 ) -(n -k -2)(n -k -4) 4(2n -2k -2 -s)

⋆ (k,s)

Grouping (34), ( 35) and (36) we get that

). And then ||u N || H 2 1,G (M ) is bounded. This completes the proof of this step.

Step II: We claim that, up to extraction, there exists

) u N (x) → u(x) for a.e x ∈ M . Moreover, J ′ q (u) = 0. The existence of u is a consequence of the boundedness of (u N ) and the compactness of the subcritical embeddings. Passing to the limit in J ′ q (u N ) = o(1) yields J ′ q (u) = 0: we refer to Jaber [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] and Mesmar [START_REF] Mesmar | Phénomènes de concentration pour des équations elliptiques surcritiques[END_REF] for details.

Step III: We prove that for the subsequence of (u N ) N ∈N in Step II, we have that

Indeed, we set w N = u N -u. Lemma 11 yields the existence of C > 0 such that

Using this inequality, and applying Proposition 15 to the sequence (w N ), we get

Step III: Finally straightforward computations yield

Grouping ( 49), ( 50) and ( 51) in (48), we get the expected estimate.

) -s dvg) using ( 47) and the Cartan expansion (46) and performing a change of variable r = ϵρ

where

Arguing as in the proof of Lemma 19, we get that

By gathering these identities in (52), we will have the announced result. □

Arguing as in the above proof of Lemma 19, we get that:

Lemma 21. For all g ∈ C 0 (N ), and q ∈ (0, 2 ⋆ (k)) we have

2 g(x 0 ) R m |ϕ| q dX + o(ϵ m-q(m-2)

2

if q < 2 ⋆ (k) 2