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Abstract 

Background Multiple factors shape the temporal dynamics of the COVID‑19 pandemic. Quantifying their relative 
contributions is key to guide future control strategies. Our objective was to disentangle the individual effects of 
non‑pharmaceutical interventions (NPIs), weather, vaccination, and variants of concern (VOC) on local SARS‑CoV‑2 
transmission.

Methods We developed a log‑linear model for the weekly reproduction number (R) of hospital admissions in 92 
French metropolitan departments. We leveraged (i) the homogeneity in data collection and NPI definitions across 
departments, (ii) the spatial heterogeneity in the timing of NPIs, and (iii) an extensive observation period (14 months) 
covering different weather conditions, VOC proportions, and vaccine coverage levels.

Findings Three lockdowns reduced R by 72.7% (95% CI 71.3–74.1), 70.4% (69.2–71.6) and 60.7% (56.4–64.5), respec‑
tively. Curfews implemented at 6/7 pm and 8/9 pm reduced R by 34.3% (27.9–40.2) and 18.9% (12.04–25.3), respec‑
tively. School closures reduced R by only 4.9% (2.0–7.8). We estimated that vaccination of the entire population 
would have reduced R by 71.7% (56.4–81.6), whereas the emergence of VOC (mainly Alpha during the study period) 
increased transmission by 44.6% (36.1–53.6) compared with the historical variant. Winter weather conditions (lower 
temperature and absolute humidity) increased R by 42.2% (37.3–47.3) compared to summer weather conditions. 
Additionally, we explored counterfactual scenarios (absence of VOC or vaccination) to assess their impact on hospital 
admissions.

Interpretation Our study demonstrates the strong effectiveness of NPIs and vaccination and quantifies the role of 
weather while adjusting for other confounders. It highlights the importance of retrospective evaluation of interven‑
tions to inform future decision‑making.
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Introduction
Since the beginning of the coronavirus disease 2019 
(COVID-19) pandemic, several factors have contrib-
uted to the transmission dynamics of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) in time 
and space. First, many countries around the world have 
implemented non-pharmaceutical interventions (NPIs), 
such as lockdowns, curfews, and school closures [1]. 
Before the introduction of vaccines, NPIs were the pri-
mary means to control disease spread. By the end of 2020 
onwards, mass vaccination campaigns have helped miti-
gate the transmission of SARS-CoV-2 [2], while the con-
current emergence of more transmissible and immune 
escape variants of concern (VOC) has fostered virus 
spread [3]. Finally, the weather may also have modu-
lated disease transmission [4]. Quantifying the relative 
contributions of each of these factors is key to better 
anticipate epidemic trends and guide future control strat-
egies. However, this is challenging due to potential con-
founding, interaction effects, and a lack of identifiability 
of single effects when interventions or other factors are 
concomitant.

Several studies have investigated the effectiveness of 
NPIs at reducing SARS-CoV-2 transmission. The vast 
majority consisted of meta-analyses that combined data 
from multiple countries [1, 5–10]. However, conclu-
sions drawn from such international comparisons may be 
affected by differences in local settings, data quality, NPI 
definitions, and population adherence to NPIs. In addi-
tion, most of these studies have only estimated the effect 
of NPIs during the first pandemic wave. Only a few have 
examined how the magnitude of NPI effects may have 
changed over time and in subsequent COVID-19 waves 
[11, 12]. In particular, the effect of NPIs that were only 
applied later in the pandemic, such as curfews, is still 
unclear. In addition to NPIs, the influence of weather 
on disease spread has been much debated [13, 14]. Pre-
vious statistical studies investigating the role of weather 
variables generally relied on single estimates of the repro-
duction number R, measured at different locations [4, 
15–17] and early in the pandemic only. Thus, although 
these studies were timely and informative, they only cov-
ered a limited time period, when weather was likely less 
important to disease spread than governmental restric-
tions [18]. Importantly, only a limited number of meteor-
ological studies controlled for other factors such as NPIs 
[16, 19, 20]; yet, not adjusting for sources of confounding 
may lead to spurious associations between weather and 
transmission. Now that data from a longer timespan are 
available, the role of weather conditions can be better 
elucidated.

To disentangle the effects of NPIs, weather, vaccina-
tion, and VOC on local SARS-CoV-2 transmission, we 

developed a statistical model to explain the time-var-
ying reproduction number R reconstructed from the 
dynamics of hospital admissions, at the departmental 
level in metropolitan France, from March, 2020 to May, 
2021. First, we leveraged the homogeneity in data col-
lection and NPI definitions across departments. Indeed, 
in France, the number of patients hospitalized with 
COVID-19 was monitored through a single surveillance 
system implemented in all departments. In addition, 
most of the decisions on NPI implementation were made 
in a centralized manner. Such a standardized approach 
enabled harmonization of both data collection processes 
and NPI definition across departments, which benefited 
our study. Second, we leveraged spatial heterogeneity in 
the timing of NPI implementation. For example, lock-
downs, curfews, and school closures were not systemati-
cally implemented at the same time in all departments, 
depending on the phase of the pandemic. This pattern in 
the timing of NPIs allowed us to circumvent the difficulty 
of assessing the impact of NPIs arising when measures 
are applied simultaneously across locations. Third, our 
study spanned a long observation period (14  months) 
that included varying weather conditions, VOC propor-
tions, and vaccine coverage levels. This extensive study 
period covered three pandemic waves, thereby allowing 
us to examine the impact of successive NPIs, vaccine dis-
tribution, and the emergence of VOC. Capturing a full 
seasonal cycle allowed us to quantify the role of weather.

Materials and methods
COVID‑19 data
Hospital data were obtained from the SI-VIC database, 
which is the national inpatient surveillance system used 
during the pandemic. This database is maintained by the 
ANS (Agence du Numérique en Santé) and provides real-
time data on COVID-19 patients hospitalized in French 
public and private hospitals. All cases are either biologi-
cally confirmed or present with a PET scan image highly 
suggestive of SARS-CoV-2 infection. New daily hospital 
admissions were defined as the incremental number of 
patients admitted to a general ward or intensive care unit, 
indexed by date of admission (rather than date of report-
ing). Data were aggregated by department (administrative 
unit), based on hospital location. Of note, metropolitan 
France consists of 96 departments, with a median popu-
lation size of 600,000 inhabitants.

Covariates
We first selected covariates on the basis of their causal 
plausibility and gathered data on NPIs, VOC proportion, 
vaccine coverage, weather, mobility and demography.

To define covariates relative to NPIs, we collected data 
on the timeline of curfews, lockdowns, reopening periods 
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following the lockdowns and during which restrictions 
were progressively lifted, as well as periods of more mod-
erate restrictions (between any two lockdowns), using a 
combination of governmental websites, press articles, 
and Wikipedia pages. We also collected data on pan-
demic-related school closures (full or partial) and regu-
lar school holidays. Official dates were extracted from 
the Ministry of Education website (www. educa tion. gouv. 
fr/ calen drier- scola ire- 100148). We measured an overall 
effect of school closures (whether pandemic-related or 
regular), with separate effects for summer and Christmas 
holidays.

The time-varying proportion of VOC was estimated 
using SIDEP (Système d’Information de Dépistage Popu-
lationnel—Information system for population-based test-
ing) database, which is the national surveillance system 
describing RT-PCR and antigen test results arising from 
all private and public French laboratories. Test results 
are reported by date of nasopharyngeal swab and include 
patient information such as residential zip code. Aggre-
gated data are publicly available (https:// www. data. gouv. 
fr/ fr/ datas ets/ donne es- de- labor atoir es- pour- le- depis 
tage- indic ateurs- sur- les- varia nts/). The proportion of 
VOC was assessed among positive RT-PCR or antigen 
test results, using RT-PCR screening kits. The three main 
VOC circulating during the study period were Alpha, 
Beta, and Gamma. Data on variants were available from 
February 15, 2021 onwards. Before this date, the pro-
portion of VOC was imputed by fitting a separate logis-
tic regression model for each department. We assumed 
absence of VOC before December 15, 2020 (Additional 
file 1: Fig. S1).

Vaccination data were obtained from the VAC-SI data-
base, the national information system developed by the 
French Health Insurance to monitor the implementa-
tion of vaccination campaigns. Data are publicly available 
(www. data. gouv. fr/ fr/ datas ets/ donne es- relat ives- aux- 
perso nnes- vacci nees- contre- la- covid- 19-1/) and include 
both daily first-dose and full vaccine coverage time series, 
stratified by age group, and department, since the start of 
vaccine distribution in December 2020.

Weather data—including temperature, absolute humid-
ity, and relative humidity– were obtained from Météo 
France/PREDICT Services for 112 weather stations 
nationally. We also included the IPTCC index (Index 
PREDICT de transmissivité climatique de la COVID-19) 
which characterizes weather conditions favoring SARS-
CoV-2 transmission [21]. Data were averaged by depart-
ment when necessary (82% of departments contain only 
one station).

Mobility data were obtained from Google mobil-
ity reports (www. google. com/ covid 19/ mobil ity/). They 
describe the change in time spent at points of interest 

compared to a five-week baseline period (Jan 3–Feb 6, 
2020). The six points of interest are: residential (time 
spent at home), workplaces, grocery and pharmacy, retail 
and recreation, parks, and transit stations. Data were 
available by department.

Finally, we included demographic data by department 
(population count and density), as obtained from the 
National Institute of Statistics and Economic Studies 
(https:// www. insee. fr/ fr/ stati stiqu es/ 49897 53? somma 
ire= 49897 61).

Statistical analyses
We analysed data collected from week 11–2020 (March 
9–15, 2020) to week 20–2021 (May 17–23, 2021), in 92 
of the 96 departments of metropolitan France (Fig. 1A). 
Four departments (Maine-et-Loire, Manche, Corse-du-
Sud, and Haute-Corse) were excluded due to missing 
covariates. To remove random noise and weekend effects, 
daily hospital admission time series were smoothed using 
local polynomial regression (Fig. 1B). Using the package 
EpiEstim of the R software, we computed the reproduc-
tion number R on the smoothed series of each depart-
ment, over seven-day rolling windows. The reproduction 
number is the average number of secondary cases caused 
by an infected individual. We used a gamma distribu-
tion with a mean of 7  days and a standard deviation of 
5.2 days for the generation time [22].

We developed a log-linear mixed-effects model for the 
reproduction number Rij in department i in week j:

where α is an intercept, Xijk are k covariates, βk are the 
associated regression coefficients (fixed effects), δi  are 
department-level random effects following a Gaussian 
distribution, and εij is a Gaussian error term. We per-
formed the analysis on a weekly scale to reduce tempo-
ral autocorrelation. Covariates with daily granularity 
were averaged by week. Weather covariates were intro-
duced into the model either linearly or as cubic B-splines. 
Splines with different degrees of freedom were com-
pared using the Akaike Information Criterion (AIC) and 
the model that yielded the lowest AIC was selected. The 
model was fitted by maximum likelihood using the R 
package nlme. Confidence intervals (CI) for the param-
eters were obtained using a normal approximation to the 
distribution of the maximum likelihood estimators. We 
also tested a model with spatially-correlated department-
level random effects, using the R-INLA package to assess 
spatial autocorrelation.

To account for the delayed effects of covariates on 
hospital admission dynamics, we applied an 11-day lag 
(5 days for the incubation period and 6 days for the delay 

log Rij = α + βk · Xijk + δi + εij

http://www.education.gouv.fr/calendrier-scolaire-100148
http://www.education.gouv.fr/calendrier-scolaire-100148
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-variants/
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-variants/
https://www.data.gouv.fr/fr/datasets/donnees-de-laboratoires-pour-le-depistage-indicateurs-sur-les-variants/
http://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-covid-19-1/
http://www.data.gouv.fr/fr/datasets/donnees-relatives-aux-personnes-vaccinees-contre-la-covid-19-1/
http://www.google.com/covid19/mobility/
https://www.insee.fr/fr/statistiques/4989753?sommaire=4989761
https://www.insee.fr/fr/statistiques/4989753?sommaire=4989761
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between symptom onset and hospital admission [22]) 
for NPIs, proportion of the population infected, weather 
conditions, and mobility. For first-dose vaccination, we 
applied an 18-day lag (12 days for the build-up of immu-
nity [23] and 6 days for the delay between symptom onset 
and hospital admission). For full vaccination, we reduced 
this delay to 13  days [23]. For VOC proportion (based 
on testing data), we applied a three-day lag (mean delay 
between test and hospital admission observed in French 
data). In a sensitivity analysis, we tested for additional 
lags (± 2 days) and selected the value leading to the low-
est AIC. The lags were applied to daily data, before covar-
iates were averaged by week.

We first built a baseline model that only included lock-
downs, reopenings and moderate restrictions. Then, we 
incorporated additional covariates using a forward selec-
tion procedure. At each step, the covariate leading to the 
lowest AIC was introduced in the model, until no addi-
tional covariate improved the AIC. Using the AIC allows 
balancing goodness-of-fit and model complexity, by 
penalizing models with a large number of parameters, in 
order to reduce overfitting and instead favor parsimony.

In order to assess the impact of smoothing on the 
robustness of our estimates, we also performed a sen-
sitivity analysis by running the model on the raw (non-
smoothed) hospitalization data.

To further characterize the individual effects of key 
covariates on transmission and hospital admissions, we 
determined the expected R for an average department 
under two distinct counterfactual scenarios: (i) with-
out the effect of vaccination, and (ii) without the effect 
of VOC. We then projected the expected number of new 
hospital admissions at the national level under such sce-
narios, from January 11, 2021 onwards.

Results
COVID‑19 dynamics, NPIs and holidays in France
The median reproduction number R was above 2.5 dur-
ing the first two weeks and oscillated between 0.6 and 
1.9 during the rest of the period (Fig. 1C). Three national 
lockdowns were implemented. The first started on March 
17, 2020 and lasted approximately two months. The 
second and third lockdowns were initiated on Octo-
ber 30, 2020 and April 3, 2021, respectively, and lasted 
one month each (Fig.  1C). The third lockdown started 
one or two weeks earlier in 19 departments than in the 
rest of the country (Fig. 1D). During the first lockdown, 
local movements were restricted to a maximum of 1 km 
around the place of residence for no more than one 
hour, gatherings in public space were forbidden, and 
non-essential shops, parks, bars, and restaurants were 
closed (Additional file  1: Table  S1). During the second 
and third lockdowns, similar measures were imposed, 

but gatherings of up to 6 people were allowed in public 
space and parks remained open. During the third lock-
down, local movements around the place of residence 
were allowed up to 10 km. Each lockdown was followed 
by a reopening phase, during which some (but not all) 
of the restrictions were lifted. For instance, during the 
reopening period that followed the first lockdown, local 
movements were allowed and non-essential shops were 
open, but inter-regional movements were limited to 
100 km around the place of residence and bars and res-
taurants remained closed. Between lockdowns, several 
restrictions were applied, including public events lim-
ited to 5000 persons and partial closing of cultural places 
(Additional file  1: Table  S1). An overnight curfew start-
ing at 9 pm was first implemented in 16 departments (9 
metropolises) on October 17, 2020, followed by 38 other 
departments on October 24, 2020. At the end of the 
reopening period that followed the second lockdown, 
on December 15, 2020, a curfew starting at 8  pm was 
implemented in all departments. This curfew was then 
moved to an earlier start at 6 pm. The measure was first 
applied in 15 departments on January 2, 2021 and in 10 
more departments on January 12, 2021, before extension 
to the whole country on January 16, 2021 (Fig.  1E). On 
March 20, 2021, the national curfew was pushed to 7 pm. 
There were five regular holiday periods: 2 weeks in Feb-
ruary/March, 2 weeks in April, 2 months in July–August, 
2  weeks in November and 2  weeks in December/Janu-
ary (“Christmas holidays”). The timing of holiday periods 
may vary by department (Fig.  1F). In addition to regu-
lar school holidays, schools remained fully or partially 
closed during the first lockdown through June 22, 2020, 
and during the third lockdown (Fig. 1C). However, they 
remained open during the second lockdown.

Multivariable model
In addition to lockdowns, reopenings, and moderate 
restrictions, the final multivariable model included cur-
fews, school closures, first-dose vaccine coverage, pro-
portion of VOC, temperature, and absolute humidity 
(Additional file 1: Fig. S2). The lowest AIC was obtained 
for the following lags: 11 days for NPIs and weather varia-
bles, 20 days for vaccine coverage, and 5 days for the pro-
portion of VOC. The correlation between the observed 
and fitted values of R was relatively high, although the fit-
ted values presented lower variability than the observed 
values: the proportion of the variance explained by the 
full model, including fixed and random effects, reached 
63.8%, as estimated based on the conditional  R2 [24] 
(Additional file  1: Figure S3). Except for the small peak 
observed in September 2020, the average trajectory of R 
was well captured by the model (Fig. 2A).
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School closures, excluding summer and Christmas 
holidays, reduced R by 4.9% (95% CI 2.0–7.8) (Fig.  2B). 
Covariates characterizing summer and Christmas holi-
days were not statistically significant and therefore not 
included in the final model. The earlier overnight cur-
fews started, the stronger their effect on transmission: R 
was reduced by 18.9% (12.0–25.3) for the 8/9 pm curfews 
and by 34.3% (27.9–40.2) for the 6/7  pm curfews. The 
first lockdown reduced R by 72.7% (71.3–74.1). Com-
bined with school closures, it yielded a reduction in R 
of 74.1% during the corresponding time period (non-
linear effect). The second lockdown reduced R by 70.4% 
(69.2–71.6), with schools remaining open. The third 

lockdown reduced R by 60.7% (56.4–64.5). Combined 
with school closures and the nightly curfew starting at 
7  pm, it yielded a reduction in R of 75.4%. Reductions 
in R observed during reopening periods following lock-
downs were similar to those measured during lockdowns. 
The reduction in transmission associated with moder-
ate restrictions ranged from 45.6% to 64.7%, depend-
ing on the time period. Furthermore, we estimate that 
100% first-dose vaccine coverage would have reduced R 
by 71.7% (56.4–81.6). In practice, this effect induced a 
17.6% and 34.1% reduction in transmission in the depart-
ments with the lowest and highest first-dose vaccine cov-
erage at the end of the observation period, respectively. 
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In contrast, a 100% proportion of VOC (mainly Alpha) 
increased transmission by 44.6% (36.1–53.6) compared 
with the period during which the historical strain was 
predominant. Finally, among the weather conditions that 
we considered, temperature was the factor that improved 
the model the most, followed by absolute humidity. The 
AIC was lower when these covariates were included 
as splines (degrees of freedom of 5 and 6, respectively) 
rather than as linear effects. We found that R was the 
lowest at 22.6  °C and the highest at 8.1  °C. Between the 
minimum and the maximum values, it increased by up 
to 31.7% (25.6–38.1) (Fig. 2C). With respect to absolute 
humidity, R was the lowest at 12.8  g/m3 and increased 
by up to 10.1% (4.3–16.3) to reach a maximum at 5.2 g/
m3 (Fig. 2D). Considering a national average of weather 
conditions, we predicted that the transmission rate was 
the highest in November-March and the lowest in July–
August, with an overall amplitude of 42.2% (37.3–47.3) 
(Fig.  2E). Estimated department-level random effects 
were small, ranging between − 1.10–8 and 1.10–8 (Addi-
tional file  1: Fig. S4). We found no difference when 
including spatially-correlated random effects and thus 
opted for the simpler model using Gaussian random 
effects. A model without random effects only had a 
slightly higher AIC (difference of 2 points).

Sensitivity analyses
When running the model on R estimated from non-
smoothed hospitalization data, we found very close 
central estimates, with slightly wider confidence inter-
vals (Additional file  1: Fig. S5). The school effect was 
no longer statistically significant. The effects of weather 

variables were up to 5% higher but not significantly dif-
ferent from the main analysis.

When adding summer and Christmas holidays in the 
final multivariable model, the results were not modified, 
suggesting no additional confounding effect owing to 
these two covariates (Additional file 1: Fig. S6).

Counterfactual scenarios
In a first counterfactual scenario, we showed that, for the 
set of NPIs that were implemented at the time, R would 
have remained above 1 for three additional weeks (until 
week 17 vs week 14 in reality) in the absence of vaccina-
tion (Fig. 3A). Such a scenario would have resulted in a 
peak of 25,000 new weekly hospital admissions in May 
2021 (Fig. 3B), higher than observed during the first wave 
in March 2020.

In a second counterfactual scenario, we showed that, 
in the absence of VOC, the epidemic could have been 
contained earlier, with R remaining below 1 in Febru-
ary–May2021 (Fig. 3A) and the observed increase in hos-
pital admissions (third wave for France) would not have 
occurred (Fig. 3B).

Discussion
The methodology used in this study allowed us to disen-
tangle the effects of multiple factors on the reproduction 
number across French departments, over an extensive 
observation period spanning three distinct pandemic 
waves. In particular, our multivariable model demon-
strated the strong beneficial effect of NPIs and vaccina-
tion on COVID-19 transmission. It also highlighted the 
detrimental role of emerging variants. Importantly, it 
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enabled quantifying the impact of weather conditions on 
local transmission while adjusting for other covariates.

The final mixed-effects model presented in this study 
was able to replicate the temporal dynamics of the repro-
duction number observed in metropolitan France dur-
ing the first 14 months of the COVID-19 pandemic. The 
model closely matched the data but for a short period in 
September 2020, where the temporary increase in the 
reproduction number was not captured. This sporadic 
increase coincided with the end of the summer holidays 
and a period when the avoidance of social gatherings fell 
to a low level [25]. Yet information on such individual 
behaviours at the department level was not available for 
inclusion in the regression model. However, both the 
return-to-school and the resurgence of social gatherings 
presumably contributed to shape the change in trans-
mission, in addition to weather conditions and deci-
sions made by health authorities. In addition, the model 
did not fully capture the high variability observed in the 
department-level reproduction numbers at the beginning 
of the study period (March 2020). Such heterogeneity in 
the early spread of the epidemic might be due to other 
factors that we did not account for: for example, it has 
been shown that, before the first lockdown, R was larger 
in regions where the virus was first introduced, and their 
neighboring regions [4].

The multivariable model yielded a gradient in the 
effectiveness of lockdown measures. The first lockdown 
had the largest impact, followed by the second and the 
third, which is consistent with international data [11]. 
This could be explained by the more restrictive meas-
ures implemented during the first lockdown, but also 
potentially by increasing pandemic fatigue, which may 
have resulted in mobility rebounds, more frequent social 
interactions, and decreasing compliance with preven-
tive measures [26]. Of note, we considered that the effect 
of each lockdown was constant over the duration of the 
intervention, although it might vary over time due to 
behavioral patterns [7, 26]. Thus, our estimates of the 
impact of lockdowns on the reproduction number must 
be interpreted as averaged effects. We found that trans-
mission during the reopening phases following the lifting 
of lockdowns remained similar to that observed during 
lockdowns. One possible interpretation is that popula-
tion behavior did not change immediately with policies: 
the population may have continued to adhere to pub-
lic health measures, such as physical distancing during 
the reopening phase, e.g., due to fear of a COVID-19 
rebound and preventive habits taken during lockdowns. 
Early-pandemic association studies spanning over 131 
countries also reported that more time was needed to 
observe the effects of relaxing NPIs than to detect those 
resulting from the introduction of new restrictions 

[7]. Moreover, during reopening phases, restrictions 
were only partially lifted and remained quite intense 
(Additional file  1: Table  S1). Even during intermedi-
ate periods of moderate restrictions, the reduction in R 
was substantial, ranging from 45.6 to 64.7%. This likely 
reflects the additional contributions of other NPIs such 
as mask-wearing, hygiene measures, contact tracing and 
case isolation. Our framework did not allow evaluation 
of individual effects of such NPIs, which were applied 
throughout the study period. Moreover, due to collinear-
ity, the effects of specific policies described in Additional 
file  1: Table  S1 (e.g. shop closures, restaurant closures 
etc.) could not be evaluated separately and were therefore 
collapsed into broader categories (lockdowns, reopen-
ings and moderate restrictions). Interestingly, overnight 
curfews considerably reduced SARS-CoV-2 transmis-
sion, corroborating results obtained in French Guiana 
(up to 35% reduction in transmission rates) [27] and in 
Quebec, Canada (similar reductions in human mobility) 
[28]. Moreover, we found that curfews starting earlier in 
the evening (6/7 pm) had a larger impact on transmission 
than curfews starting later (8/9 pm).

Perhaps more surprisingly, school closures were 
found to have only a limited effect on transmission. 
Importantly, school closures did not uniformly affect all 
households and instead led to disparities in childcare 
across families that may potentially hinder their effect. 
As highlighted in other studies, policy decisions about 
school closures or hybrid school schedules often need to 
be weighted against the risks of disease transmission to 
elderly populations associated with increased intergen-
erational contact rates that exacerbate their vulnerability 
due to weaker immune systems [29]. Our result differs 
from that of Nader et al. [1], who found that school clo-
sures were one of the most important NPIs in the 60 days 
following their implementation. In the French context, 
we believe that the enforcement of mask-wearing and 
barrier gestures at school was also an impactful NPI that 
might explain such a difference in magnitude: because 
these restrictions were applied concurrently, the effect 
of school closures may have been partially occulted. This 
observation is consistent with simulation-based scenar-
ios tested in Saudi Arabia [30], where mask-wearing and 
physical distancing applied in schools were able to drasti-
cally reduce the effect of in-person education on SARS-
CoV-2 transmission.

The role of weather conditions in COVID-19 trans-
mission has been debated in the literature [15]. Here, 
after controlling for other confounding factors such as 
NPIs, we found a substantial effect of temperature (up to 
31.7% variation in R), followed by absolute humidity (up 
to 10.1% variation), which led to a 42.2% variation in R 
between summer and winter months in France. Although 
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both temperature and humidity were associated with 
SARS-CoV-2 transmission, the overall goodness-of-fit 
was found to be lower when using the compound IPTCC 
index. In the future, a different parametrization of this 
index may yield better performance. The estimate of the 
joint effect of temperature and absolute humidity was 
similar in magnitude and range to individual contribu-
tions reported by prior observational [17, 31, 32], in-vitro 
[33], and physio-mechanical studies [34]. Similar to Sera 
et  al. [16], we found a non-linear relationship between 
weather variables and R. However, in our study, the peak 
of transmission was identified at slightly lower tempera-
ture and lower absolute humidity values. Pursuing such 
research in larger countries with more spatial heteroge-
neities in climatic conditions would be particularly valua-
ble. Interestingly, we found that the temporal seasonality 
of SARS-CoV-2 transmission was similar to the known 
seasonality of influenza epidemics in temperate climates 
[35].

We found that variants of concern (mainly Alpha) 
increased the reproduction number by 44.6% (36.1–
53.6). This is consistent with the effect of Alpha vari-
ant on transmission reported in the literature, ranging 
from about 25% to more than 90% [3, 36, 37]. Notably, 
the strength of our study is that it estimates the effect of 
VOC while simultaneously adjusting for weather condi-
tions. Considering that VOC appeared in winter 2021 
period and that their proportion substantially increased 
in February–March 2021, when temperatures were still 
low and favoured SARS-CoV-2 transmission, such an 
adjustment was deemed necessary. Our counterfactual 
scenario analysis showed that, in the absence of VOC, 
vaccination associated with moderate restrictions and 
curfew would have been sufficient to contain the his-
torical virus. In the other counterfactual scenario, we 
showed that, without vaccination, the spread of VOC 
would have resulted in a peak of hospital admissions 
higher than observed during the first wave. However, it 
should be noted that these scenarios were not based on a 
dynamical transmission model. For instance, we did not 
account for the fact that if herd immunity was reached in 
the scenario without vaccination, the number of hospital 
admissions at the peak would have been lower than pre-
dicted by our model. In addition, in practice, it is likely 
additional measures would have been implemented that 
would have limited the impact on healthcare.

Although the multivariable model successfully cap-
tured the overall temporal dynamics of R, unexplained 
variability across departments remained. Spatial varia-
tion in the reproduction number may arise from under-
lying socio-demographic determinants such as age 
distribution, degree of urbanicity, or job market structure 
[38], which differ between departments. Therefore, we 

accounted for geographical variation through a depart-
ment-level random effect on the reproduction number. 
However, the estimated magnitude of this effect was 
extremely small. Further, we did not find any statistically 
significant effect when additionally testing for a potential 
contribution of population density or population count, 
suggesting limited impact of population structure. Apart 
from spatial variation in the average reproduction num-
ber, small deviations from the average effect of a given 
intervention may exist among geographical units, due to 
spatial variations in determinants of population adher-
ence to preventative health measures. Yet introduc-
ing the possibility of such variation brings challenges in 
parameter identifiability. As a result, model sparsity was 
preferred and department-specific effects on explanatory 
variables were not considered.

In this study, we used a regression analysis to quan-
tify the impact of categorical (NPIs) and continuous 
(weather, vaccination…) covariates on a dependent 
variable (the reproduction number), a widely-accepted 
method in epidemiological modelling [7, 8, 15, 16]. Alter-
native approaches can be employed, such as event stud-
ies or difference-in-difference analyses [9]. Herein, their 
implementation is challenged by the multiplicity of inter-
ventions, sometimes deployed at different dates among 
departments. Importantly, our results are based on a 
retrospective observational study in which interactions, 
collinearity and mediation effects may occur. Therefore, 
the effects estimated here only reflect statistical associa-
tions and do not necessarily imply causal mechanisms. 
In addition, given the differential timeline of interven-
tions, interpretation of their absolute effect should only 
be made within a specific context of implementation 
and cannot be directly extrapolated to other settings. Of 
note, we did not extend the study period further for two 
main reasons. First, no NPIs were implemented in France 
after May 2021. Second, the dynamics of the epidemic 
became mainly driven by the evolution of immunity in 
the population; capturing such effects would require a 
different modelling approach. In particular, the study 
should account for waning vaccine efficacy if extended 
to a longer time period. However, this adjustment was 
not deemed necessary here, given that most vaccinations 
only occurred at the end of the study period (Additional 
file 1: Fig. S2).

Our study has other limitations. First, our analysis 
relies on a two-step approach that omits uncertainty in 
the estimation of the reproduction number when evalu-
ating the effect of NPIs and other factors. This may lead 
to an underestimation of the width of the confidence 
interval around the point estimate characterizing the 
effect of each factor. Second, the reproduction number 
was estimated using a constant generation time across 
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the study period. However, the Alpha variant could have 
a slightly shorter generation time than the ancestral strain 
[39]. In that case, we would expect that our estimates of 
R at the end of the study period (when Alpha replaced 
the ancestral strain) were overestimated when R > 1 and 
underestimated when R < 1 [40]. This could have led to 
an overestimation of the effect size associated with inter-
ventions occurring at the end of the study period (e.g. 
the third lockdown). Third, R was estimated from hospi-
tal admissions and covariates were lagged to account for 
the delay between each covariate and hospital admission. 
This allowed us to test different lag values depending on 
the covariate but might not be accurate when the delay is 
long [40]. Other methods such as deconvolution can be 
used, provided that the delay distribution is well known; 
however, this method is sensitive to misspecification of 
the mean, variance, or form of the delay distribution [40]. 
Fourth, we could not exclude hospital-acquired infec-
tions from the times series of hospitalized patients due to 
a limitation of the dataset. This could have led to biased 
estimates of R if the proportion of hospital-acquired 
infections was not stable through time. However, most 
of SARS-CoV-2 transmission occurred in the community 
and hospital-acquired transmission only represented a 
small proportion of transmission events [41]; therefore, 
our results should not be substantially affected by the 
aggregation of settings (i.e. hospital and community). 
Similarly, we were not able to exclude hospitalizations of 
nursing home residents due to the limited granularity of 
the dataset. However, these represented only 5% of total 
hospitalizations in France over the study period; thus, 
including them should have a limited impact on our esti-
mates of R.

In summary, through a multivariable analysis across 92 
French departments, this study allowed disentangling the 
individual contribution of NPIs, weather, first-dose vacci-
nation, and VOC proportion on local SARS-CoV-2 trans-
mission during three successive pandemic waves. Our 
findings highlight the importance of retrospective evalu-
ation of past interventions to inform future decision-
making for better epidemic control.

Implications of all available evidence
This study helps to better understand the underlying fac-
tors of COVID-19 dynamics observed during the first 
three waves of the pandemic in France. This retrospective 
evaluation of past interventions provides evidence base 
for informing future decision-making during epidemics. 
Our findings also highlight the need to account for the 
effect of weather conditions in SARS-CoV-2 transmission 
models.
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