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ABSTRACT

Image quality assessment of immersive content and more specif-
ically 360-degree one is still in its infancy. There are many chal-
lenges regarding sphere vs. projected representation, human visual
system (HVS) properties in a 360-degree environment, etc. In this
paper, we propose the use of CNNs to design a no reference model to
predict visual quality of 360-degree images. Instead of feeding the
CNN with ERPs, visually important viewports are extracted based
on visual scan-path prediction and given to a multi-channel CNN us-
ing DenseNet-121. Moreover, information about visual fixations and
just noticeable difference are used to account for the HVS properties
and make the network closer to human judgment. The scan-path is
also used to create multiple instances of the database so as to per-
form a robust generalization analysis and compensate for the lack of
databases.

Index Terms— 360-degree images, CNNs, scan-path, JND,
blind image quality assessment.

1. INTRODUCTION

Nowadays, immersive technologies are used in many fields, includ-
ing healthcare, education, and gaming for instance. The ability given
to the user to look in any direction is offered by the head-mounted
displays (HMDs) using omnidirectional content such as 360-degree
images. Two types of impairments can decrease the quality of such
content. Those linked to the processing pipeline such as stitching,
compression and, transmission, in addition to the ones related to the
display device such as the screen door. Together with other factors,
these impairments may cause motion- and cyber-sickness that can
alter the quality of experience (QoE) of users [1]. Therefore, im-
proving the QoE is crucial for immersive applications. To do so, it is
important to study and provide appropriate visual quality assessment
approaches.

Image quality assessment (IQA) can be addressed subjectively
and objectively. The former remains the most reliable way to eval-
uate image/video quality while being tedious and time-consuming.
Therefore, the latter ensures a trade-off by providing a computational
approach for such a task. It combines visual features with the aim to
reflect the perceptual quality of components represented by the mean
opinion scores (MOS) obtained from subjective experiments.

With the introduction of 360-degree images, a few IQA mod-
els have been proposed by extending traditional 2D models such
as PSNR or MSE. For example, PSNR-based methods like Spher-
ical PSNR (S-PSNR) [2] which computes the PSNR on a spherical
surface instead of the 2D representation. The weighted spherical
PSNR (WS-PSNR) [3] uses the scaling factor from a 2D plane to the
sphere as a weighting factor for PSNR computation. CPP-PSNR [4]

computes PSNR on the craster parabolic projection (CPP) after re-
mapping pixels of the original and distorted images from the spher-
ical domain to CPP. As these models do not account for perceptual
aspects, they fail in predicting the visual quality accurately. Besides,
well-performing 2D metrics are not suitable for 360-degree images
as they neither account for spherical characteristics nor for the spe-
cific exploration of the scene made by observers [5]. These limita-
tions push towards the design of specific IQA models accounting for
the perceptual peculiarities of 360-degree images.

On another side, the interest for convolutional neural networks
(CNNs) for quality assessment tasks is fastly growing. This is
mainly due to its architecture, which is capable to extract discrim-
inating features at various levels of abstraction [6, 7], i.e. from
low-level to high-level features. CNNs are involved in various im-
age processing tasks, such as image segmentation, object detection
and, image classification. The inherited models are often exploited
to regress the quality scores by means of transfer learning and/or by
learning HVS-based features [8, 9].

CNN-based models dedicated to 360-degree IQA are rather few.
For instance, a pre-trained model (MC360IQA) is used in [10] to
predict the quality on viewports extracted from the cube-map projec-
tion of the 360-degree image. Six viewports are extracted and used
as inputs of a pre-trained ResNet-34 [7] whose outputs are weighted
and concatenated to predict the quality score. The most important
component in this model is the pre-trained ResNet that was origi-
nally trained on ImagNet [11]. The latter dataset is composed of
natural images with distortion occurring in the camera pipeline only,
which would not allow the proposed model to predict visual quality
for other distortions like compression. A deep learning framework is
proposed in [12] where the quality scores are predicted on weighted
patches extracted from the equirectangularly projected (ERP) image.
ERP images do not sound efficient as the content is geometrically
distorted. This problem was tackled in [13] in the development of
the SSP-BOIQA metric. Hence, the polar regions are separated from
the rest of the sphere when assessing 360-degree image quality. The
features are then extracted from both equatorial and polar regions
separately. Still, ERP equatorial regions do not necessarily represent
nor reflect the actual viewed content by the users.

Different from the aforementioned models, we propose in this
paper a no-reference metric based on CNN considering different
perceptual characteristics of the human visual system (HVS) rep-
resented by the just noticeable difference (JND) and the visual scan-
path. First, we extract viewports on the spherical content of 360-
degree images according to visual scan-path predictions rather than
a projected format. This way, we reproduce the actual viewed con-
tent. Then, motivated by the effectiveness of well-known pre-trained
CNN models, we use DenseNet-121 [6] to extract visual features
from the selected viewports and predicts their visual quality. We use
the JND probability map to account for HVS sensitivity to local dis-



tortions. The proposed model estimates the weight of each extracted
viewport by fusing JND, extracted visual features, and visual scan-
path attributes (fixation duration and fixation order).

2. PROPOSED METHOD

The proposed method involves two steps. The first focuses on data
pre-processing including scan-path prediction, viewports extraction,
and JND probability maps prediction. The second step consists of
an end-to-end training. Details on each step are given below.

2.1. Pre-processing

Fig. 1 provides an illustration of a 360-degree image viewing. In-
spired by the way 360-degree images are generally viewed, i.e. only
portions of the images called viewports are seen by the users through
HMDs, we only consider selected viewports to predict the quality.
This can be justified by the fact that a user can only see the current
rendered field of view (FoV) from the spherical representation. The
next viewport depends on his head direction along the x, y, and z
axes. This way, quality prediction scenario tends to be in agreement
with the viewing experience of 360-degree images and geometric
distortions caused by the sphere to plane projection mentioned pre-
viously are avoided.

Viewport
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z
ERP image

Plane to sphere mapping

Fig. 1: 360-degree images viewed using head-mounted devices.

It is now widely admitted that when an image is viewed, the
HVS gazes on salient details, which translates into eye fixations [14].
In our case, these regions are considered as our viewports and are
detected using the visual scan-path model proposed in [15]. This
model provides trajectories including the order and duration of fix-
ations. This information giving valuable data about the exploration
behavior is fed to the CNN model described in the next section. It
corresponds to a sequence of N ordered fixation positions and their
corresponding duration, respectively denoted as [FOr, FD]. In our
model, the above-mentioned information is predicted for ten differ-
ent virtual observers representing the diversity of human scan-paths.
The predicted scan-paths are considered as data augmentation, not
for the training stage but to increase the diversity and robustness of
the cross-validation. This will help with the generalization analysis.
The motivation behind such an approach is that each virtual observer
(VO) will explore the same scene but will probably provide a differ-
ent rating as in real subjective experiments. So, from each image in
the dataset, we extract eight viewports for each VO where fixation
points are taken as the center of the viewports with 512× 512 reso-
lution. This way, we generate ten different instances of the dataset.
During the end-to-end training, each VO is used separately.

With the aim to perceptually account for the sensitivity of view-
port content to distortions, and give more cues to our model about

Fig. 2: (Top) Examples of extracted viewports and (Bottom) their
corresponding JND probability maps.

distortion visibility, we used just noticeable difference (JND) proba-
bility maps. We believe that training the model to learn about HVS
sensitivity will perceptually improve the estimation of the weights
to be given to each viewport when deciding about the quality of the
360-degree image. Fig. 2 gives samples from extracted viewports
and their respective JND probability maps. It shows the impair-
ments detection probability values and their variation depending on
the complexity of the region. Flat regions are prone to more visible
distortions compared to more complex ones.

2.2. Network Architecture

Fig.3 depicts the architecture of the proposed method with its dif-
ferent components. Given a set of viewports V pi with i ∈ {0...N}
extracted from a 360-degree image, the model takes four inputs for
each V pi including its visual content, its JND probability map, fix-
ations order and fixations duration. These inputs are fed to the lo-
cal quality predictor (LQP) (green rectangle) resulting in N× LQP
modules running in parallel. Then, the LQP module fuses different
learned features and outputs a weighted quality score for each V pi
denoted as WQV pi . Finally, the model outputs the weighted arith-
metic mean of the local quality scores as follow:

PredictedMOS =
∑N

i=1 WQV pi/
∑N

i=1 Wi. (1)

As shown in Fig. 3, the main component is the LPQ which con-
sists of three parts. The first is a visual feature extractor (VFE). Here,
we use the DenseNet-121 [6] model with its original weights. The
choice of the DenseNet model is made based on a previous compar-
ative study that we conducted and for which it ranked first compared
to VGG, ResNet, and Inception architectures. The VFE provides a
learned visual feature map V fV pi that goes to a quality estimation
module and is used also for the estimation of the weight WV pi . The
second part consists of JND features extractor that takes the JND
probability map JNDmapV pi of V pi and outputs a feature map
that contributes to WV pi estimation. The Learned JND features ac-
count for the different sensitivities of the HVS toward various distor-
tion types and magnitudes. For the JND probability maps detection,
we used the 2D model proposed in [16] as it is applied on the ex-
tracted viewports being assimilated to standard 2D images.

The proposed network used for JND features extraction aims to
learn from HVS sensitivities [8]. It is composed of three convolu-
tional blocks as illustrated in Fig. 3 (blue rectangle). Each block
includes three layers, two convolutions (1×1 and 3×3) kernels fol-
lowed by a max-pooling layer. By adding a 1×1 convolutional layer
before the 3 × 3 convolution, for the same height and width of the
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Fig. 3: Architecture of the proposed model: The green rectangle depicts the overall network structure, the magenta rectangle depicts the local
quality predictor structure, and the blue rectangle depicts the JND features extractor network.

JND feature map, we reduce the number of operations. It also adds
non-linearity to the network and allows to implement a smaller CNN
while keeping a higher degree of accuracy [17]. Therefore, we are
reducing the computational requirements and being more efficient at
the same time.

At the final stage of the network, a global average pooling (GAP)
is used according to the recommendation in [17] to generate the fea-
ture map. Finally, the third part is a multi-layer perceptron (MLP)
that takes as input the duration and order of fixations given by the
visual scan-path predictor and encode them to account for the visual
exploration behavior. The MLP outputs a visual information vec-
tor used for the estimation of WV pi . The fixation duration informs
about which visual content is more likely to attract the user gaze. It
also gives the time spent in visualizing a portion of the scene. As
for the fixation order, it informs about the nature of the visual explo-
ration path.

The weight estimation stage considers encoded duration and or-
der of fixations, JND, and visual feature maps. These different fea-
tures are fused and used to estimate the weights WV pi of V pi using
four fully connected (FC) layers. In parallel, the visual feature map
is also regressed to predict the quality score QV pi of V pi. For this,
a GAP is performed on the output feature map of DenseNet-121 fol-
lowed by an FC layer, a dropout layer, and another FC layer for score
prediction. The final score is computed using Eq. 1.

For the end-to-end training, we used the L2 loss function to com-
pute the error between predicted and target scores. The loss function
is defined as:

loss = (qpredicted − qtarget)
2. (2)

Three different versions of the proposed model are developed.
The first version uses only fused visual features of the 8 extracted
viewports from a given 360-degree image. It consists of eight pre-
trained DenseNet-121 and a trained quality estimator. The second
version accounts for scan-path features FOr and FD for weights es-
timation. Finally, the third version is built on top of version two by
incorporating the JND probability maps for weight estimations.

3. RESULTS AND DISCUSSION

3.1. Data and implementation:

Dataset: This study is carried out using the CVIQD2018 [18]
database. It contains 16 original 360-degree images, compressed
using JPEG, H.264/AVC, and H.265/HEVC codecs. It counts in
total 544 ERP images and their associated MOS which makes it to
this date the largest available database in this field. We used the
Pareto principle to split the database into training, validation, and
testing sets. The use of a second database is very important for
model validation and generalization analysis. We tried to use two
different databases [19, 20] to perform a cross-database validation.
Unfortunately, we discovered some inconsistencies in terms of sub-
jective scores that could not be explained. So we decided to discard
them. To compensate for this lack, we used the strategy discussed in
Sec. 2.1 where the proposed model is compared across ten predicted
scan-paths.

Implementation: The proposed architecture is implemented using
TensorFlow [21] and will be publicly available. The training was
performed using NVIDIA Tesla P100-PCIE-16GB and 26GB of
RAM. We used the earlystopping to stop the training if no perfor-
mance gain is observed by monitoring the validation loss.

3.2. Performance evaluation

To assess the performance of our model, we used the Pearson Linear
Correlation Coefficient (PLCC) and the Spearman Rank Order Cor-
relation Coefficient (SRCC). The predicted scores are fitted using
a five-parameter non-linear logistic function. The performance of
the proposed model are computed using the ten VOs. The MIN and
MAX represent respectively the least and best performance among
VOs.

3.2.1. Ablation study

To evaluate the effectiveness of the considered additional inputs
(scan-path visual information and JND maps). We provide an ab-



Fig. 4: Scatter plots of predicted quality scores versus MOS of the
final model SP360IQA-F-JND (Best performance on the left and
worst performance on the right).

lation study. It focuses on performance added to the model by the
additional components. First, we predict the quality score using
only regressed visual features on 8 viewports extracted based on the
virtual observer scan-path denoted as SP360IQA. Second, we add
the viewport weight estimation as described in Sec. 2.2 by encoding
scan-path visual information thought an MLP (see Fig. 3). This ver-
sion is denoted as SP360IQA-F. Finally, we optimize the estimation
of the weights by exploiting JND probability maps of the selected
viewports to account for HVS sensitivity and provide perceptual
distortion-ability to the model, denoted as SP360IQA-F-JND. Ta-
ble. 1 provides the results of the conducted ablation study. The
maximum and minimum values of PLCC and SRCC regarding all
VOs are given, in addition to standard deviations. One can observe
that the proposed weight estimation improves the performance when
considering fixations order and duration for each viewport. The
minimum PLCC/SRCC shifts from 0.78/0.75 to 0.89/0.86 show-
ing that the model gained significantly in terms of accuracy and
monotonicity. The incorporation of the JND further boosted the
performances but with a slight shift. Therefore, we conclude that us-
ing scan-path visual information and JND features contribute to the
prediction accuracy of our model. It also contributes to the general-
ization of our model as given by the SD values. Indeed, the latter are
decreased explaining that VOs are providing better and less spread
performances. Scatter plots of the predicted scores versus MOS of
the best and least performing VO are given in Fig. 4. It supports the
aforementioned discussions and shows consistent distribution of the
predictions.

Table 1: Standard deviation, maximum and minimum performance
in terms of PLCC and SRCC of virtual observers. Best PLCC values
are highlighted in bold and SRCC underlined.

SP360IQA SP360IQA-F SP360IQA-F-JND

PLCC SRCC PLCC SRCC PLCC SRCC

MAX ↑ 0.929 0.911 0.945 0.921 0.949 0.928
MIN ↑ 0.780 0.750 0.889 0.863 0.900 0.866
SD ↓ 0.044 0.045 0.020 0.021 0.019 0.023

3.2.2. Performance comparison

The performances of our model are compared with state-of-the-
art quality models including: 1) 2D full reference (FR) metrics
like PSNR and SSIM, 2) Learning-based NR 2D models such
as BRISQUE [22], QAC [23], BPRI [24] and DipIQ [25], 3)
PSNR-based 360-degree models WS-PSNR, S-PSNR and CPP-

PSNR, and 4) learning-based NR 360-degree metrics SSP-BOIQA,
MC360IQAorigin and MC360IQAmean trained respectively with-
out and with data augmentation. Table. 2 summarizes the perfor-
mances of aforementioned metrics on the CVIQD database. We can
notice that traditional 2D models and their extended versions have
significantly lower performance compared to 360-degree models.
Therefore, they are not well suited for this type of image as al-
ready demonstrated in benchmark studies [5]. SSP-BOIQA slightly
improves the correlation with subjective MOS compared to SSIM
that measures the structural similarity according to the HVS char-
acteristics. MC360IQA versions provide good results. At its lowest
performance (MIN), our model outperformed all state-of-the-art
FR, NR, and 360-degree models except MC360IQA. Regarding the
latter, the origin version is outperformed by the three versions of
the model with the VO providing the maximum performance. The
mean version is in turn outperformed by the F and F-JND version
of the proposed model.

Table 2: Performance comparison with state-of-the-art quality mod-
els in terms of PLCC and SRCC. Best performance is highlighted in
bold.

Metric PLCC SRCC

FR

PSNR 0.7662 0.7320
SSIM 0.8972 0.8857
S-PSNR 0.7819 0.7574
WS-PSNR 0.7741 0.7467
CPP-PSNR 0.7755 0.7498

NR

BRISQUE 0.7641 0.7448
QAC 0.8681 0.8299
BPRI 0.8877 0.8576
DipIQ 0.8065 0.7381

Learning-based SSP-BOIQA 0.9077 0.8614
360-degree MC360IQAorigin 0.9271 0.9069

MC360IQAmean 0.9391 0.9153

Ours MIN 0.900 0.866
MAX 0.949 0.928

4. CONCLUSION

We presented in this paper a CNN-based model for 360-degree
IQA. This model relies on predicted scan-paths for the extraction
of adapted viewports. In addition, to account for the HVS prop-
erties, fixations order and duration are used together with JND to
define weighting factors exploited for quality pooling. This adopted
weighting strategy has shown a significant improvement of the
prediction performances. Additionally, taking advantage of the vari-
ability of visual exploration of 360-degree scenes (visual trajectory)
through virtual observers, is a significant added value for model gen-
eralization analysis. Our model showed the usefulness of predicting
quality on the spherical content rather than projected one. We be-
lieve that using additional HVS properties may greatly contribute to
the improvement of prediction accuracy. So, a more optimized net-
work for learning HVS properties for 360-degree quality assessment
tasks will be investigated.
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