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A B S T R A C T   

Lead-free piezoelectric sodium bismuth titanate (BNT) films are promising candidates for actuators applications 
as an alternative to lead zirconate titanate films. We focused in this work on the growth and characteristics of 
BNT films deposited by sputtering on silicon substrates with LaNiO3 electrodes. The films are amorphous pre-
vious to post-annealing treatments. We studied the influence of the crystallization state and film thickness on 
their electromechanical properties. Namely, we evaluated the piezoelectric properties, reduced elastic modulus, 
and hardness. BNT films fully crystallized (f-c) in the desired perovskite structure, without second phase, after 
post-annealing at 650◦C. Relative permittivity grew from 60 to 540 for an amorphous vs. a f-c film and the d33eff 
coefficient improved with film thickness to 60 pm/V for a 450 nm thick film. The BNT film’s mechanical 
properties increased with film crystallization from the amorphous structure to the f-c: 134 to 149 GPa for reduced 
modulus and 7 to 9 GPa for hardness. However, the film thickness did not remarkably modify the mechanical 
properties, yet a slight decrease for the 450 nm film was explained by previous cracking on the surface.   

1. Introduction 

Piezoelectricity is an electromechanical intrinsic property of some 
materials, which consists of the bidirectional conversion of mechanical 
energy into electrical energy. Piezoelectric materials (bulk and thin 
films) have multiple applications such as accelerometers, transducers, 
frequential filters, microphones, gyroscopes, nano or micro-
electromechanical systems (NEMS and MEMS), etc. [1–3]. 

One of the most largely used piezoelectric materials is the solid so-
lution lead zirconate titanate (PZT), which crystallizes in a perovskite 
structure. This solid solution has outstanding piezoelectric properties 
associated with a weak coercive field, making this material a reference 
in the field since its discovery in the fifties’. The presence of lead in PZT 
materials’ composition produces many health and environmental 
problems. Namely, the disposal of electronic devices at the end of their 
service life and the manufacture of new devices containing hazardous 
substances are part of several restrictions within the European Union [4, 
5]. Therefore, the development of lead-free piezoelectric materials is on 
the urge. 

Research in lead-free piezoelectric materials has existed since de-
cades ago. However, recently it has significantly increased for bulk and 
thin-film materials [6]. There are two emerging candidates among the 

lead-free piezoelectric family’s materials, potassium sodium niobate and 
sodium bismuth titanate (BNT or NTB). 

In this work, we have focused in the study of BNT films since their 
understanding (synthesis and behavior) are still under development, 
mainly due to challenges to achieve a precise stoichiometry control to 
obtain the perovskite structure [7,8], despite that the BNT bulk form has 
been largely studied [9–13]. BNT films present advantageous piezo-
electric properties (d33 = 40-80 pm/V) [14–17], these values will still 
improve with the many works currently being carried out on lead-free 
piezoelectric materials. There are many application regarding the in-
verse piezoelectric effect such as actuators, representing an excellent 
alternative for temperatures under 150◦C [18]. 

The mechanical characterization of piezoelectric films is necessary to 
further comprehend its electromechanical piezoelectrical behavior, 
given the relationship between mechanical and electrical energy con-
version in these materials. Nanoindentation is a broadly used technique 
in the mechanical characterization of thin films since it solicits small 
volumes. Previous works have studied the mechanical properties of 
piezoelectric films by nanoindentation typically addressing two main 
variables, composition and temperature, for example, (Na1-xKx)0.5Bi0.5-

TiO3 films as a function of the potassium content [18]; Nb-doped 
(Na0.85K0.15)0.5Bi0.5Ti(1-x)Nb xO3 films as a function of niobium 
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content [19]; (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 films as a func-
tion of the annealing temperature [20]; PZT films versus testing tem-
perature [21]. 

The current study presents the effects of the annealing temperature, 
film thickness, stacking layers of the substrate, and their impact on the 
structural and electromechanical properties of BNT films. Mechanical 
characterization of BNT films was studied by nanoindentation. 

2. Materials and methods 

2.1. Films deposition 

LNO and BNT films were deposited by radio frequency (RF) 
magnetron sputtering (Plassys MP600). First, the bottom electrode, 
LaNiO3 (LNO), was sputtered on a silicon substrate heated at 450◦C in 
plasma of Ar:O2 = 4:1 using a 76.2 mm (3”) ceramic target, 10 Pa 
pressure, and 3 nm/min deposition rate. After deposition, the LNO-200 
nm thick films were systematically annealed in air at 700◦C during one 
hour to improve their electrical conductivity [22]. In addition, stoi-
chiometric BNT films were grown on LNO/Si substrate (or LNO/SiO2/Si 
for some tests), using a homemade target fabricated by cold pressure of 
mixed oxide powders (Bi2O3, Na2Ti3O7, and TiO2) with high purity 
(>99.99%). BNT thin films were sputtered on LNO buffered substrates in 
pure Ar gas at 1.3 Pa pressure and 100 W RF power. Substrates were 
fixed at a distance of 8 cm from the target and heated at 200◦C. The 
choice of this temperature allows to control Bi concentration in the film. 
This temperature is well below the crystallization temperature of BNT. It 
is therefore an ex-situ process (growth of an amorphous film) and 
post-deposition annealing is necessary to crystallize the film at the 
perovskite phase (as discussed in our previous work [8]). BNT films were 
deposited for different deposition times at 2.5 nm/min deposition rate to 
vary the film thickness (t): 220, 350, and 450 nm. After deposition, the 
as-deposited films were amorphous. To obtain partially and fully crys-
tallized films, respectively, different post-annealing treatments were 
systematically performed in air at 450◦C and 650◦C for one hour. 

Table 1 summarizes the nomenclature used in this work, the 
configuration of each sample (substrate stacking layers and film thick-
ness), and the crystallization rate of the films according to the post- 
annealing treatment. Fig. 1-a shows the structure of the tested samples. 

2.2. Crystallographic, morphological, and electrical characterization 

The crystallographic structures of LNO and BNT were analyzed by X- 
ray diffraction (XRD) using Cu Kα radiation with a Rigaku smartlab 
diffractometer (θ - 2 θ configuration). The microstructure was observed 
by scanning electron microscopy (SEM) with JEOL JSM-IT100 used at 
low voltage (5 kV). BNT film thickness was measured by Veeco Dektak 
150 profilometer and SEM. 

To measure the electrical properties, Pt top electrodes (Ø 100 to 200 
µm) were deposited on BNT films by lift-off process (Fig. 1-b). Relative 
dielectric constant was measured at 10 kHz frequency using a HP4192A 
impedance analyzer. Piezoelectric response was studied using a home-
made system based on a laser Doppler vibrometer. Specifically, the d33eff 
piezoelectric coefficient was measured by a single beam method, namely 

a VAC voltage is applied on the sample (VAC = 1 V) and a VDC is super-
imposed. The measurement frequency is fixed at 10 kHz. The tested 
sample (substrate + film) is well clamped (to suppress the bending effect 
of the substrate). A detailed description of this method is reported by 
Herdier et al. [23] and Pokorny et al. [24]. 

2.3. Mechanical characterization 

Mechanical characterization of unpoled BNT films were performed 
through nanoindentation tests, using a TriboIndenter TI-980 (Hysitron, 
Bruker, Minneapolis, MN, USA), operating under the mode of ultrahigh- 
speed mechanical property mapping (XPM). We also evaluated the 
mechanical properties of the LNO (bottom electrode) and Si (substrate). 

We used a Berkovich diamond tip for all the tests, its area function 
was calibrated in fused quartz [25,26], obtaining valid results starting at 
18 nm of penetration depth (setting six coefficients for the area func-
tion). Tests were performed at two maximum loads, 250 and 500 µN, 
which corresponded to an approximately maximum penetration depth 
of 10 % and 20 % (at 500 µN) for the thicker (450 nm) and thinner film 
(220 nm), respectively. These loads were selected in order to avoid the 
influence of the underneath layers in the mechanical properties of the 
BNT films, further explanations are given in the results Section 3.3.3. 

At least 400 tests were performed per sample, in arrays of 10 × 10 
with 1 µm (at 250 µN) and 2 µm (at 500 µN) spacing between indents, 
and 50 µm spacing between arrays. The tests were performed at a lateral 
move speed of 10µm/s, a setpoint load of 1 µN, and load, hold, and 
unload times equal to 0.2 s; the data acquisition was configured to 2000 
points/s and the piezo translation protocol was set to serpentine mode. 

The reduced elastic modulus and indentation hardness were calcu-
lated by Eq. (1) and (3). Only the reduced elastic modulus was calculated 
since the Poisson’s ratio of the BNT films has not been reported 
elsewhere. 

Table 1 
BNT films and substrates samples characteristics.  

Nomenclature Substrate stacking Film thickness (t) (nm) Deposition rate (nm/min) Film crystallization Post-annealing treatment 

BNTA LNO/Si 450 2.5 f-C 650◦C/ 1 h 
BNTB LNO/Si 350 2.5 f-C 650◦C/ 1 h 
BNTC LNO/SiO2/Si 220 2.5 f-C 650◦C/ 1 h 
BNTD LNO/SiO2/Si 350 2.5 f-C 650◦C/ 1 h 
BNTE LNO/Si 450 2.5 A N/A 
BNTF LNO/SiO2/Si 450 2.5 p-C 450◦C/ 1 h 
LNO Si 200 3.0 f-C 700◦C/ 1 h 

f-C: fully-crystallized, p-C: partially-crystallized, A: amorphous. 

Fig. 1. BNT sample configuration for mechanical properties evaluations; b) 
BNT structure for electrical measurements (presence of Pt top electrodes) 

Table 2 
Comparison aspects for the nanoindentation characterization of BNT films.  

Aspect Samples 

(i) Crystallization 3 BNT films of the same thickness (450 nm): fully 
crystallized, partially crystallized, and amorphous 

(ii) Substrate (stacking 
layers) 

2 BNT films of the same thickness (350 nm) deposited in 
LNO/SiO2/Si and LNO/Si substrates 

(iii) Film thickness 3 BNT films of 3 thicknesses: 220, 350 and 450 nm  

S. Kossman et al.                                                                                                                                                                                                                                
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We considered three aspects described in Table 2 to study the me-
chanical properties by nanoindentation of the BNT films. More precisely 
the state of crystallization (full, partial or amorphous film), the film 
thickness, and the presence of a silicon oxide layer located between the 
Si substrate and the LNO electrode. 

In addition, in-situ (in the nanoindentation instrument) topograph-
ical measurements were performed by scanning probe microscopy 
(SPM) using a Berkovich tip covering areas of 6 × 6 µm2 in each sample. 

2.3.1. Calculation of mechanical properties by nanoindentation 
The calculation of the mechanical properties (elastic modulus and 

hardness) through nanoindentation tests depends on three measures 
identified from the load-displacement (P-h) curve: the maximum 
displacement and load (hmax and Pmax) and the contact stiffness (S). hmax 
and Pmax are directly determined from the P-h curve. Contact stiffness is 
estimated by approximating the unloading curve to a power law [26], 
and then its derivative (dP/dh) is evaluated at hmax to obtain S. 

Then, the elastic modulus and hardness are computed according to 
the following relationships [26]. 

Er =
S

̅̅̅
π

√

2β
̅̅̅̅̅
Ac

√ (1)  

1
Er

=
(1 − ν2)

E
+

(
1 − ν2

i

)

Ei
(2)  

H =
Pmax

Ac
(3)  

where Er is the reduced elastic modulus; β is a geometrical factor ac-
counting for radial displacements (1.034); Ac is the contact area; E, ν and 
Ei, νi are the elastic modulus and Poisson’s ratio of the material and 
indenter respectively. 

The next expressions describe the contact area and contact depth 
[26]. 

Ac = C0h2
c + C1h2 + C2h1/2 + C3h1/4 + … + C8h128 (4)  

hc = hmax − ε Pmax

S
(5)  

where Cn are constants obtained by the calibration performed in a 
reference material (e.g., fused quartz). ε is a constant depending on the 
geometry of the indenter (0.75 for Berkovich indenter). 

3. Results and discussion 

3.1. BNT films crystallography and microstructure 

Fig. 2 presents the XRD patterns of BNT films after deposition and 
annealing at different temperatures, 450◦C and 650◦C. The XRD pattern 
of the as-deposited film shows only peaks corresponding to LNO, indi-
cating that the BNT film is amorphous. However, for films annealed at 
450◦C and 650◦C, the XRD patterns display BNT and LNO peaks, mainly 
distinguished at 2-theta about 46-47◦; the occurrence of BNT peaks 
signify that BNT films crystallized in perovskite structure with a (100) 
orientation. This crystallization is enhanced by the structure matching 
between BNT and LNO. Besides, the intensity of the BNT peaks increases 
while increasing the annealing temperature (Fig. 2). Hamieh et al. 
showed that BNT film begins to crystallize from an annealing tempera-
ture of 400◦C and that crystallization rises with increasing temperature 
to reach a maximum of crystallization at 650◦C [8]. It is worth 
mentioning that the peak at approximately 2-theta = 33◦ corresponds to 
the signal of the Si substrate, which is highly sensitive of the measure-
ment conditions [27], explaining why this peak appeared systematically 
in Fig. 2. 

XRD patterns of BNT films with different thicknesses: 220, 350, and 
450 nm are represented in Fig. 3. All patterns exhibit (h00) peaks cor-
responding to the BNT compound, evidencing a highly oriented growth. 
In addition, the intensity of BNT peaks increases with thickness, which 
was expected as the peak intensity is proportional to the film thickness. 
Furthermore, we observed a slight shift in the (h00) peaks to lower 
angles as the thickness increased from 220 to 450 nm. This leftward shift 
of BNT peaks suggests the existence of residual tensile stresses in the film 
that partially relax when increasing thickness. Ion et al. [28] associated 
this effect with a gradual relaxation of the substrate effect, pertaining to 
misfit and clamping. 

Fig. 4 shows the cross-section and surface SEM images of the 450 nm 
thickness BNT film annealed at 650◦C (fully crystallized). The film ex-
hibits a dense structure with a granular microstructure (grain size is 
approximately 400 nm), indicating a good film crystallization after the 
post-annealing treatment at 650◦C. All the films present the same 
microstructure despite their thickness. However, only the film of 450 nm 
thickness presented cracks, as shown in Fig. 4-b. 

3.2. Electric properties 

The dielectric properties of as-deposited and annealed films are 
shown in Table 3, the films present the same thickness (t = 450 nm). The 
as-deposited film (amorphous structure) exhibited a relative 

Fig. 2. XRD patterns of BNT films after deposition and annealing at different 
450◦C and 650◦C. 

Fig. 3. XRD patterns of BNT films with different thicknesses: 220 nm, 350 nm, 
and 450 nm. 
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permittivity of 60. In contrast, the annealed films (f-C and p-C) pre-
sented higher relative permittivity values of 220 and 540 for annealing 
temperatures of 450◦C and 650◦C, respectively. These results indicate, 
as expected, that relative permittivity values are affected by the struc-
tural properties presented in the previous section, namely, amorphous 
films exhibit low permittivity compared to the fully crystallized film, 
annealed at 650◦C. The intermediate permittivity value for the film 
annealed at 450◦C confirmed the coexistence of amorphous and crys-
tallized phases in the film. 

Piezoelectricity of f-C BNT films was evaluated by coefficient d33eff, a 
suitable indicator for actuator applications. Fig. 5 shows the variation of 
this coefficient as a function of film thickness. 

The coercive field varies with the film thickness, it is of the order of 
70 kV/cm for a 450 nm thick film. Also, the piezoelectric coefficient 
d33eff increase with the growth of film thickness, reaching 60 pm/V at 
450 nm. This behavior is completely normal. Namely, for very thin films, 
the interface effects dominate the response; beyond certain thickness the 
actual piezoelectric response of the film is measured. These effects are 
well described in the reference [29]. Hence, the increase in the film 
thickness approaches the piezoelectric constant to the free film value. 

3.3. Mechanical characterization by nanoindentation 

Table 4 summarizes the mechanical properties (reduced modulus 
and hardness) of the BNT films, LNO bottom electrode film, and Si 
substrate estimated by nanoindentation tests. 

Table 4 reports the mean, standard deviation, and 95% confidence 
interval values for hardness and reduced modulus. The standard devi-
ation represents the dispersion among the values, and the 95% confi-
dence interval estimates the true mean of the population with a 95% 
accuracy. These two values represent the stochastic part of the uncer-
tainty in the nanoindentation measurements. Further discussion is given 
in the following sections. 

It is worth mentioning that some load-displacement curves corre-
sponding to the BNT films exhibit pop-in events and slope changes. Pop- 
in events are typically described as displacement bursts in load-control 
nanoindentation tests [30,31], as illustrated in Fig. 6. These curves 
were excluded from the mechanical properties’ calculation reported in 
Table 4. We only use the curves showing a regular load-displacement 
path to calculate the mechanical properties since pop-in events can 
drastically modify the maximum displacement, leading to the miscal-
culation of the contact area and, therefore, the mechanical properties. 
The load-displacement curves (with and without pop-in) were classified 
through a convolutional neural network model described elsewhere 
[32] with about 92% accuracy; the percentage of curves presenting 
pop-in are given in Table 4. 

The mechanical properties of the LNO (100) film are reported in 
Table 4. The estimated reduced modulus agrees with Young’s modulus 
values reported for LNO bulk ceramic [33]. These authors [33] obtained 
Young’s modulus values of 192 to 198 GPa, according to the crystalli-
zation phase (rhombohedral or monoclinic) with similar polycrystalline 
behavior. Hardness results obtained by nanoindentation are two times 
bigger than the bulk material, which could be related to the different 
scales of measurement. 

Surface roughness of the BNT films was obtained by in-situ SPM 
measurements and quantified by the surface roughness parameter Sa 
(arithmetical mean height of a surface) represented in Fig. 7. The results 
revealed two principal aspects. First, the parameter Sa slightly increases 
with the increase of the film thickness from approximately 3.0 to 1.5 nm. 
Second, surface roughness increases with the film crystallization. That 
is, the fully crystallized film presented a more significant roughness 
(about 3.0 nm for f-c vs. 1.8 nm for the amorphous film). In addition, 
LNO/Si bottom electrode presented a smaller Sa value of about 1.3 nm. 
Similar results were obtained through AFM characterizations in the 
BNTA film. These results highlight the fact that surface roughness of 
amorphous film follows the smooth surface of the substrate. On the other 
hand, when the film is fully crystallized the existence of grains and grain 
boundaries increase the surface roughness. 

Fig. 4. SEM images in secondary electrons mode (5 kV) of the cross-section (a) and the surface (b) of 450 nm thick BNT film annealed at 650◦C.  

Table 3 
Dielectric properties of BNT films (t=450 nm) in the as-deposited and annealed 
state.  

Film A p-C f-C 

Permittivity 60 220 540  

Fig. 5. Evolution of d33eff piezoelectric coefficient as a function of applied 
electric field for f-C BNT films with various thicknesses. 
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3.3.1. Influence of crystallization rate in the mechanical properties of BNT 
films 

Fig. 8 shows the variation of modulus and hardness of BNT films 
according to their crystallization state. These results put evidence that 
the film crystallization directly modifies the mechanical properties of 
the BNT films. For fully crystallized films, both mechanical properties 
increased. The full amorphous film presented a reduction of modulus 
and hardness values of about 19 % and 34 %, respectively, compared to 
the fully crystallized film. The partially crystallized film displayed a 
smaller drop of approximately 13 % and 24 % for the modulus and 
hardness. 

In addition, modulus and hardness values decreased with the in-
crease of the applied load. This response partially corresponds to an 
effect of the surface roughness as already reported elsewhere [34,35]. 
Despite the small Sa roughness values (below 3 nm, Fig. 7), the scale of 
measurement of our nanoindentation tests was about 20 nm at 250 µN 
and 40 nm at 500 µN. According to the standard ISO 1477-1 [36], the 
penetration depth should be twenty times the surface roughness (Ra, 
equivalent parameter to Sa), that is about 60 nm of penetration depth, 
suggesting that measurements at 250 µN were potentially affected by the 
surface topography due to calculation of the contact area. This effect 
should be less significant 500 µN due to the increase in the contact 

Table 4 
Mechanical properties measured by nanoindentation testing.  

Sample Thickness (nm) Pmax (µN) Count Er (GPa) H (GPa) Pop-in % 
mean SD 95% CI mean SD 95% CI 

BNTA 450 250 192 149 14 1.9 9.0 1.3 0.19 52 
500 222 136 11 1.4 7.7 1.0 0.13 45 

BNTB 350 250 179 152 13 2.0 9.9 1.5 0.22 11 
500 351 143 10 1.1 8.2 1.0 0.11 12 

BNTC 220 250 260 146 9 1.1 9.1 1.0 0.13 13 
500 390 137 6 0.6 8.3 0.7 0.07 3 

BNTD 350 250 185 151 11 1.6 9.6 1.2 0.17 8 
500 374 139 8 0.8 8.5 1.0 0.10 7 

BNTF 450 250 584 134 12 1.0 7.4 1.2 0.10 3 
500 591 129 10 0.8 6.8 1.2 0.10 2 

BNTE 450 250 187 123 8 1.1 6.3 0.8 0.12 7 
500 271 120 8 1.0 6.0 1.0 0.11 10 

LNO  250 189 174 18 2.6 12.1 2.2 0.31 6  
500 199 167 14 1.9 12.5 2.0 0.27 1 

Si  250 200 167 5 0.7 11.3 0.3 0.04 0  
500 200 159 4 0.5 10.7 0.3 0.04 0 

SD: standard deviation; 95% CI: 95% confidence interval = 1.96 x standard error. Count: number of tests. Pop-in %: percentage of curves that showed pop-in. 

Fig. 6. Load-displacement P-h curves obtained by nanoindentation tests on BNT films presenting different characteristics: (a) – (b) pop-ins, (c) slope changes, and (d) 
regular loading-unloading path. 
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depth. Fig. 9 illustrates the topography of the 450 nm thick BNT film that 
evidences why the nanoindentation results are affected by the surface 
roughness. Moreover, it is worth mentioning that the tip area calibration 
was valid in our experiments from 18 nm; nevertheless, it is well known 
that tip area calibration carries uncertainties [37], which affect our 
measurements, especially at the small penetration depth where the tip 
area coefficients are pretty relevant. 

In Fig. 8, we can notice that the drop of the mechanical properties 
with the load is more predominant with the film crystallization. For the 
reduced modulus, we obtained a drop of 9%, 4%, and 2 % for BNTA (f- 
C), BNTF (p-C), and BNTE (A) films, respectively. Hardness values 
showed a more considerable reduction, 15%, 7%, and 5% for BNTA, 
BNTF, and BNTE films, respectively. These results suggest that the film 
crystallization modifies the top surface characteristics of the BNT films. 
This could be partly explained by the surface roughness measurements 
(Sa, Fig. 7); specifically, for the fully crystallized film, the Sa parameter 
was about two times bigger than the amorphous film of the same 

thickness. 

3.3.2. Influence of staking layers in the reduced modulus and hardness of 
BNT films 

The mechanical properties of BNTB and BNTD films of the same 
thickness (350 nm) deposited in the two different staking substrate 
systems, LNO/SiO2/Si and LNO/ Si, presented similar values (Table 4). 
Two t-tests (modulus and hardness data) were conducted between both 
samples to determine if the values were statistically different. The sta-
tistical t-test considers the mean values associated with their confidence 
interval. The resulting p-values were 2.37 × 10− 5 and 8.79 × 10− 2 for 
modulus and hardness, correspondingly. According to these results, the 
mean values of the modulus are statistically different (p-value < 0.05), 
in contrast to hardness values that are not statistically different (p-value 
> 0.05). Despite the statistical difference between modulus values, the 
mean properties present a variation inferior to 3 %, mainly within the 10 
% typical uncertainty of nanoindentation tests [36,38]. Thus, indicating 
that both coatings exhibit comparable properties. Uncertainties in 

Fig. 7. Sa roughness parameter values for BNT film according to their thickness 
and crystallization. Roughness measurements were performed by SPM (6 µm x 6 
µm area) using a Berkovich diamond tip. 

Fig. 8. Reduced elastic modulus and hardness variation vs. the maximum load for different crystallization fully crystallized (f-C), partially crystallized (p-C), and 
amorphous (A) for films of thickness=450 nm (BNTA, BNTF, and BNTE). 

Fig. 9. 2D topography representation of f-c BNT film (t=450 nm). The topog-
raphy was obtained by SPM (6 µm x 6 µm area) using a Berkovich diamond tip. 
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nanoindentation tests are related to many sources such as system noise, 
environmental conditions, indenter geometry, surface state, etc. [39]. 

These results indicated that at the penetration depths at which the 
mechanical properties were estimated (< 38 nm), the stacking layers of 
the substrate did not seem to have a significant influence. 

3.3.3. Influence of the BNT films thickness in the reduced elastic modulus 
and hardness 

Fig. 10 illustrates hardness and reduced modulus according to the 
film thickness variation at both tested loads. BNTB and BNTD films 
(Section 3.3.2) give results corresponding to the thickness of 350 nm. 

Hardness and reduced modulus results showed a similar trend with 
increased film thickness. Both properties decrease with the applied 
maximum load. This reduction at the studied penetration depths is not a 
response of the underneath layer, LNO, which had a higher modulus and 
hardness (Table 4). This response probably corresponds to a conse-
quence of the surface roughness, as previously mentioned in Section 
3.3.1. 

Variation of the reduced modulus and hardness with the film thick-
ness at the same applied load is smaller than the characteristic uncer-
tainty of 10 % for nanoindentation tests, indicating that the films exhibit 
a comparable local mechanical property regardless of their thickness. 
Nonetheless, the slightly reduction of both mechanical properties (< 4 % 
for Er and < 9 % for H) for the thicker BNT film could be related the 
cracks observed on the surface (Fig. 4), and by consequence, to the film 
relaxation [18,28]. 

It is essential to highlight that the estimated properties correspond to 
the BNT intrinsic properties and not to a composite response affected by 
the underneath substrate. Thus, both mechanical properties showed a 
diminution with the increase of the penetration depth. Indicating that 
the harder and stiffer LNO film did not influence the mechanical 
response at the testing penetration depths [40]. 

In addition, two factors reduced the uncertainty of the estimated 
mechanical properties. First, the important number of tests performed 
per sample (at least 200 per load), leading to the statistical significance 
of our results. Second, the representative testing areas (minimum 20 ×
20 µm2), since the grain size of the BNT films was about 400 nm, thus, 
the tested zones were large enough to exhibit a representative behavior 
of the film. 

The estimated reduced modulus values for the BNT films are within 

the order of magnitude of previously reported works. Dittmer et al. [9] 
determined Young’s modulus of BNT bulk ceramic by impulse excitation 
technique obtaining 100 GPa at room temperature. Also, Ayrikyan et al. 
[41] studied ceramic/ceramic multilayer composite structures based on 
BNKT-6BA and BNT-7 BT ceramics by nanoindentation, obtaining 
elastic modulus values between 160 and 120 GPa. For clarification, the 
values reported in the present work correspond to the reduced modulus, 
which does not consider Poisson’s ratio of the BNT film. In the study of 
Dittmer [9], Poisson’s ratio was determined by an approximation 
related to the used impulse excitation technique. Poisson’s ratio of BNT 
films is difficult to characterize due to the well-known complex anisot-
ropy of the perovskite material [42]. 

Nevertheless, another study [43] on PZT films reported an increase 
of Young’s modulus in comparison to the bulk PZT, which corroborates 
our results. In addition, a simple calculation of the elastic modulus 
considering a Poisson’s ratio range between -0.5 to 0.5 (Fig. 11) gen-
erates higher values than the reference for the bulk BNT (100 GPa), 

Fig. 10. Reduced modulus and hardness of f-C BNT films as a function of film thickness. The error bars represent the 95% confidence interval.  

Fig. 11. Evolution of Young’s modulus of BNT films as a function of the 
Poisson’s ratio. 
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indicating that the elastic modulus of the BNT films is likely bigger than 
the values reported for the bulk ceramic. 

3.3.4. Pop-in events in nanoindentation curves of BNT films 
Pop-in events and slope changes in nanoindentation curves have 

been observed in piezoelectric films before [19,20,44]. These events are 
related to various causes such as incipient plasticity, dislocation nucle-
ation [31,45], interaction of dislocations with a grain boundaries [31, 
46], phase transformation [47], cracking [48,49]. Delobelle et al. [44] 
reported pop-in bursts in PZT films due to microcracking during nano-
indentation tests. However, any evidence of microcracking due to 
nanoindentation was observed in the studied BNT films, highlighting 
that the loads used in this study were smaller than in the cited work. 
Instead, pop-in events in BNT films can be related to dislocation acti-
vation (nucleation, multiplication, and motion) [50,51]. Fang et al. [50] 
indicated that purely dislocation plasticity dominates during the 
indentation pop-in at small loads (e.g., 100 µN) when using Berkovich 
diamond tip (small radius tip) in SrTiO3 oxide a perovskite prototype. 

The higher percentage of detected pop-in events in the BNTA film (t=
450 nm) can be attributed to the increasing size and density of dislo-
cations with the growth of thicker films. Namely, dislocations nucleation 
can start growing at larger thicknesses [52]. This hypothesis is coherent 
with the supposition that pop-ins events in the BNT films can be mainly 
related to dislocations activation. Another source of the higher pop-in 
percentage in the BNTA film can be cracks’ preexistence, as shown in 
Fig. 4. 

Regarding pop-in occurrence for films of the same thickness (450 
nm) presenting different structures (A, f-C, and p-C). We observed that 
pop-in events increase in the fully crystallized film with respect to the 
two others having a total and partial amorphous structure, suggesting 
that pop-in appearance in nanoindentation curves of BNT films was 
mainly related to dislocation mechanisms. 

4. Conclusions 

We studied the influence of film crystallization and thickness on the 
BNT film properties like structural, microstructural, electrical and me-
chanical. We specially focus in the mechanical properties due to the lack 
of literature in the subject. 

Amorphous BNT film (as-deposited) were transformed by annealing 
treatment to partially crystallized at 450◦C or fully crystallized film at 
650◦C (without second phase), corroborated by XRD patterns. The as- 
deposited film diffractogram only revealed the signal of the LNO bot-
tom electrode. 

BNT f-C films exhibit a dense and granular microstructure. Yet, film 
cracking appears in the surface when increasing film thickness from 220 
to 450 nm explained by the relaxation of residual stresses, corroborated 
by the leftward shift of the BNT peaks in the XRD diffractogram. 

Dielectric properties, namely, relative permittivity showed a signif-
icant rise between the amorphous and the f-C film, from 60 to 540. 
Logically, the p-C film presented intermediate properties between these 
two states. In addition, piezoelectric properties, specifically the d33eff 
coefficient, improve while increasing film thickness. 

The implemented nanoindentation methodology represented a suit-
able technique to obtain the intrinsic mechanical properties (hardness 
and reduced modulus) of BNT films, our results were comparable with 
previous studies for the bulk version of this material. The reduced 
modulus and hardness were approximately 150 and 9 GPa, respectively. 
Nevertheless, both properties decreased for the partially crystallize and 
amorphous film. In addition, neither the stacking layers of the substrate 
nor the film thickness seems to significantly affect the mechanical 
properties. Though, a small diminution for the 450 nm thick film could 
be related to preexistent cracks. 

Surface roughness of BNT films drops with the reduction of film 
thickness and crystallization (from f-C to A). Nanoindentation results at 
shallow penetrations were likely influenced by the surface roughness. 

Finally, pop-in events observed in the load-displacement nano-
indentation curves were related to dislocation mechanisms. The results 
also suggested that dislocation density increased with the film thickness. 
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[31] F. Pöhl, Pop-in behavior and elastic-to-plastic transition of polycrystalline pure 

iron during sharp nanoindentation, Sci. Rep. 9 (2019) 15350, https://doi.org/ 
10.1038/s41598-019-51644-5. 

[32] S. Kossman, M. Bigerelle, Pop-in identification in nanoindentation curves with 
deep learning algorithms, Materials 14 (2021) 7027, https://doi.org/10.3390/ 
ma14227027. 
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