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ABSTRACT
Integrating machine learning (ML) techniques into metaheuristics
is an efficient approach in single-objective optimization. Indeed,
high-quality solutions often contain relevant knowledge, that can
be used to guide the heuristic towards promising areas. In multi-
objective optimization, the quality of solutions is evaluated accord-
ing to multiple criteria that are generally conflicting. Therefore, the
ML techniques designed for single-objective optimization can not
be directly adapted for multi-objective optimization. In this paper,
we propose to enhance the Multi-Objective Evolutionary Algo-
rithm based on Decomposition (MOEA/D) with a clustering-based
learning mechanism. To be more precise, solutions are grouped
regarding a metric based on their quality on each criterion, and
the knowledge from the solutions of the same group is merged.
Experiments are conducted on the multi-objective vehicle routing
problem with time windows. The results show that MOEA/D with
learning outperforms the original version.
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1 INTRODUCTION
Machine Learning (ML) has become incredibly popular in the past
few years, especially in the field of optimization [13]. Indeed, it is
known that optimization and learning have a good synergy [7]. In
most cases, the learning consists of an extraction step, where the
mechanism discovers knowledge from previously generated solu-
tions, and an injection step, which exploits the extracted knowledge
to guide the algorithm towards promising areas. The knowledge can
take different forms, like parts of the structure of the solutions. The
design of efficient learning tools is an active research domain [3].

Due to the success of the integration of learning into single-
objective problems, it seems natural to consider the integration
of ML into multi-objective combinatorial optimization problems
(MoCOPs) [6]. Such problems are frequent in the industry where
decision-makers are interested in optimizing several conflicting ob-
jectives at the same time. The objectives can be of different nature
(economical, ecological, ethical), and allow to consider the problem
from different points of view. Concerning the design of learning
tools for MoCOPs, the literature is parse. In a MoCOP, the quality of
solutions is evaluated according to multiple criteria that are gener-
ally conflicting. Such an evaluation prevents the definition of a total
order on solutions, meaning that some solutions are incomparable.
Therefore, most of ML techniques designed for single-objective
problems can not directly be used for MoCOPs.

In this article, we propose a hybridization between MOEA/D and
a clustering-based learning mechanism to solve a bi-objective Vehi-
cle Routing Problem with Time Windows (VRPTW) [14]. Indeed,
when solutions can be represented as permutations, like here, it is
possible to learn sequences of elements, called patterns, inside the
permutation. MOEA/D [18] is a widely studied algorithm [17]. The
learning mechanism extracts the knowledge from close solutions
in the objective space, by creating groups of solutions.

To summarize, the contribution of this paper is the design of a
learning MOEA/D that is efficient to solve a bi-objective VRPTW.

The remaining of the paper is organised as follows. In Section 2
multi-objective problems are briefly introduced, and MOEA/D is
presented. Section 3 focuses on learning and optimization, and
our learning variant of MOEA/D. Section 4 describes the problem
studied and the knowledge extracted. Section 5 presents the exper-
imental protocol and then gives and discusses the experimental
results. Finally, Section 6 concludes and presents perspectives for
this work.

https://doi.org/10.1145/3520304.3528909
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2 MULTI-OBJECTIVE OPTIMIZATION
2.1 Multi-Objective Problems
Many real-world problems may be modeled by two or more objec-
tives (often conflicting), that should be simultaneously optimized.
Considering logistic problems, for instance, many challenges have
to be tackled (economical and environmental). In the following
MoCOPs are briefly presented. The reader may refer to [6] for a
complete formalization of MoCOPs.

The functions 𝑓1, . . . , 𝑓𝑛 refer to the 𝑛 ≥ 2 objectives that have
to be optimized. For each feasible solution 𝑥 , there exists a point in
the objective space, noted Z, defined by 𝐹 (𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥)).

It is possible to compare some solutions through a dominance
criterion. A solution 𝑥 dominates a solution 𝑦 (noted 𝑥 < 𝑦), in a
minimization context, if and only if for all 𝑖 ∈ [1 . . . 𝑛], 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑦)
and there exists 𝑗 ∈ [1 . . . 𝑛] such that 𝑓𝑗 (𝑥) < 𝑓𝑗 (𝑦). However, this
relation only defines a partial order on the solution set.

Then a set of non dominated solutions is called a Pareto front.
A feasible solution 𝑥∗ is called Pareto optimal if and only if there
does not exists any solution 𝑥 such that 𝑥 dominates 𝑥∗. Resolving
a MoCOP involves finding all the Pareto optimal solutions which
form the Pareto optimal set. The true Pareto front of the problem is
obtained by plotting the objective function values corresponding
to the solutions in the Pareto optimal set.

Over the years, manymetaheuristics with local search techniques
or using evolutionary algorithms [5] have been designed to solve
multi-objective problems.

Moreover, many tools have been developed to assess and com-
pare the performance of multi-objective algorithms. In this paper
we use the unary hypervolume (HV) [19], defined relatively to a
reference point 𝑍𝑟𝑒 𝑓 . This indicator evaluates accuracy, diversity
and cardinality of the front, and it is the only indicator with this
capability. It reflects the volume in the objective function space cov-
ered by the members of a non dominated set of solutions. Hence,
the larger the hypervolume, the better the set of solutions. This
metric can be computed without knowing the true Pareto front of
the instance, that is interesting for our study.

2.2 MOEA/D
MOEA/D [18], is a genetic algorithm that approximates the Pareto
front by decomposing the multi-objective problem into several
scalar objective subproblems. Each iteration of the algorithm opti-
mizes one of the subproblems, by applying a genetic step composed
of a crossover and a mutation operator.

Here, we consider scalar problems obtained with a weighted
sum of the objectives. More precisely a convex combination of the
𝑛 objectives is defined by attributing a weight 𝑤𝑖 ∈ [0, 1] to the
objective 𝑓𝑖 such that

∑𝑛
𝑖=1𝑤𝑖 = 1. Then the fitness of a solution

is the following quantity: 𝑔(𝑥 |𝑤) = ∑𝑛
𝑖=1𝑤𝑖 · 𝑓𝑖 (𝑥). The solution

which minimizes this fitness is Pareto optimal [10], regardless of
the structure of the true Pareto front. Thus to generate different
Pareto optimal solutions one can use 𝑀 different weight vectors
𝑤1, . . . ,𝑤𝑀 in the expression of the fitness.

MOEA/D minimizes the 𝑖-th subproblem, by using the solutions
of its closest neighbors. Indeed, the neighborhood, of size𝑚, of a

weight vector 𝑤𝑖 is defined as the set of its𝑚 closest (for the eu-
clidean distance) weight vectors in {𝑤1, . . . ,𝑤𝑀 }. Then the neigh-
borhood N𝑚 (𝑖) of the 𝑖-th subproblem simply consists of the 𝑚
subproblems defined with a weight vector belonging to the neigh-
borhood of𝑤𝑖 . In the following we consider a uniform distribution
on the weight vectors, and we assume that is enough to obtain
diverse subproblems.

During the execution of MOEA/D, only the best solution found
is kept for each subproblem. When a subproblem 𝑖 is optimized, the
genetic step generates a new solution. The crossover occurs with
probability 𝑝𝑐𝑟𝑜 and the mutation with probability 𝑝𝑚𝑢𝑡 . Note that,
the crossover is realized between two solutions from subproblems of
N𝑚 (𝑖). Moreover an external archive is used to store nondominated
solutions found during the search. These solutions are returned
once the termination criteria is reached.

Since the algorithm is applied on a problem where solutions
are permutations, the crossover applied is the partially mapped
crossover (PMX), and the mutation is a permutation swap, that
exchanges two elements of a permutation.

3 INTEGRATING LEARNING INTO MOEA/D
3.1 Learning from Solutions in Optimization
Hybridizing machine learning methods and metaheuristics is quite
common to solve combinatorial problems. Indeed the survey [13]
reviews different kind of hybridizations and proposes to classify
the different methods according to where the hybridization is per-
formed: at a problem-level, at a low-level or at a high-level. When
learning is integrated at a low-level, the knowledge is extracted
from solutions of the problem (e.g. to learn their structure). This is
the kind of integration we are interested in. In particular, many ML
methods can be used, and here we investigate clustering, to group
the solutions, and association rules (patterns to be more precise), to
learn from solutions.

Moreover the integration can be realized either online or of-
fline [7]. The learning is said online when it uses resources gener-
ated during the execution. Otherwise the learning is said offline.

Most of the learning mechanisms are composed of an extraction
step, where something is learned, and an injection step, which uses
the extracted knowledge to find new promising solutions. The fol-
lowing section, presents the integration of learning into MOEA/D.

3.2 Learning within MOEA/D and Variants
We base our learning mechanism for MOEA/D on the following
fact: close solutions in the objective space may have the same struc-
ture. Note that, the closeness between two solutions is evaluated
according to their objective vector with the euclidean distance. That
is why, gathering the knowledge from neighboring solutions in the
objective space is relevant. To that aim, we introduce the notion of
learning groups.

Each learning group G is associated to one of the subproblems
defined in MOEA/D. More precisely G𝑖 is associated to the subprob-
lem of weight vector𝑤𝑖 . Thus, there are as many learning groups
as subproblems. Moreover, since the neighborhood of each subprob-
lem is already defined in MOEA/D, we keep the same neighborhood
for the learning groups. In other words, if each subproblem has
𝑚 neighbors, then each solution will belong to𝑚 learning groups.
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Figure 1: The MOEA/D learning framework.

With this construction, our will is that each learning group focuses
on a part of the objective space. The Figure 1 shows the main steps
of the algorithm, and the pseudo-code is available as supplementary
material. We present now, the main steps of the algorithm.

MOEA/D is initialized, with a uniform set of weight vectors,
and an initial population of randomly generated solutions. Initially,
each learning group is empty. Then the algorithm iterates over the
subproblems defined. Suppose that the 𝑖-th subproblem is optimized.
The crossover is the first operator applied, with probability 𝑝𝑐𝑟𝑜 .
Two neighboring subproblems are selected that give two solutions
to perform the PMX crossover. Then, the two solutions undergo
a permutation swap mutation, with probability 𝑝𝑚𝑢𝑡 . Only the
best solution 𝑥𝑏 among the offspring is considered to undergo the
injection step, since it is a costly step. The injection is performed
with probability 𝑝𝑖𝑛 𝑗 . Here we distinguish between two possible
strategies leading to two hybridization models. The first one, called
𝐻𝑖𝑛𝑡 -MOEA/D, uses an intensification strategy for the injection,
to focus on a specific part of the objective space. In this case, 𝑥𝑏
receives the knowledge contained in the learning group G𝑖 that is
to say the learning group associated to its own subproblem. The
second one, called 𝐻𝑑𝑖𝑣-MOEA/D, uses a diversification strategy,
to favour a larger exploration of the space. This time 𝑥𝑏 receives
the knowledge contained in a learning group, randomly chosen
among all the existing groups. Finally, once the injection produced
a solution 𝑥 ′, the extraction step occurs with a probability 𝑝𝑒𝑥𝑡 . The
knowledge of 𝑥 ′ is extracted and is added to the learning groups of
the neighboring subproblems.

4 APPLICATION
4.1 Multi-Objective VRPTW
The MO-VRPTW [14] considered in this work is defined on a graph
𝐺 = (𝑉 , 𝐸), where 𝑉 = {0, 1, . . . , 𝑁 } is the set of vertices and 𝐸 =

{(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉 } is the set of arcs. It is possible to travel from 𝑖 to 𝑗 ,
incurring in a travel cost 𝑐𝑖 𝑗 and a travel time 𝑡𝑖 𝑗 . Vertex 0 represents
the depot where a fleet of 𝐾 identical vehicles with limited capacity
Q is based. Vertices 1, . . . , 𝑁 represent the customers to be served,
each one having a demand 𝑞𝑖 and a time window [𝑎𝑖 , 𝑏𝑖 ] during
which service must occur. Vehicles may arrive before 𝑎𝑖 . In that
case the driver has to wait until 𝑎𝑖 to accomplish service incurring
in a waiting time. Arriving later than 𝑏𝑖 is not allowed. It is assumed
that all inputs are nonnegative integers. The MO-VRPTW calls for
the determination of at most 𝐾 routes such that the travelling cost
and waiting time are simultaneously minimized and the following
conditions are satisfied: (a) each route starts and ends at the depot,
(b) each customer is visited by exactly one route, (c) the sum of

the demands of the customers in any route does not exceed Q,
(d) time windows are respected. The solutions of this problem are
represented as permutations of customers, and are evaluated with
the split algorithm [11].

A bi-objective VRPTW, where the number of vehicles is mini-
mized instead of the waiting time has been studied by Ghoseiri et
al. [8]. To solve the problem they proposed a genetic algorithm.

4.2 Pattern Injection Local Search
In the field of routing problems, a learning mechanism called Pat-
tern Injection Local Search (PILS), has recently been introduced
by Arnold et al. [1]. This mechanism is an optimization strategy
that uses frequent patterns from high-quality solutions, to explore
high-order local-search neighborhoods. PILS has been hybridized
with the Hybrid Genetic Search (HGS) of Vidal et al. [16] and the
Guided Local Search (GLS) of Arnold and Sörensen [2] to solve the
Capacitated Vehicle Routing Problem (CVRP) with good results.

PILS extracts patterns (i.e. sequences of customers) from solu-
tions. The patterns have a size between 2 and 𝑀𝑎𝑥𝑆𝑖𝑧𝑒 , a user
defined parameter. For the injection step the reader is refered to the
article of Arnold et al. [1]. This step brings diversity to the solution
by injecting some frequent patterns learned. Note that, there is a
minor change with the mechanism described in the article: reversed
patterns are not considered because of time windows.

5 EXPERIMENTS
5.1 Experimental Protocol
5.1.1 Experimental Setup. We compare three algorithms: MOEA/D,
as presented in Section 2.2, and the two hybrid-MOEA/Ds described
in Section 3.2: 𝐻𝑖𝑛𝑡 -MOEA/D and 𝐻𝑑𝑖𝑣-MOEA/D. The knowledge
is extracted and injected as presented in Section 4.2.

We use the Solomon’s instances [12] to evaluate the perfor-
mances of MOEA/D and the two hybrid-MOEA/Ds. These instances
were designed for the single-objective VRPTW, but they are also
used to evaluate the performances of multi-objective algorithms [8].
The benchmark contains 56 instances divided into three categories
according to the type of generation used, either 𝑅, 𝐶 or 𝑅𝐶 . The
generation 𝑅 randomly places customers in the grid, while the gen-
eration 𝐶 tends to create clusters of customers. Each category is
itself divided into two classes 1𝑋𝑋 or 2𝑋𝑋 according to the width
of time windows. Instances of class 1𝑋𝑋 have wider time windows
than instances of class 2𝑋𝑋 , meaning that instances 2𝑋𝑋 are more
constrained. The generation 𝑅𝐶 mixes both generations. There ex-
ists instances of size 25, 50 and 100, however instances of size 25
and 50 are restrictions of instances of size 100. We do not consider
instances of size 25 since they are too small.

In order to be fair, we tune the three algorithms with irace [9]
to evaluate and compare the performances of their best version.
However, the instances used for tuning have to be different from
the ones used to evaluate the algorithms. Thus, we generated 96
new instances of sizes 50 and 100, by using the method described
by Uchoa et al. [15], to mimic the Solomon’s instances.

We run the experiments on two computers “Intel(R) Xeon(R)
CPU E5-2687W v4 @ 3.00GHz”, with 24 cores each, in parallel
(using slurm). The implementation of the hybrid-MOEA/Ds has
been realized with the jMetalPy framework [4].
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Variant R1 R2 RC1 RC2 C1 C2
𝐻𝑖𝑛𝑡 51.8 69.6 47.4 73.5 75.7 114.8
𝐻𝑑𝑖𝑣 52.6 72.2 47.7 75.5 75.9 115.0

Table 1: Average gain (%) obtained with both hybrids with
respect to HVs returned by MOEA/D on instances of size 100.

Variant R1 R2 RC1 RC2 C1 C2
MOEA/D 31.1 68.5 35.8 79.2 96.1 182.9
𝐻𝑖𝑛𝑡 2.1 8.2 2.6 6.0 0.1 0.4
𝐻𝑑𝑖𝑣 1.6 4.3 2.6 3.6 0.0 0.0

Table 2: Best gaps (%) obtained for the total cost objective,
relatively to the best-known on instances of size 100.

5.1.2 Performance Assessment. The parameters obtained are avail-
able as supplementary material. Now, the performances of each
algorithm are compared over the Solomon’s instances. The three
algorithms share the same maximum running time allocated, set
to 6 × 𝑁 seconds, allowing hypervolume-convergence for all. The
algorithms are executed 30 times on each instance. The 𝑘-th run
of an instance is executed with the seed 10 × (𝑘 − 1), so that, all
algorithms are compared with the same seeds.

Once all the tests done, the Pareto fronts are normalized accord-
ing to the best and worst objectives obtained. They are compared
with the hypervolume metric, since we do not know the true Pareto
fronts of the instances. The reference point used to compute the hy-
pervolume is (1.001, 1.001). The results are reported in Section 5.2.

5.2 Results and Discussion
Table 1 shows the average gain obtained on instances of size 100,
with the hybrid-MOEA/Ds, when MOEA/D is the reference algo-
rithm. Similar results are obtained on instances of size 50. The
detailed results are available as supplementary material. We can
see that there is always a mean gain of at least 47.4%. Meaning that,
𝐻𝑖𝑛𝑡 and 𝐻𝑑𝑖𝑣 return much better hypervolumes than MOEA/D.
The biggest gains are obtained on clustered instances.

If we compare𝐻𝑖𝑛𝑡 and𝐻𝑑𝑖𝑣 variants, one can see that they have
a similar gain on the same instances. The pairwise Wilcoxon tests,
showed that both algorithms are equivalent on most instances. But
𝐻𝑑𝑖𝑣 returns always slightly better results than 𝐻𝑖𝑛𝑡 , illustrating
the importance of bringing diversity during the injection step. The
Table 2 shows the best gaps obtained between the best-known and
our solutions, relatively to the cost objective. The best-known are
taken from vrp-rep and, if the optimal is not available, from [8].
More detailed tables are available as supplementary material. This
table highlights the performances of the learning mechanism, and
more particularly of the𝐻𝑑𝑖𝑣 variant. In particular𝐻𝑑𝑖𝑣 , returns the
optimal cost on 𝐶 instances, and it is able to return new solutions
on 𝑅𝐶2 instances. Note that, few optimal solutions are available for
these instances.

6 CONCLUSION AND PERSPECTIVES
In this paper we presented an enhanced version of MOEA/D using
a learning mechanism. This learning mechanism creates learning

groups to gather the knowledge of quality-close solutions. Through
our experiments, we showed that the hybridization works suc-
cessfully on a bi-objective routing problem with time windows,
meaning that it is worth to spend time for learning. Moreover the
variant 𝐻𝑑𝑖𝑣-MOEA/D, is able to produce competitive results on
some instances, meaning that bringing diversity during the search
is a crucial step. However, some results obtained have a high gap
(> 1%) with the best-known, meaning that the algorithm can be
further improved.

As future works, we would replace the mutation operator with
a local search, which should globally help MOEA/D, but it may
also improve the quality of the learning, since local optima tend to
provide more reliable sequences [1].
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