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Integrating machine learning (ML) techniques into metaheuristics is an efficient approach in single-objective optimization. Indeed, high-quality solutions often contain relevant knowledge, that can be used to guide the heuristic towards promising areas. In multiobjective optimization, the quality of solutions is evaluated according to multiple criteria that are generally conflicting. Therefore, the ML techniques designed for single-objective optimization can not be directly adapted for multi-objective optimization. In this paper, we propose to enhance the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) with a clustering-based learning mechanism. To be more precise, solutions are grouped regarding a metric based on their quality on each criterion, and the knowledge from the solutions of the same group is merged. Experiments are conducted on the multi-objective vehicle routing problem with time windows. The results show that MOEA/D with learning outperforms the original version.

INTRODUCTION

Machine Learning (ML) has become incredibly popular in the past few years, especially in the field of optimization [START_REF] Talbi | Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics[END_REF]. Indeed, it is known that optimization and learning have a good synergy [START_REF] Corne | Synergies between operations research and data mining: The emerging use of multi-objective approaches[END_REF]. In most cases, the learning consists of an extraction step, where the mechanism discovers knowledge from previously generated solutions, and an injection step, which exploits the extracted knowledge to guide the algorithm towards promising areas. The knowledge can take different forms, like parts of the structure of the solutions. The design of efficient learning tools is an active research domain [START_REF] Bengio | Machine learning for combinatorial optimization: a methodological tour d'horizon[END_REF].

Due to the success of the integration of learning into singleobjective problems, it seems natural to consider the integration of ML into multi-objective combinatorial optimization problems (MoCOPs) [START_REF] Coello | Multiobjective combinatorial optimization: Problematic and context[END_REF]. Such problems are frequent in the industry where decision-makers are interested in optimizing several conflicting objectives at the same time. The objectives can be of different nature (economical, ecological, ethical), and allow to consider the problem from different points of view. Concerning the design of learning tools for MoCOPs, the literature is parse. In a MoCOP, the quality of solutions is evaluated according to multiple criteria that are generally conflicting. Such an evaluation prevents the definition of a total order on solutions, meaning that some solutions are incomparable. Therefore, most of ML techniques designed for single-objective problems can not directly be used for MoCOPs.

In this article, we propose a hybridization between MOEA/D and a clustering-based learning mechanism to solve a bi-objective Vehicle Routing Problem with Time Windows (VRPTW) [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF]. Indeed, when solutions can be represented as permutations, like here, it is possible to learn sequences of elements, called patterns, inside the permutation. MOEA/D [START_REF] Zhang | MOEA/D: A multiobjective evolutionary algorithm based on decomposition[END_REF] is a widely studied algorithm [START_REF] Xu | A survey of multiobjective evolutionary algorithms based on decomposition: variants, challenges and future directions[END_REF]. The learning mechanism extracts the knowledge from close solutions in the objective space, by creating groups of solutions.

To summarize, the contribution of this paper is the design of a learning MOEA/D that is efficient to solve a bi-objective VRPTW.

The remaining of the paper is organised as follows. In Section 2 multi-objective problems are briefly introduced, and MOEA/D is presented. Section 3 focuses on learning and optimization, and our learning variant of MOEA/D. Section 4 describes the problem studied and the knowledge extracted. Section 5 presents the experimental protocol and then gives and discusses the experimental results. Finally, Section 6 concludes and presents perspectives for this work.

MULTI-OBJECTIVE OPTIMIZATION 2.1 Multi-Objective Problems

Many real-world problems may be modeled by two or more objectives (often conflicting), that should be simultaneously optimized. Considering logistic problems, for instance, many challenges have to be tackled (economical and environmental). In the following MoCOPs are briefly presented. The reader may refer to [START_REF] Coello | Multiobjective combinatorial optimization: Problematic and context[END_REF] for a complete formalization of MoCOPs.

The functions 𝑓 1 , . . . , 𝑓 𝑛 refer to the 𝑛 ≥ 2 objectives that have to be optimized. For each feasible solution 𝑥, there exists a point in the objective space, noted Z, defined by 𝐹 (𝑥) = (𝑓 1 (𝑥), . . . , 𝑓 𝑛 (𝑥)).

It is possible to compare some solutions through a dominance criterion. A solution 𝑥 dominates a solution 𝑦 (noted 𝑥 < 𝑦), in a minimization context, if and only if for all 𝑖 ∈ [1 . . . 𝑛], 𝑓 𝑖 (𝑥) ≤ 𝑓 𝑖 (𝑦) and there exists 𝑗 ∈ [1 . . . 𝑛] such that 𝑓 𝑗 (𝑥) < 𝑓 𝑗 (𝑦). However, this relation only defines a partial order on the solution set.

Then a set of non dominated solutions is called a Pareto front. A feasible solution 𝑥 * is called Pareto optimal if and only if there does not exists any solution 𝑥 such that 𝑥 dominates 𝑥 * . Resolving a MoCOP involves finding all the Pareto optimal solutions which form the Pareto optimal set. The true Pareto front of the problem is obtained by plotting the objective function values corresponding to the solutions in the Pareto optimal set.

Over the years, many metaheuristics with local search techniques or using evolutionary algorithms [START_REF] Blot | Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation[END_REF] have been designed to solve multi-objective problems.

Moreover, many tools have been developed to assess and compare the performance of multi-objective algorithms. In this paper we use the unary hypervolume (HV) [START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF], defined relatively to a reference point 𝑍 𝑟𝑒 𝑓 . This indicator evaluates accuracy, diversity and cardinality of the front, and it is the only indicator with this capability. It reflects the volume in the objective function space covered by the members of a non dominated set of solutions. Hence, the larger the hypervolume, the better the set of solutions. This metric can be computed without knowing the true Pareto front of the instance, that is interesting for our study.

MOEA/D

MOEA/D [START_REF] Zhang | MOEA/D: A multiobjective evolutionary algorithm based on decomposition[END_REF], is a genetic algorithm that approximates the Pareto front by decomposing the multi-objective problem into several scalar objective subproblems. Each iteration of the algorithm optimizes one of the subproblems, by applying a genetic step composed of a crossover and a mutation operator.

Here, we consider scalar problems obtained with a weighted sum of the objectives. More precisely a convex combination of the 𝑛 objectives is defined by attributing a weight 𝑤 𝑖 ∈ [0, 1] to the objective 𝑓 𝑖 such that 𝑛 𝑖=1 𝑤 𝑖 = 1. Then the fitness of a solution is the following quantity:

𝑔(𝑥 |𝑤) = 𝑛 𝑖=1 𝑤 𝑖 • 𝑓 𝑖 (𝑥).
The solution which minimizes this fitness is Pareto optimal [START_REF] Miettinen | Nonlinear multiobjective optimization[END_REF], regardless of the structure of the true Pareto front. Thus to generate different Pareto optimal solutions one can use 𝑀 different weight vectors 𝑤 1 , . . . , 𝑤 𝑀 in the expression of the fitness.

MOEA/D minimizes the 𝑖-th subproblem, by using the solutions of its closest neighbors. Indeed, the neighborhood, of size 𝑚, of a weight vector 𝑤 𝑖 is defined as the set of its 𝑚 closest (for the euclidean distance) weight vectors in {𝑤 1 , . . . , 𝑤 𝑀 }. Then the neighborhood N 𝑚 (𝑖) of the 𝑖-th subproblem simply consists of the 𝑚 subproblems defined with a weight vector belonging to the neighborhood of 𝑤 𝑖 . In the following we consider a uniform distribution on the weight vectors, and we assume that is enough to obtain diverse subproblems.

During the execution of MOEA/D, only the best solution found is kept for each subproblem. When a subproblem 𝑖 is optimized, the genetic step generates a new solution. The crossover occurs with probability 𝑝 𝑐𝑟𝑜 and the mutation with probability 𝑝 𝑚𝑢𝑡 . Note that, the crossover is realized between two solutions from subproblems of N 𝑚 (𝑖). Moreover an external archive is used to store nondominated solutions found during the search. These solutions are returned once the termination criteria is reached.

Since the algorithm is applied on a problem where solutions are permutations, the crossover applied is the partially mapped crossover (PMX), and the mutation is a permutation swap, that exchanges two elements of a permutation.

INTEGRATING LEARNING INTO MOEA/D 3.1 Learning from Solutions in Optimization

Hybridizing machine learning methods and metaheuristics is quite common to solve combinatorial problems. Indeed the survey [START_REF] Talbi | Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics[END_REF] reviews different kind of hybridizations and proposes to classify the different methods according to where the hybridization is performed: at a problem-level, at a low-level or at a high-level. When learning is integrated at a low-level, the knowledge is extracted from solutions of the problem (e.g. to learn their structure). This is the kind of integration we are interested in. In particular, many ML methods can be used, and here we investigate clustering, to group the solutions, and association rules (patterns to be more precise), to learn from solutions.

Moreover the integration can be realized either online or offline [START_REF] Corne | Synergies between operations research and data mining: The emerging use of multi-objective approaches[END_REF]. The learning is said online when it uses resources generated during the execution. Otherwise the learning is said offline.

Most of the learning mechanisms are composed of an extraction step, where something is learned, and an injection step, which uses the extracted knowledge to find new promising solutions. The following section, presents the integration of learning into MOEA/D.

Learning within MOEA/D and Variants

We base our learning mechanism for MOEA/D on the following fact: close solutions in the objective space may have the same structure. Note that, the closeness between two solutions is evaluated according to their objective vector with the euclidean distance. That is why, gathering the knowledge from neighboring solutions in the objective space is relevant. To that aim, we introduce the notion of learning groups.

Each learning group G is associated to one of the subproblems defined in MOEA/D. More precisely G 𝑖 is associated to the subproblem of weight vector 𝑤 𝑖 . Thus, there are as many learning groups as subproblems. Moreover, since the neighborhood of each subproblem is already defined in MOEA/D, we keep the same neighborhood for the learning groups. In other words, if each subproblem has 𝑚 neighbors, then each solution will belong to 𝑚 learning groups. With this construction, our will is that each learning group focuses on a part of the objective space. The Figure 1 shows the main steps of the algorithm, and the pseudo-code is available as supplementary material. We present now, the main steps of the algorithm. MOEA/D is initialized, with a uniform set of weight vectors, and an initial population of randomly generated solutions. Initially, each learning group is empty. Then the algorithm iterates over the subproblems defined. Suppose that the 𝑖-th subproblem is optimized. The crossover is the first operator applied, with probability 𝑝 𝑐𝑟𝑜 . Two neighboring subproblems are selected that give two solutions to perform the PMX crossover. Then, the two solutions undergo a permutation swap mutation, with probability 𝑝 𝑚𝑢𝑡 . Only the best solution 𝑥 𝑏 among the offspring is considered to undergo the injection step, since it is a costly step. The injection is performed with probability 𝑝 𝑖𝑛 𝑗 . Here we distinguish between two possible strategies leading to two hybridization models. The first one, called 𝐻 𝑖𝑛𝑡 -MOEA/D, uses an intensification strategy for the injection, to focus on a specific part of the objective space. In this case, 𝑥 𝑏 receives the knowledge contained in the learning group G 𝑖 that is to say the learning group associated to its subproblem. The second one, called 𝐻 𝑑𝑖𝑣 -MOEA/D, uses a diversification strategy, to favour a larger exploration of the space. This time 𝑥 𝑏 receives the knowledge contained in a learning group, randomly chosen among all the existing groups. Finally, once the injection produced a solution 𝑥 ′ , the extraction step occurs with a probability 𝑝 𝑒𝑥𝑡 . The knowledge of 𝑥 ′ is extracted and is added to the learning groups of the neighboring subproblems.

APPLICATION 4.1 Multi-Objective VRPTW

The MO-VRPTW [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF] considered in this work is defined on a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = {0, 1, . . . , 𝑁 } is the set of vertices and 𝐸 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉 } is the set of arcs. It is possible to travel from 𝑖 to 𝑗, incurring in a travel cost 𝑐 𝑖 𝑗 and a travel time 𝑡 𝑖 𝑗 . Vertex 0 represents the depot where a fleet of 𝐾 identical vehicles with limited capacity Q is based. Vertices 1, . . . , 𝑁 represent the customers to be served, each one having a demand 𝑞 𝑖 and a time window [𝑎 𝑖 , 𝑏 𝑖 ] during which service must occur. Vehicles may arrive before 𝑎 𝑖 . In that case the driver has to wait until 𝑎 𝑖 to accomplish service incurring in a waiting time. Arriving later than 𝑏 𝑖 is not allowed. It is assumed that all inputs are nonnegative integers. The MO-VRPTW calls for the determination of at most 𝐾 routes such that the travelling cost and waiting time are simultaneously minimized and the following conditions are satisfied: (a) each route starts and ends at the depot, (b) each customer is visited by exactly one route, (c) the sum of the demands of the customers in any route does not exceed Q, (d) time windows are respected. The solutions of this problem are represented as permutations of customers, and are evaluated with the split algorithm [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem[END_REF].

A bi-objective VRPTW, where the number of vehicles is minimized instead of the waiting time has been studied by Ghoseiri et al. [START_REF] Ghoseiri | Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm[END_REF]. To solve the problem they proposed a genetic algorithm.

Pattern Injection Local Search

In the field of routing problems, a learning mechanism called Pattern Injection Local Search (PILS), has recently been introduced by Arnold et al. [START_REF] Arnold | PILS: Exploring high-order neighborhoods by pattern mining and injection[END_REF]. This mechanism is an optimization strategy that uses frequent patterns from high-quality solutions, to explore high-order local-search neighborhoods. PILS has been hybridized with the Hybrid Genetic Search (HGS) of Vidal et al. [START_REF] Vidal | A unified solution framework for multi-attribute vehicle routing problems[END_REF] and the Guided Local Search (GLS) of Arnold and Sörensen [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem[END_REF] to solve the Capacitated Vehicle Routing Problem (CVRP) with good results.

PILS extracts patterns (i.e. sequences of customers) from solutions. The patterns have a size between 2 and 𝑀𝑎𝑥𝑆𝑖𝑧𝑒, a user defined parameter. For the injection step the reader is refered to the article of Arnold et al. [START_REF] Arnold | PILS: Exploring high-order neighborhoods by pattern mining and injection[END_REF]. This step brings diversity to the solution by injecting some frequent patterns learned. Note that, there is a minor change with the mechanism described in the article: reversed patterns are not considered because of time windows.

EXPERIMENTS 5.1 Experimental Protocol

5.1.1 Experimental Setup. We compare three algorithms: MOEA/D, as presented in Section 2.2, and the two hybrid-MOEA/Ds described in Section 3.2: 𝐻 𝑖𝑛𝑡 -MOEA/D and 𝐻 𝑑𝑖𝑣 -MOEA/D. The knowledge is extracted and injected as presented in Section 4.2.

We use the Solomon's instances [START_REF] Marius | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF] to evaluate the performances of MOEA/D and the two hybrid-MOEA/Ds. These instances were designed for the single-objective VRPTW, but they are also used to evaluate the performances of multi-objective algorithms [START_REF] Ghoseiri | Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm[END_REF]. The benchmark contains 56 instances divided into three categories according to the type of generation used, either 𝑅, 𝐶 or 𝑅𝐶. The generation 𝑅 randomly places customers in the grid, while the generation 𝐶 tends to create clusters of customers. Each category is itself divided into two classes 1𝑋𝑋 or 2𝑋𝑋 according to the width of time windows. Instances of class 1𝑋𝑋 have wider time windows than instances of class 2𝑋𝑋 , meaning that instances 2𝑋𝑋 are more constrained. The generation 𝑅𝐶 mixes both generations. There exists instances of size 25, 50 and 100, however instances of size 25 and 50 are restrictions of instances of size 100. We do not consider instances of size 25 since they are too small.

In order to be fair, we tune the three algorithms with irace [START_REF] López-Ibáñez | The irace package: Iterated racing for automatic algorithm configuration[END_REF] to evaluate and compare the performances of their best version. However, the instances used for tuning have to be different from the ones used to evaluate the algorithms. Thus, we generated 96 new instances of sizes 50 and 100, by using the method described by Uchoa et al. [START_REF] Uchoa | New benchmark instances for the capacitated vehicle routing problem[END_REF], to mimic the Solomon's instances.

We run the experiments on two computers "Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz", with 24 cores each, in parallel (using slurm). The implementation of the hybrid-MOEA/Ds has been realized with the jMetalPy framework [START_REF] Benitez-Hidalgo | jMetalPy: A Python framework for multi-objective optimization with metaheuristics[END_REF] 2: Best gaps (%) obtained for the total cost objective, relatively to the best-known on instances of size 100.

5.1.2 Performance Assessment. The parameters obtained are available as supplementary material. Now, the performances of each algorithm are compared over the Solomon's instances. The three algorithms share the same maximum running time allocated, set to 6 × 𝑁 seconds, allowing hypervolume-convergence for all. The algorithms are executed 30 times on each instance. The 𝑘-th run of an instance is executed with the seed 10 × (𝑘 -1), so that, all algorithms are compared with the same seeds.

Once all the tests done, the Pareto fronts are normalized according to the best and worst objectives obtained. They are compared with the hypervolume metric, since we do not know the true Pareto fronts of the instances. The reference point used to compute the hypervolume is (1.001, 1.001). The results are reported in Section 5.2.

Results and Discussion

Table 1 shows the average gain obtained on instances of size 100, with the hybrid-MOEA/Ds, when MOEA/D is the reference algorithm. Similar results are obtained on instances of size 50. The detailed results are available as supplementary material. We can see that there is always a mean gain of at least 47.4%. Meaning that, 𝐻 𝑖𝑛𝑡 and 𝐻 𝑑𝑖𝑣 return much better hypervolumes than MOEA/D. The biggest gains are obtained on clustered instances.

If we compare 𝐻 𝑖𝑛𝑡 and 𝐻 𝑑𝑖𝑣 variants, one can see that they have a similar gain on the same instances. The pairwise Wilcoxon tests, showed that both algorithms are equivalent on most instances. But 𝐻 𝑑𝑖𝑣 returns always slightly better results than 𝐻 𝑖𝑛𝑡 , illustrating the importance of bringing diversity during the injection step. The Table 2 shows the best gaps obtained between the best-known and our solutions, relatively to the cost objective. The best-known are taken from vrp-rep and, if the optimal is not available, from [START_REF] Ghoseiri | Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm[END_REF]. More detailed tables are available as supplementary material. This table highlights the performances of the learning mechanism, and more particularly of the 𝐻 𝑑𝑖𝑣 variant. In particular 𝐻 𝑑𝑖𝑣 , returns the optimal cost on 𝐶 instances, and it is able to return new solutions on 𝑅𝐶2 instances. Note that, few optimal solutions are available for these instances.

CONCLUSION AND PERSPECTIVES

In this paper we presented an enhanced version of MOEA/D using a learning mechanism. This learning mechanism creates learning groups to gather the knowledge of quality-close solutions. Through our experiments, we showed that the hybridization works successfully on a bi-objective routing problem with time windows, meaning that it is worth to spend time for learning. Moreover the variant 𝐻 𝑑𝑖𝑣 -MOEA/D, is able to produce competitive results on some instances, meaning that bringing diversity during the search is a crucial step. However, some results obtained have a high gap (> 1%) with the best-known, meaning that the algorithm can be further improved.

As future works, we would replace the mutation operator with a local search, which should globally help MOEA/D, but it may also improve the quality of the learning, since local optima tend to provide more reliable sequences [START_REF] Arnold | PILS: Exploring high-order neighborhoods by pattern mining and injection[END_REF].
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 1 Figure 1: The MOEA/D learning framework.
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 1 . Average gain (%) obtained with both hybrids with respect to HVs returned by MOEA/D on instances of size 100.

	Variant R1	R2	RC1 RC2 C1	C2
	𝐻 𝑖𝑛𝑡	51.8 69.6 47.4 73.5 75.7 114.8
	𝐻 𝑑𝑖𝑣	52.6 72.2 47.7 75.5 75.9 115.0
	Variant	R1	R2 RC1 RC2 C1	C2
	MOEA/D 31.1 68.5 35.8 79.2 96.1 182.9
	𝐻 𝑖𝑛𝑡	2.1	8.2	2.6	6.0	0.1	0.4
	𝐻 𝑑𝑖𝑣	1.6 4.3 2.6	3.6 0.0	0.0
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