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Abstract
360-degree Image quality assessment (IQA) is facing the

major challenge of lack of ground-truth databases. This prob-
lem is accentuated for deep learning based approaches where
the performances are as good as the available data. In this
context, only two databases are used to train and validate deep
learning-based IQA models. To compensate this lack, a data-
augmentation technique is investigated in this paper. We use vi-
sual scan-path to increase the learning examples from existing
training data. Multiple scan-paths are predicted to account for
the diversity of human observers. These scan-paths are then used
to select viewports from the spherical representation. The results
of the data-augmentation training scheme showed an improve-
ment over not using it. We also try to answer the question of
using the MOS obtained for the 360-degree image as the quality
anchor for the whole set of extracted viewports in comparison to
2D blind quality metrics. The comparison showed the superiority
of using the MOS when adopting a patch-based learning.

Introduction
The assessment of image quality (IQA) is an important topic

in image processing and computer vision. It is the process of
measuring the weighted combination of visual attributes that rep-
resent the perceptual quality of a given image. This is performed
in a way that should be consistent with human subjective opin-
ions [1] (ground truth obtained by the mean of psycho-visual ex-
periments). Depending on the existence of the pristine images,
IQA can be considered as full reference (FR) if the pristine im-
age is available or no reference (NR) if not. It can also be as
reduced reference (RR) if only partial information of the source
image is used. The NR methods are widely adopted as it reflects
real world scenarios where the original images are most likely
unavailable. At present, IQA has been widely studied for 2D
content [2, 3]. However, for omnidirectional scenes (a.k.a. 360-
degree), it is still in its infancy and not fully investigated.

360-degree images represent an important part of virtual
reality (VR) content, in which the users are provided with real
world scenes to live an immersive experience. With commercial
head mount displays (HMDs), the viewer is allowed to freely fo-
cus on the desired content thanks to his head movements (HM)
making the interactive and the immersive experience more in-
teresting. Accordingly, to achieve good quality of experience
(QoE), immersive contents with high visual quality should be
provided. Based on this, quality assessment of 360-degree im-
ages becomes crucial to control QoE, and therefore, adequate
IQA tools are of major importance.

As 360-degree content is generally processed, encoded, and
transmitted using a 2D plane representation, a straightforward
solution is to use the large literature on 2D quality metrics di-
rectly on the 2D representation. Still, these metrics do not ac-
count for the non-uniform sampling density at pixel locations

from the sphere to plane projection [4]. And, their performances
are lacking in terms of correlation with subjective quality scores
as shown in [5]. Furthermore, the most projection format used
is the equirectangular (ERP) one. This projection suffer from
geometric distortion due to the projection and therefore, do not
represent the viewed content by the users. Thus, having metrics
dedicated to 360-degree images accounting for its characteristics
(spherical- or projections-based) becomes of major importance
in order to meet the challenges related to this type of content.

With the introduction of 360-degree images, a few IQA
models have been proposed by extending traditional 2D models
such as PSNR or MSE. For example, PSNR-based methods like
Spherical PSNR (S-PSNR) [4] which computes the PSNR on a
spherical surface instead of the 2D representation. The weighted
spherical PSNR (WS-PSNR) [6] uses the scaling factor from a
2D plane to the sphere as a weighting factor for PSNR compu-
tation. CPP-PSNR [7] computes PSNR on the craster parabolic
projection (CPP) after re-mapping pixels of the original and dis-
torted images from the spherical domain to CPP. As these models
do not account for perceptual aspects, they fail in predicting the
visual quality accurately. Among the possible ways to reach re-
liable and accurate solutions for 360-degree IQA, is the use of
deep-learning techniques.

The use of convolutional neural networks (CNNs) for qual-
ity assessment tasks is fastly growing. This is mainly due to their
architecture, capable to extract discriminating features at various
levels of abstraction [8, 9], i.e. the ability to learn multi-level
features. CNNs are involved in various image processing tasks,
such as image segmentation, object detection and, image clas-
sification. The inherited models are often exploited to regress
the quality scores by means of transfer learning and/or by learn-
ing human visual system (HVS) based features [10, 11]. Sev-
eral models have shown greater performances in other tasks as
they have been trained on large databases such as ImageNet [12].
Seeking their efficiency, these models are used as backbones in
several IQA models [13–16].

CNN-based models dedicated to 360-degree IQA are rather
few. For instance, a pre-trained model (MC360IQA) is used
in [13] to predict the quality on viewports extracted from the
cube-map projection (CMP) of the 360-degree image. Six view-
ports representing the 6 faces of the CMP are extracted and used
as inputs of a pre-trained ResNet-34 [9] forming a multi ResNet-
34 (i.e a multi-channel paradigm). The outputs of all channels are
weighted and concatenated to predict the quality score. In addi-
tion, the authors used a data augmentation techniques by rotating
the longitude of the viewing angle of the front view from 0 to
360 degree with a 2 degree interval then project to CMP at each
front viewing angle. This method results in a lot of redundant
content. In [15], a viewports-based approach is also proposed.
Here, the authors take benefit from the spatial mutual dependen-
cies among the extracted viewports by using a graph CNN. In



addition, they use the DB-CNN proposed in [17] to compute the
global quality with a down-sampled ERP image as an input. Both
outputs are combined to predict the quality score. A deep learn-
ing framework is proposed in [14] where the quality scores are
predicted on weighted patches from the equirectangularly pro-
jected (ERP) image. Here, the ResNet-50 [9] model is used to
predict the quality score of each patch. However, the ERP suf-
fers from geometric distortions and do not represent the viewed
content. In response to these limitations, a CNN based model,
proposed in [16], predicts visual quality based on the spheri-
cal content of selected viewports rather than projected content.
Viewports are selected using visual scan-path predictions. Fur-
thermore, the just-noticeable difference map is used to account
for perceptual characteristics of the HVS along with features pro-
duced from scan-paths in order to estimate the weights of each
viewport. Differently from the previous mentioned works, in [18]
a patch-based approach is adopted rather than a mutli-channel
one. The patches are 64× 64 and extracted from the ERP with
a focus on the equatorial region. Each patch inherits the mean
opinion score (MOS) of its 360-degree image, which may be
questionable as it is too small to represent a 2K+ scene.

Inspired by the previously mentioned works, and motivated
by the lack of databases for 360-degree IQA, we propose a data-
augmentation technique based on visual scan-paths for a CNN-
based IQA model. First, we extract viewports on the spherical
content of 360-degree images according to visual scan-path pre-
dictions rather than a projected format. This way, we reproduce
the actual viewed content and avoid distortions due to the pro-
jection process. Then, as we use a patch-based learning scheme,
each viewport is labeled with either the MOS of its image or a
quality score obtained using NR 2D metric. We compared the
efficiency of using the MOS with the use of local quality scores
obtained by 2D models. To do so, two widely used NR metrics,
BRISQUE [19] and NIQE [20] are used. Finally, a weighted
pooling based on local quality is then proposed to compute the
final quality scores.

The proposed method
Scan-path based data-augmentation

Fig. 1 depicts a 360-degree image viewing experience. We
only consider chosen viewports to predict the quality as it rep-
resents the way 360-degree images are generally viewed. The
assumption that a person can only see the actual rendered field of
view (FoV) from the spherical representation justifies this pro-
cedure. The next viewport is determined by his head movement
around the x, y, and z axes. This way, the quality prediction sce-
nario seeks to agree with the viewing experience of 360-degree
images, and geometric distortions created by the previously de-
scribed sphere to plane projection are avoided.

It is now widely admitted that when an image is viewed,
the HVS gazes on salient details, which translates into eye fix-
ations [21]. In our case, these regions are considered as rele-
vant viewports and are detected using visual scan-path predic-
tions model proposed in [22]. With this model, a visual trajec-
tory including eight pertinent fixation points are predicted. In
our model, ten trajectories are extracted representing ten virtual
observers and used to account for the diversity of human scan-
paths. These scan-paths are then considered for data augmenta-
tion, which results in a total of N = 8× 10 extracted viewports.
This will help with the training of the model and avoid over-
fitting caused by the lack of data. In fact, the efficiency of deep
neural networks often increases as more data is available. Un-
fortunately, we still lack reliable and representative databases for

360-degree IQA that would allow deep learning models to assert
their full capabilities. The construction of such databases require
important efforts in terms of scenes acquisition, device calibra-
tion, paradigm definition, subjective testing and data analysis [5].
Only two 360-degree image databases are been used to train and
validate IQA models, namely CVIQD [23] and OIQA [24]. Con-
sequently, the application of strategies to acquire more data with
the existing one, is largely encouraged. The use of IQA-based
data-augmentation is one option to accomplish this task.

Figure 1: 360-degree images viewed using head-mounted de-
vices. Blue area in the ERP represents the viewport extracted
from the sphere.

Data augmentation is a method of creating new training data
from existing one. This is accomplished by applying domain-
specific (in our case IQA) strategies to elements from the train-
ing data in order to generate new and distinct training exam-
ples [25]. Since IQA is more sensitive than other image pro-
cessing tasks such as object detection and classification, con-
ventional approaches including shifting, rotating, flipping and
brightness changing of an image, are counterproductive in our
context. The particular reason for this, being that the images
are labelled (rated) by human observers (MOS), and altering any
visual attribute will make the actual rating incompatible. As a
result, the use of data-augmentation techniques must be appro-
priate and concur with IQA. In our model, we adopted visual
scan-paths to augment the training data as explained above. The
motivation behind such an approach is that each virtual observer
(VO) will explore the same scene but will probably provide a
different rating as in real subjective experiments. So, from each
image in the database, we extract eight viewports for each VO
where fixation points are taken as the center of the viewports.
This way, we generate ten different instances of the database.
During the end-to-end training, each extracted viewport is taken
as an individual input to the model.

Architecture of the Model
Fig.2 depicts the architecture of the proposed method. To

begin, the scan-path model is used to predict the ten VO poten-
tial trajectories and their gaze fixation positions. Then, rather
than the projected format, each fixation point is located on the
sphere, and the surrounding content is extracted and projected
to a 2D plane. Following that, since we are using a patch-based
learning scheme, each extracted region is fed to the model as
a separate input. Previously mentioned, 360-degree images are
rated based on multiply viewed regions. Giving the extracted
viewports the same MOS as their 360-degree image as firstly in-
troduce in [26] for 2D content seems inefficient. Therefore, we
applied well known and widely used 2D NR quality metrics to
predict the quality of extracted viewports, referred to in the fol-
lowing as the local quality. This is motivated by the fact that the
extracted viewports have a 2D representation and the model will
consider them as separate images.



Figure 2: Architecture of the proposed model. Features are only extracted from individual viewports by ResNet-50
In this paper, ResNet-50 [9] is used as the base model to

extract visual features from selected viewports. We replaced the
top layers with a regression block in order to regress the learned
features into a single quality score. ResNet employs residual
learning to further deepen the CNN network, which can be in-
terpreted by a number of deeper bottleneck architectures. Each
bottleneck has three convolutional layers with kernel dimensions
of 1× 1, 3× 3 and 1× 1 respectively. A shortcut connection is
then added from the input of the bottleneck to its output. Further-
more, since the shortcuts accelerate deep network convergence,
the ResNet has the ability to avoid the problems of vanishing gra-
dient [9]. Several versions of this model were developed based on
the number of layers including ResNet-18, ResNet-34, ResNet-
50 and ResNet-101. We chose the ResNet-50 with its pre-trained
weights obtained on the ImageNet [12] database as it is the most
common and widely used. Furthermore, this choice is also moti-
vated based on conclusions of a previous comparative study [27]
for which it ranked the best compared to VGG-16/19, ResNet-
18/34, and Inception-V3 models.

The output of ResNet-50 is fed to a quality regressor which
is composed of a global average pooling so to reduce the spatial
dimensions of the extracted feature maps and help to minimize
overfilling. Finally, two fully connected (FC) layers are then used
to calculate the quality score. The weights for the quality regres-
sor are initialized according to the method provided in [28].

For the end-to-end training, we used the L2 loss function
to compute the error between predicted and target scores. For
this latter, we used MOS and the local quality scores obtained by
NIQE and BRISQUE.

To compute the quality score of the entire 360-degree im-
ages, an average pooling is then calculated. For each VO, eights
scores are averaged to a single score for each image. For the data-
augmentation based configuration, the final score is obtained by
averaging the score of eighty extracted regions.

Reduced Content Biases Splitting

Figure 3: Spatial information (SI)/colorfulness information
(CFI) plot of the source images in both CVIQD [23] and OIQA
[24] databases.

For deep learning models performance analysis, the results
are reported only on the testing set in which the selection may in-
duce biases related to the content. A popular and straightforward
approach is to divide the training and testing sets by reference
images. This means that the model is evaluated on unseen con-
tent independent of database distortions. However, the obtained
sets may lack diversity in terms of various visual aspects and
may induce representativeness biases, resulting in a test set that
is not well representative of the used database. Biases are mostly
present, whether the data is divided arbitrarily or based on more
qualified criterion. However, minimizing those biases guarantees
a validation on representative sets of the trained model.

To minimize content induced biases, we use spatial infor-
mation (SI) and colorfulness information (CFI) as criteria for the
splitting scheme to make sure that, the performance of the models
are reported on limited biased set of images. The SI accounts for
spatial complexity and CFI accounts for the variety and intensity
of colors in the images. SI and CFI are computed according to
the ITU-T P.910 [29] recommendations and the metric described
in [30] respectively. Fig. 3 shows the SI/CFI plots of the source
images of CVIQD and OIQA databases. As it can be seen, the
variability of SI is higher in OIQA than in CVIQD, indicating
that CVIQD lacks diversity of content in terms of spatial com-
plexity in comparison to OIQA. A similar conclusion holds in the
case of CFI. To select the training/testing sets, we used the Eu-
clidean distance between each two pristine images as described
in Eq. 1. So, for a couple of pristine images I1 and I2 character-
ized by (CFII1 ,SII1) and (CFII2 ,SII2) respectively, the distance
D(I1, I2) is expressed as follows:

D(I1, I2) =
√

(CFII1 −CFII2)
2 +(SII1 −SII2)

2 (1)

Experimental results
This study is carried out using the CVIQD [23] and OIQA

[24] databases containing ERP images. CVIQD includes 16 pris-
tine 360-degree images and 528 impaired ones. The distortion
used to create this database are only compression related, i.e. are
JPEG compression with quality factors ranging from 50 to 0 in
addition to H.264/AVC and H.265/HEVC with quality parame-
ter from 30 to 50. The authors used the single stimulus with a
rating scale of 10 levels from the lowest to the highest quality
to gather the MOS. 20 subjects participated in the creation of
this database. OIQA includes 320 distorted 360-degree images
created from 16 pristine ones, using 4 distortion types includ-
ing JPEG compression (JPEG), JPEG2000 compression (JP2K),
Gaussian blur (BLUR) and Gaussian white noise (WN). Subjec-
tive scores, obtained from 20 subjects, range from 1 (bad) to 10
(excellent).

The databases are split using the well known Pareto princi-
ple and the criterion discussed previously, 80% for training and
20% for testing. For the sake of a fair comparison, all config-



Table 1: Performance evaluation of the model. The Best performance is highlighted in bold. The mean of 5 folds is provided

MOS NIQE BRISQUE

CVIQD OIQA CVIQD OIQA CVIQD OIQA

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

VO1 0.829 0.773 0.898 0.884 0.756 0.791 0.445 0.382 0.771 0.673 0.732 0.714
VO2 0.815 0.753 0.877 0.860 0.791 0.685 0.426 0.398 0.759 0.707 0.747 0.713
VO3 0.836 0.762 0.907 0.892 0.793 0.677 0.452 0.406 0.743 0.693 0.751 0.731
VO4 0.835 0.759 0.911 0.895 0.792 0.686 0.419 0.372 0.772 0.716 0.690 0.661
VO5 0.830 0.765 0.879 0.868 0.752 0.620 0.432 0.415 0.673 0.626 0.779 0.740
VO6 0.820 0.748 0.916 0.898 0.781 0.653 0.498 0.457 0.792 0.723 0.710 0.662
VO7 0.838 0.759 0.888 0.872 0.738 0.605 0.450 0.423 0.729 0.656 0.777 0.749
VO8 0.845 0.783 0.898 0.880 0.801 0.700 0.462 0.399 0.768 0.711 0.767 0.736
VO9 0.817 0.760 0.902 0.884 0.743 0.616 0.446 0.398 0.735 0.683 0.758 0.712
VO10 0.835 0.754 0.893 0.872 0.722 0.591 0.479 0.412 0.722 0.662 0.743 0.714

Avg 0.830 0.762 0.897 0.881 0.767 0.662 0.451 0.406 0.746 0.685 0.745 0.713
STD 0.010 0.010 0.013 0.013 0.028 0.059 0.024 0.023 0.034 0.031 0.028 0.030

All 0.871 0.801 0.920 0.904 0.827 0.704 0.519 0.478 0.799 0.738 0.811 0.788

urations were trained/tested using the same splitting scheme. A
five-fold cross validation is used for a complete evaluation within
the selected databases.

The model is implemented using TensorFlow [31] and
trained on a server with Intel Xeon Silver 4208 2.1GHz, 192G
RAM and a GPU Nvidia Telsa V100S 32G. The batch size was
set to 32 and the Adam optimizer [32] is used with a learning
rate of 1e − 4, first parameter β1 = 0.9 and second parameter
β2 = 0.999. We used the early stopping to stop the training once
no improvement is observed.

Performance evaluation
To assess the performance of the proposed data-

augmentation technique, we used the Pearson linear correlation
coefficient (PLCC) and the Spearman rank order correlation co-
efficient (SRCC).

Table 1 summarizes the performance of individual VO-
based training in terms of accuracy of prediction (PLCC)
and monotonicity (SRCC), as well as the application of com-
bined VOs on both databases. The latter refers to the data-
augmentation based training. Regarding the performances of in-
dividual VOs, we can observe that the range of performance is
not significantly different. It is confirmed by the standard de-
viation given in the table. This actively demonstrates that, the
various predicted scan-paths are almost of similar importance,
and none of them can be considered as non-valid or outlying.

Figure 4: Computational time for VOs individually on CVIQD.

Between the MOS, NIQE and BRISQUE as local quality for
the model training, the MOS based one outperformed the others.
In terms of difference, the range of correlation for the MOS is
the smallest among the studied cases. The obtained results con-
tradict our expectations. Assigning the same MOS value to small
regions from the same 360-degree image looks at a first sight as
not appropriate. Applying 2D models are adopted to account

Figure 5: Computational time for VOs individually on OIQA.

for local quality related to extracted regions. However, the used
blind metrics did not improve the prediction accuracy globally in
terms of PLCC and SRCC.

The proposed data-augmentation by the use of all VOs com-
bined improved the performances for all the three cases, re-
gardless of the used database, as can be seen in Table 1. The
PLCC (resp. SRCC) value shifted from an average of 0.830
(resp. 0.762) to 0.871 (resp. 0.801) for the MOS based train-
ing on CVIQD. A similar behaviour is observed on OIQA where
an improvement is achieved over the performance of individ-
ual observers. As for the use with NIQE and BRISQUE, an
improvement is also observed both for PLCC and SRCC. The
level of improvement should be put into perspective over the
range of performances, which is higher for the blind metrics.
Based on the previous correlation results, NIQE and BRISQUE
do not appear as the best alternative to replace the MOS for data-
augmentation. However, other performance data should be ana-
lyzed before drawing final conclusions.

When comparing between databases, one can observe a
higher performance on OIQA compared to CVIQD, except with
NIQE. The difference is obvious with the MOS-based training
supporting the previously discussed observation regarding the
variety and diversity of the content present on OIQA. This led
to a significant performance i.e. PLCC (resp. SRCC) value of
0.920 (resp. 0.904) compared to 0.871 (resp. 0.801) on CVIQD.

Table 2: Computational complexity in terms of training time for
data-augmentation on CVIQD and OIQA databases. The mean
of 5 folds is provided.

Database MOS NIQE BRISQUE

Time (s) CVIQD 6285 3093 2577
OIQA 3212 2360 3320

With the intent to compare the computational complex-
ity of the proposed data-augmentation, we compute the train-
ing time for individual VOs as well as their combination (data-



augmentation). It is given on Fig. 4 for CVIQD and Fig. 5
for OIQA where one can notice that, the MOS-based training
has the lowest training time for all VOs except for VO3,5,7 on
CVIQD and VO1 on OIQA. This could be explained by the lack
of scores diversity during the learning process, leading to a faster
convergence. At the contrary, BRISQUE generates a consider-
ably higher training time, which is even more extensive for NIQE
on both databases. This observation becomes invalid when it
comes to the proposed data-augmentation, as shown by Table
2. Hence, the MOS-based case requires more than twice the
NIQE/BRISQUE training time on CVIQD, and on OIQA the
BRISQUE-based training took the longest time. This can be ex-
plained by the fact that, learning from a considerable amount of
data that is associated with the same quality score (i.e. MOS)
tends to make the model converge slowly. More data implies
more diversity for the model to learn from. However, associating
this diverse data with the same labels has a negative effect by in-
creasing the computational cost. With NIQE and BRISQUE, the
model is able to converge quickly as more data is available with
distinct quality scores.

Figure 6: Contrast (max-min/max+min) between training and
validation losses for the five folds (0 → equal loss between train-
ing and validation and 1→ important gap between both losses)
on CVIQD. T and V represent the reached loss values for train-
ing and validation, respectively.

In addition to the computational time, we analyzed the evo-
lution of the loss for the data-augmentation case. Figs. 6 and 7
plot the contrast (max-min/max+min) between training and val-
idation losses for the five folds. A contrast equal to 0 depicts an
equal loss between training and validation. On the contrary, a
contrast equal or close to 1 indicates an important gap between
both losses. In addition to the contrast, Fig. 6 and 7 provide the
final loss values for both training (T) and validation (V) for each
fold and each studied case on CVIQD and OIQA respectively.
We can see that the MOS-based learning has more difficulties
to generalize either with OIQA or CVIQD. In fact, the gap be-
tween T and V for MOS is much higher than those of NIQE- and

BRISQUE-based cases. This is also demonstrated by the pro-
vided curves for both databases.

Figure 7: Contrast (max-min/max+min) between training and
validation losses for the five folds (0 → equal loss between train-
ing and validation and 1→ important gap between both losses)
on OIQA. T and V represent the reached loss values for training
and validation, respectively.

Conclusion
In this paper, we analyzed the use of visual scan-paths

as data-augmentation for 360-degree IQA, mainly for reduc-
ing over-fitting and improving the prediction performances. To
do so, ten different scan-paths (simulating 10 virtual observers)
were generated with eight possible fixation points each, are used
as centers of the generated viewports. We used two benchmark
IQA 360-degree image databases. Additionally, a comparison is
made between the use of blind metrics (BRISQUE and NIQE)
and MOS for local quality (quality of viewports) for training
the model. The obtained results demonstrated an improvement
when using data-augmentation compared to individual virtual
observers. The lack of diversity of the MOS values associated
with the same 360-degree image, does not allow to reach suffi-
cient generalization of the model. In addition, it requires more
computational time than the cases using blind metrics. It is im-
portant to increase the number of datasets in order to validate the
previous conclusions.
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