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Abstract
We systematically investigate the links between price returns and Envi-

ronment, Social and Governance (ESG) features in the European market. We
propose a cross-validation scheme with random company-wise validation to
mitigate the relative initial lack of quantity and quality of ESG data, which
allows us to use most of the latest and best data to both train and validate
our models. Boosted trees successfully explain a part of annual price returns
not accounted by the market factor. We check with benchmark features that
ESG features do contain significantly more information than basic fundamen-
tal features alone. The most relevant sub-ESG feature encodes controversies.
Finally, we find opposite effects of better ESG scores on the price returns
of small and large capitalization companies: better ESG scores are generally
associated with larger price returns for the latter, and reversely for the former.

Keywords: ESG features; ESG data; sustainable investing; interpretable machine
learning; model selection; asset management; equity returns;

JEL Classification: C51; C52; C55; G11; G12; G41;

1 Introduction
Investing according to how well companies do with respect to their environmental,
social and governance scores has become very appealing for a growing number of
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investors. Beyond moral criteria, such kind of investments may increase the value of
high-ESG scoring companies, which will attract even the non-ESG minded investor,
thereby starting a virtuous circle both for the investors and for the beneficiaries of
high ESG scores. It may also lead to successful impact investing whereby an investor
generates positive environmental or societal impact while targeting a specific level
of return (Townsend, 2020; Grim and Berkowitz, 2020).

From a quantitative point of view, ESG features raise the question of their in-
formation content. Friede et al. (2015) aggregated the results of more than 2200
studies: 90% of them showed a non-negative relation between ESG and corporate
financial performance measures, a majority displaying a positive performance. How-
ever, more recently, Cornell and Damodaran (2020); Breedt et al. (2019); De Franco
et al. (2020) reach less clear-cut conclusions. Our aim is to clarify this issue. The
real question indeed is whether ESG features contain additional information with
respect to well-known factors. This question is also becoming increasingly impor-
tant with the emergence of new directives and regulations like the second Markets
In Financial Instruments Directive (MiFID II), the Sustainable Finance Disclosure
Regulation (SFDR) or the European Union taxonomy, concerning disclosure of in-
formation on sustainable development and sustainable investing.

The current situation is mostly caused by challenges specific to ESG data: i)
they are quite sparse before 2015, as the interest of even computing such scores is
quite recent; ii) they are usually updated yearly; iii) the way they are computed
often changes as a function of time and may depend on the way companies disclose
data; iv) human subjectivity may be involved to a large extent in the computation
of the scores.

This work is devoted to overcoming these challenges by using high-quality data
and by testing several model validation schemes, including random company-wise
cross-validation that makes it possible to use most of the latest data to train models.
The resulting methodology is robust enough to yield clear answers about the role of
capitalization, sector, and time in the explanatory power of ESG factors.

2 Literature review and uncertainties

2.1 Asset selection, investment strategies, and portfolios
According to Chen and Mussalli (2020), ESG integration into investment strategies
mainly consists in integrating the investors values into their own strategies. The
scientific literature describes three main ways to achieve it: filtering companies
based on their ESG scores, directly looking for alpha in ESG data, or measuring
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ESG impact on other risk factors.
ESG scores, for example controversies, provide a systematic way to filtering

"sin industries" related to tobacco, alcohol, pornography, weapons. . . Schofield et al.
(2019) select companies with ESG scores above certain thresholds. While this
method yields good portfolios ESG-wise, Alessandrini and Jondeau (2020) argue
that this may lead to underperforming portfolios because this selection reduces the
investment universe and because these "sin industries" can have higher returns be-
cause of their very exclusion.

Chen and Mussalli (2020) propose a Markowitz-like optimization method by
defining an ESG-compatible efficient frontier. Similarly, Hilario-Caballero et al.
(2020) add a third term to the mean-variance cost function, the portfolio exposure
to carbon risk, and use a genetic algorithm to solve this three-criterion optimization
problem. This method is equivalent to optimizing an ESG criteria under the con-
straint of specific risk and returns levels (Schofield et al., 2019), who also note that
the resulting portfolio can have a good global ESG score while containing assets
with bad ones.

Finally, Alessandrini and Jondeau (2020) elaborate on "smart beta" strategies,
in which investors build portfolios whose assets are not weighted according to their
market capitalization but rather to their exposure to some specific risk factors.
Bacon and Ossen (2015) explain that integrating ESG into investment strategies
can be simply achieved by tilting the asset weights according to their ESG scores,
while controlling the portfolio exposure to other risk factors. This procedure raises
the question whether ESG is a new risk factor or if optimizing ESG scores amounts
to exposing the portfolio to well-known ones. It is indeed a crucial point to explore
when attempting to improve portfolio performance with ESG scores (Anson et al.,
2020): instead of trying to obtain a premium by finding a suitable ESG factor, it is
more judicious to understand the impact of ESG data on the exposure to well-known
risk factors.

2.2 ESG scores: risk and returns
Reaching a consensus on the nature of the links between ESG and returns is hard.
Friede et al. (2015) aggregated more than 2000 studies on the topic: 41% did not find
any ESG impact on returns, 48% found these impacts to be positive and 9% negative.
Alessandrini and Jondeau (2020) and Anson et al. (2020) stress the fact that filtering
a portfolio on ESG scores leads to an improved durability of the investment but does
not yield a positive alpha. However, they did not find any proof of negative alpha
either, thus there may be no added value in integrating ESG data into portfolio
construction from an alpha point of view.

Plagge and Grim (2020) find no statistically significant under- or over-performance
of different equity funds specialized in ESG investing and argue that since the ESG
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scores are not of economic nature, they should not have any impact on the portfo-
lios, and that any information contained in ESG data should already be contained
in other risk factors.

This lack of consensus on the links between ESG and returns may be due to
the use of different assessment methodologies (including ESG scores from different
data providers), or to a wrong use of the ESG scores (Anson et al., 2020). Indeed,
De Franco et al. (2020) show that because ESG data have a very low signal-to-noise
ratio, using aggregated ESG scores leads to a high loss of information. It is then
necessary to use more granular scores to obtain more meaningful results. Moreover,
they emphasize that the links between ESG and returns are highly dependent on
the considered business industry and region. Cappucci (2018) finds that ESG scores
lack information on asset price returns and that a better indicator of returns is the
progress made by companies in the different ESG sub-fields.

Only a few papers are devoted to the relationship between ESG scores and risk.
Guo et al. (2020) train a deep learning model to predict a companys volatility using
ESG news. Chen and Mussalli (2020) show that focusing on ESG investments can
reduce the risk of under-performance as companies with good ESG scores can be
less exposed to both systemic and idiosyncratic risks.

2.2.1 Risk factors

Many studies, such as Renshaw (2018), find that ESG scores and well-known risk
factors are partially redundant. Anson et al. (2020) and Konqui et al. (2019) study
the variation of portfolio exposure to well-known risk factors when one integrates
ESG data in portfolio construction: the impact varies according to geographical
regions, which reduces the significance of global studies. Similarly, Alessandrini and
Jondeau (2020) explain that the discrepancies in ESG portfolio performances in dif-
ferent regions and industries can be attributed to different exposures to risk factors.
Furthermore, Breedt et al. (2019) argue that most of the financial performance of
a portfolio can be explained by well-known factors and that the residuals cannot
be explained by any other factors. For Breedt et al. (2019), the environmental and
social aspects of ESG are noise and the governance part is strongly correlated to
the quality factor; however, enriching ESG data with other types of information, or
preprocessing it, can bring added value. In the same vein, Bacon and Ossen (2015)
decorrelate the ESG scores from the other risk factors before integrating them into
strategies and are able to obtain added value from ESG scores.

2.2.2 Materiality of ESG data

For a better ESG integration, it is important to understand which ESG indicators
are the most material, i.e., have the largest impact on the financial performance of a
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company. According to Anson et al. (2020) and De Franco et al. (2020), materiality
is highly dependent on the chosen asset class, region and industry. Bacon and Ossen
(2015) build a materiality matrix using the LASSO method (Tibshirani, 1996). Their
matrix is specific to an industry and shows the magnitude of impact of a specific
ESG indicator on a company’s financial performance versus the probability of this
indicator having an impact.

2.2.3 Temporality of ESG data

Alessandrini and Jondeau (2020) warn that their results where obtained in a period
when a large amount of money was poured into ESG funds, which could have in-
creased their respective performance. De Franco et al. (2020) also remind that their
study was realised between 2009 and 2018 during a period when the market was
particularly bullish, which may affect the overall strength of ESG-based funds. For
Roncalli and Mortier (2019), the impact of ESG scores differs not only by region
and by industry but also according to the strategy test time period. That is why
Renshaw (2018) argues that any methodology which treats the historical ESG data
in the same way for every period is likely not relevant. A solution is to use back-
testing on several time periods, with several universes, to validate the results (Anson
et al., 2020). Finally, De Franco et al. (2020) and Plagge and Grim (2020) apply
the efficient markets theory in the context of ESG investing: it is possible that,
investor awareness rises as a function of time, the information included in ESG data
is included in the assets prices, leading to a loss of predictive power of ESG features
and thus of the embedded alpha.

2.3 Our contribution
In this paper, we study the relationships between ESG and returns and find sta-
tistically significant results using machine learning methods on a geographically
restricted universe of companies, with ESG data with the least amount of human
intervention, and at the right level of ESG score granularity. We include the time
evolution dimension in the models we train, propose a cross-validation scheme that
allows us to retain the most recent (and relevant) data and analyse how each ESG
score contributes to the overall performance of our algorithms. Finally, we propose
a new way to build a materiality matrix based on the explanability of the chosen
machine learning method.
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3 Datasets

3.1 Financial data
We use the following data sets:

• Stock prices. We use daily close prices, adjusted for dividends and foreign
exchange rates. BNP Paribas internal data sources.

• Market capitalization. BNP Paribas internal data sources.

• Fama-French market, size and value factors: these factors are taken from the
online French data library (Fama and French, 2021). They are all computed
according to the Fama and French methodology exposed in Fama and French
(1993).

• Risk-free rate: this data is also taken from Fama and French (2021) and
computed according to the Fama and French method.

In addition, metadata like the TRBC Sector at levels 1, 2 and 3 and the country
of incorporation are used and come from Refinitiv data sources.

3.2 ESG Data
ESG data are provided by Refinitiv. Their database alleviates some of the challenges
listed above:

1. The coverage of the dataset is sufficient to extract meaningful results. Figure
1 shows the number of samples in the geographical regions as defined by Fama
and French (Fama and French, 2021): Europe, North America, Japan, Asia-
Pacific excluding Japan and Emerging Countries. Refinitiv ESG data start
in 2002 and the number of samples per year increased by several folds until
2019, as shown in Fig. 2. The drop in 2020 is due to the fact that not all
the ESG scores had been computed by Refinitv when we had access to the
dataset (many companies had not yet published enough data). It will not be
an important issue as training does not take place in 2020 but it may have an
impact on the test results of this particular year.

2. Scores are built with a well documented methodology explained in Refinitiv
(2021). Every ESG score ranges between 0 and 1, 1 being the best score.
In addition, the same methodology is used throughout the years, yielding
consistent data.

3. Human intervention is limited to some quality checks.
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Figure 1: Number of samples in each Fama-French region in the Refinitiv ESG
dataset.

4. Scores can be updated up to 5 years after first publication, which is beneficial
in an explanatory setting, as the data become more accurate. In a purely
predictive setting however, this adds noise and look-ahead bias as we do not
have point-in-time data, i.e., we do not know the initial and intermediate ESG
estimates.

Refinitiv ESG data includes samples from different regions of the world. Each
region has specific regulatory frameworks and ESG transparency rules. This is why
this paper focuses on the European region and includes all the companies in the
Refinitiv ESG dataset whose country of incorporation is in Europe or in a European-
dependent territory.

The European ESG dataset contains 20509 samples for 2429 companies uniquely
identified by their ISIN. The time evolution of the number of samples per year is
reported in Fig. 3. All the sectors have enough data, with the notable exception of
the Academic and Educational Services sector (see Fig. 4).

4 Methods

4.1 Problem settings
Our goal is to understand how and what ESG features participate in the formation
of price returns. More precisely, we examine whether ESG features bring additional
information with respect to well-known factors. In a multi-factor model, one writes
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Figure 2: Time evolution of the number of samples in the Refinitiv ESG dataset.
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Figure 3: Time evolution of the number of samples per year in the Refinitiv ESG
dataset - Europe.
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Figure 4: Number of samples for TRBC L1 Sector in the Refinitiv ESG dataset -
Europe.
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at time t

ri,t = rf,t +
∑

k

wi,kFk,t + αi + ϵi,t (1)

where ri,t is return of asset i, rf,t the risk-free rate, Fk,t the value of factor k at
time t and wi,k is the factor loading; the idiosyncratic parts are αi, the unexplained
average return, and the zero-average residuals ϵi,t. In this work, we use the CAPM
(Capital Asset Pricing Model) model and its extension, the Fama-French 3-factor
model that includes market (rm), size (SMB), and value (HML) factors (Fama and
French, 1993).

When data is abundant and of constantly high quality, the determinants of the
idiosyncratic part can be found with standard tools. However, in our case, we must
settle for a less ambitious goal. We investigate indeed here the most basic question:
can ESG features help explain the sign of the idiosyncratic part of price returns?
Mathematically, one needs to explain

Yi,t = 1 + sign(αi + ϵi,t)
2

(2)

with the candidate features.

This work takes a machine learning approach to this problem and treats it as
a classification problem: Yi,t defines two classes as it can take two values. Thus,
for each possible couple Yi,t, one has a vector of P potentially explanatory factors,
called features in the following. Let us relabel all the couples (i, t) by the index
n ∈ {1, · · · , N}. The classification problem consists in explaining Yn by a vector
Xn with P components, or equivalently, to explain the vector Y ∈ {0, 1}N from the
lines of matrix X ∈ RN×P . Y is called the target and X the feature matrix. The
problem is then to train a machine learning method to learn the mapping between
the lines of X and the components of vector Y . Once the training is complete, such
a model takes as input a vector of features and outputs the probability that these
features correspond to one class (in a two-class problem).

The state of the art is Gradient Boosting models (Friedman, 2001), as shown
for instance in Shwartz-Ziv and Armon (2021). The spirit of gradient boosting
consists in using a sequence of weak learners (wrong models) that iteratively correct
the mistakes of the previous ones, which eventually yields a strong learner (good
model). We use here decision trees as weak learners. Different implementations
of the Gradient Boosted Decision Trees method exist, e.g. XGBoost (Chen and
Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2017).
We use here LightGBM. The advantage of such methods with respect to logistic
regression is that they are able to learn more generic, non-linear, functional forms
and have accordingly superior performance.
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The models are trained to minimize the cross-entropy (cost function), also known
as LogLoss, defined as

L = − 1
N

N∑
i=1

yi log(pi) + (1 − yi) log(1 − pi),

where pi is the model probability that sample i belongs in category 1 and yi ∈ {0, 1}
is the true class (which selects the suitable term of the sum for each i). This
type of loss implicitly assumes that both true classes appear with roughly the same
frequency in the training set, which is the case with 51.7% of samples belonging to
class 1 and 48.3% to class 0.

4.2 Training features
The Refinitiv ESG dataset contains several levels of granularity. We choose to train
our models with the 10 pillar scores described in Appendix A (Resource Use, Emis-
sions, Innovation, Workforce, Human Rights, Community, Product Responsibility,
Management, Shareholders, CSR Strategy) and the aggregated Controversy score.
This level of granularity is a good compromise.

We add five non-ESG features (market capitalization, country of incorporation
and TRBC Sector at levels 1, 2 and 3). These features provide the benchmark
features needed to settle the question of the additional information provided by
ESG features .

4.3 Target computation
We compute the coefficients of the regression defined in Eq. 2 with monthly factors
available online at Fama and French (2021) and monthly price returns over periods
of 5 civil years. For instance, the regression coefficients used to compute the 2017
target possibly explained by 2017 ESG features are computed with historical data
ranging from 2013 to 2017. We then compute targets over the year corresponding to
the year of the ESG features: as we are in an explanatory setting, we want to explain
the return of a company for a specific year by the ESG profile of this company during
the same year.

4.4 Cross-validation and hyperparameter tuning in an in-
creasingly good data universe

The usual strategy of a single data split into causal consecutive train, validation and
test data sets may not be fully appropriate for the currently available ESG features.
This is because the amount of data grows from a very low baseline both quantity–
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Classification : Internal

Model 1 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

Model 2 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

Model 3 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

Model 4 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

Model 5 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

Training Set

Validation Set

Test set

Most recent years

Example with 8 companies: training and 

validation sets built by companies

Figure 5: Company-wise cross-validation: the validation sets consists of randomly
selected companies, which allows training to account for most of the most recent
data.

and quality–wise, that was not exploitable, to an amount that more likely is. Thus,
not only the data is non-stationary, but its reliability and quality keeps increasing.
As a consequence, the cross-validation time splitting schemes known to work well
in the context of non-stationary time series (Bergmeir and Benítez, 2012) may be
improved on.

For this reason, we experiment with K-fold company-wise cross-validation where
75% of companies are randomly assigned to the train and the remaining 25% ones to
the validation set (see Fig. 5). In other words, there are K different (train-validation)
sets. For each of the K train sets, we train 180 models, varying 12 hyperparameters
of the LightGBM (maximum tree depth, learning rate, etc.) and pool the five best
ones according to model performance in the respective validation sets. In this way,
models are trained with most of the most recent (hence, more relevant) data, while
validating the model also with the most recent and best data. If the dependencies
completely change every year, this validation scheme is bound to fail. As we shall
see, this is not the case. We take K = 5.

In addition, we use expanding (train+validation)-test windows, using the last
year as the test window, which allows us to perform a time-wise analysis of the
performance of the models. Because data is insufficient before 2015, we have five
different periods: the first test year is 2016 and the last one is 2020. We thus train
and validate K × 5 = 25 models.
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For each testing period, we will compare the performance of the company-wise
5-fold random splits with that of the standard temporal split (75% train / 25%
validation).

5 Results
We investigate here the results of the standard temporal split and the 5-fold company-
wise split for a target computed using the CAPM model, as described in 4.1. Models
trained using the Fama-French 3-factor model lead to less clear-cut performance;
their results are relegated to Appendix B.

We first assess the quality of the models according to the cross-entropy loss, using
their direct probability outputs. We also assess the end result, i.e., the predicted
class. As it is usual, we map the output, a probability pi, to classes 0 and 1 with
respect to a 0.5 threshold. This allows us to compute the balanced accuracy, defined
as the average of the sensitivity and the specificity. Sensitivity equals the ratio of
true positives to the number of positive samples. Specificity is the ratio of the true
negatives to the number of negative samples. An advantage of the balanced accuracy
over classical accuracy is that balanced accuracy accounts for class unbalance in the
test set. By definition, it assigns a score of 0.5 if the model did not learn anything
significant.

We check that the performance of the models in the test sets bear some rela-
tionships with their performance in the validation sets. More precisely, for each
(train+validation)-test period, we investigate the dependence between the cross-
entropy losses in the validation and test sets for the best models trained during
the hyperparameters random search, which makes it possible to characterize the
training quality year by year. A significantly positive relationship shows that these
models did learn persistent relationships, i.e., something useful. Mathematically,
we assess the relationship Ltest

m versus Lvalidation
m for each model m ranking for the

100 models with the best validation cross-entropy losses, for each of the five sets
of (train+validation)-test sets. Figures 6a to 6e display these relationships for the
company-wise cross-validation scheme and adds a linear fit. Figures of the same type
for the standard time splitting scheme can be found in Appendix C. Generally, both
test and validation cross-entropy losses are positively correlated, except for 2016.
We believe that this comes from the fact that ESG data were of insufficient quality
before that date. Year 2020 is also special: in addition to the coronavirus crisis, the
data for 2020 was obtained at the beginning of 2021 when not all companies had
ESG ratings, leading to a smaller dataset and a (mostly likely) biased test set.

We compute the Pearson correlation, the R2 of the linear fit, Kendall tau and
its p-value for the standard temporal split and the 5-fold company-wise split, which
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Figure 6: Company-wise cross-validation: test set cross-entropy versus validation
cross-entropy of the 100 best models of the random hyperparameters search.
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Company-wise 5-fold cross-validation
Year Pearson correlation R2 Kendall tau p-value of Kendall tau
2016 -0.54 0.29 -0.36 8.0e−8

2017 0.14 0.021 0.12 6.7e−2

2018 0.47 0.22 0.30 1.1e−5

2019 0.73 0.54 0.58 1.5e−17

2020 0.27 0.071 0.19 5.4e−3

Standard temporal split
Year Pearson correlation R2 Kendall tau p-value of Kendall tau
2016 -0.43 0.18 -0.29 1.6e−5

2017 0.46 0.21 0.33 9.2e−7

2018 0.46 0.21 0.34 7.7e−7

2019 0.47 0.22 0.33 1.3e−6

2020 0.47 0.22 0.39 7.6e−9

Table 1: Dependence measures between the cross-entropies (prediction error) in the
validation and test sets, for the 100 best models of the random hyperparameters
search.

are reported in Tab. 1. This latter allows us to compare the respective advan-
tages and disadvantages of each validation strategy. All the dependence measures
increase much from 2017 to 2019 for company-wise splits. The case of temporal
split shows the limitations of this approach: the performance measures are roughly
constant, which is consistent with the fact that adding one year of data to the
train+validation dataset does not lead to much change. Display of the relationship
Ltest

m versus Lvalidation
m for the standard temporal model can be found in Appendix C,

in Fig. 16.

Our second and most important aim is to establish that ESG data contains
additional useful and exploitable information. To this end, for each train period
defined above, we train a model with both ESG and benchmark features and another
one with the benchmark features only. We assess both the absolute performance
measures of the models and the amount of additional information brought by ESG
features by computing the difference of performance measures in the test sets.

The company-wise splits make it easy to compute error bars on various measures:
instead of training K = 5 models, we train 100 of them and then compute the median
performance on 100 random subsets of size K = 5 among these 100 models. Table 2
provides results on absolute performance of the models for each test period, for both
the company-wise and the standard temporal splits. Both splitting methods have a
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Company-wise 5-fold cross-validation
Only Benchmark features Benchmark and ESG features

Year Balanced Accuracy Cross-entropy loss Balanced Accuracy Cross-entropy loss
2016 52.6 70.6 51.2 72.8
2017 57.4 69.2 56.9 69.6
2018 57.5 68.1 57.9 68.2
2019 65.6 63.1 67.9 62.7
2020 59.6 69.3 61.9 67.4

Standard temporal split
Only Benchmark features Benchmark and ESG features

Year Balanced Accuracy Cross-entropy loss Balanced Accuracy Cross-entropy loss
2016 53.2 68.8 51.8 70.3
2017 56.1 68.2 57.7 68.0
2018 56.2 67.5 58.1 67.4
2019 64.3 64.5 66.4 63.8
2020 58.5 70.5 61.0 69.6

Table 2: Performance measures in percent on the test set for both types of valida-
tion splits. The numbers for the company-wise splits are the median values of the
performance of 100 random samplings of 5 models among 100 random company-wise
validation splits.

clearly decreasing cross-entropy (a proxy for prediction error) as a function of time,
except for 2020, which shows once again the special nature of this year in our dataset.
This shows that the relevance of ESG features in price return formation increases as
a function of time. Balanced accuracy displays a similar improvement before 2020.
However, this time, company-wise splits yields increasingly better than temporal
splits, which we believe is an encouraging sign of its ability to better leverage the
latest and best data.

Figure 7 displays the time evolution of the cross-entropy and the balanced accu-
racy in the test sets. The boxplots are computed for the company-wise splits from
the 100 associated predictions; the orange lines are the median of these performance
measures, the rectangle delimits the first and third quartiles and extreme limits are
situated before the first quartile minus 1.5 time the interquartile range and after the
third quartile plus 1.5 time the interquartile range. Any point outside of this range
is considered an outlier.

Company-wise 5-fold cross-validation outperforms the standard time splitting
scheme, which supports our claim that the not fully mature nature of ESG data can
be partly alleviated by a suitable validation scheme.

Figure 8 shows the difference of performance between the models trained on
ESG and benchmark features and the models trained only on benchmark features,
for the company-wise 5-fold cross-validation. ESG features contain more relevant
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Figure 7: Performance measures on the test sets of the two train and validation
schemes. The boxplots show the performance of 100 random samplings of 5 models
among 100 random company-wise validation splits.

information as time goes on. Two explanations spring to mind: long positions are
more and more driven by ESG-conscious investors, or the quality of data increases
as a function of time, which makes the relevance of ESG scores more apparent.

6 Interpretability
We provide now a breakdown of the impact of the different ESG features on the
predicted probability of having positive idiosyncratic returns in the CAPM model.
Because of the superior performance of the company-wise K-fold cross-validation,
we use this method in the following.

6.1 Shapley values
Shapley values, first introduced in the context of game theory (Shapley, 1953),
provide a way to characterize how each feature contributes to the formation of the
final predictions. Shapley values and their uses in the context of machine learning
are well described in Molnar (2020).

The Shapley value of a feature can be obtained by averaging the difference of
prediction between all the combinations of features containing and not containing
the said feature. For each sample in our dataset, each feature possesses its own
Shapley value representing the contribution of this feature to the prediction for this
particular sample. Shapley values have very interesting properties, one of them
being the efficiency property. If we note ϕj,i the Shapley value of feature j for a
sample xi and f̂(xi) the prediction for the sample xi, Shapley values must add up
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Figure 8: Performance measures in comparison to benchmark, for the company-wise
5-fold cross-validation.

to the difference between the prediction for the sample xi and the average of all
predictions EX(f̂(X)) and then follow the following formula:

∑p

j=1
ϕj = f̂(x) − EX(f̂(X)) (3)

The dummy property also states that the Shapley value of a feature which does
not change the prediction, whatever combinations of features it is added to, should
have a Shapley value of 0.

Shapley values computation is quite time and memory intensive. Lundberg and
Lee (2017) and later Lundberg et al. (2018) proposed a fast implementation of an
algorithm called TreeSHAP, which allows to approximate Shapley values for trees
models like the LightGBM, which we use in the following and refer to as SHAP
values.

Let us just note that, as we are using a LightGBM model in classification, the
prediction is not directly the probability of belonging to the class 1, but rather the
logit associated with this probability. Probability is an increasing function of the
logit and thus SHAP values obtained for the logit can easily be transformed for the
probability. Indeed, for a sample xi, the predicted probability of belonging to class
1 pi is linked to the logit logiti according to :
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Figure 9: SHAP values distribution.

pi = 1
1 + e−logiti

(4)

6.1.1 Evolution of ESG features contribution from 2017 to 2020

In Fig. 9, we plot the distribution of SHAP values for each feature and for all test
samples for models trained from 2002 to 2016 (9a) and trained from 2002 to 2019
(9b). The first teaching of this plot is that the contribution of ESG features to
the predicted probability of having a positive return has not dramatically increased
with the additional, more recent and more complete data. Benchmark features are
the ones which have the biggest impact on the prediction. However, we observe an
important number of outliers for some SHAP values associated with some features,
demonstrating that these ESG features have more impact on the prediction for these
particular samples. It would be interesting to study these outliers to understand
more why ESG features are more important in explaining price returns for some
samples than others.

For instance, we observe in Fig. 10 the score distributions for the outliers of
the Controversy SHAP values. All of these scores are below 0.9, suggesting that
the Controversy score is more informative when a company has indeed suffered
controversies during the year and was then not able to reach a score of 1. Observing
outliers of SHAP values and their associated scores, we can make the hypothesis that
ESG features are important and have a strong impact in the explanations of past
returns if their score is extreme. This would mean that ESG information would lie
in extreme scores, more standard scores bringing much less information. Checking
this hypothesis is beyond the scope of this work and is left for future investigations.
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Figure 10: Distribution of data for lowest outliers of SHAP values of 2020, for
Controversy score.

6.2 Partial dependence plots: marginal effect of ESG fea-
tures

6.2.1 Definition

A partial dependence plot shows the marginal effect of features on the prediction
made by the model. It is a way of understanding the links the model made from
features to the target, and that it had understood from the data. It also shows if this
relation is linear or not, monotonic or not, . . . Partial dependence plots were first
introduced in Friedman (2001) and are also well described in Molnar (2020). Briefly,
a partial dependence plot for a feature of interest is obtained by marginalizing the
predicted output over the values of all other input features. This marginalization
is done by calculating averages in the training data, using a Monte-Carlo method,
with a fixed value for the features of interest.

An important limitation of a partial dependence plot is that their methodology of
construction assumes independence between the features, which does not seem to be
the case for ESG features. This limitation is neglected here. All partial dependence
plots are made with the most recent model, trained with data from 2002 to 2019,
on a subsample of recent ESG data.

6.2.2 Marginal effect of the ESG features

Using partial dependence plots, we first compute the marginal effect of each ESG
feature on the probability of having a positive return during the year of publication
of the ESG features (Fig. 11). Figure 12 reports the sector by sector probability of
having a positive predicted return.

Figure 11 shows that ESG features are mostly not related in a monotonic way
with the probability of having a positive return. A clear exception would be the
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Figure 11: Marginal effect of each ESG feature on the predicted probability of having
a positive return.

Controversy score, on the top left, which shows a strong monotonic relation which
strongly implies that being subject to controversies during a year leads to a lower
probability of having a positive return. For the 10 pillar scores, one sees a much
weaker dependence. For example, the probability of positive price return increases by
around 1% when the Product Responsibility and Shareholders scores increase from
0 to 1. Still, a trend is present for most of these ESG features: partial dependence
plots for features such as Resource Use, Innovation, Community or Management
seems to be decreasing, suggesting that obtaining better ESG scores and practices
comes at the price of a slightly degraded financial performance.

6.2.3 Marginal effect of the ESG features sector by sector: materiality
matrices

Adding the section dimension to partial dependence plots yields so-called materiality
matrices. In our setting, it is a table whose rows represent EGS features and whose
columns are economic sectors. A cell of this matrix shows, in percentage, by how
much the probability of having a positive return is increased by going from a low
score (between 0 and 0.2) to a high one (by 0.8 to 1). This quantity is easily obtained
using partial dependence plots: for a specific selected economic sector, we can plot
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Figure 12: Marginal effect of the sector (TRBC Sector L1) feature on the predicted
probability of having a positive return.

the evolution of the predicted probability against the feature value. Making the
strong hypothesis of a monotonic and close to linear relationship, we can compute
the value in the cell as the slope of the trend line of the precedent plot.

The obtained materiality matrix is presented in Fig. 13. All the TRBC Level 1
sectors are included. Results for Academic & Educational Services should be handled
with care as they are not based on as many samples as the ones for other sectors, as
shown in Fig. 4. Some ESG scores have some strong impact on the probability of
having positive returns. The Controversy score especially has a similar impact for
all sectors: not suffering controversies during the year increases the probability of
having a positive return. On the contrary, the CSR Strategy row shows that working
towards the integration of social and environmental dimensions into the day-to-day
decision-making processes, in addition to economic and financial ones, leads to a
loss of financial performance. It is also the case for Resource Use, Environmental
Innovation, Community, and Management scores, each with a different magnitude.

Furthermore, we bucket the companies which serve to build this materiality
matrix by market capitalization. We choose three buckets, with small market cap-
italization being below 2 billion euros, mid ones between 2 and 10 billion euros
and large ones above 10 billion euros, which correspond to the ones Refinitiv use
when calculating the Controversy score. The three obtained materiality matrices
are presented in Fig. 14. The marginal effect of the Controversy score remains the
same, even if it is slightly smaller for the small caps. However, companies with a
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large market capitalization benefit from a better impact of ESG: for some features,
working toward better ESG scores can preserve or even boost financial performance,
whereas it would be the opposite for small caps. For instance, large caps companies
have an average materiality of 0.8 for the Resource Use score and 1.5 for the Emis-
sions scores, whereas small caps ones have respectively average scores of -4.6 and
-1.1, denoting a clear difference.

To obtain a statistically meaningful interpretation of these results, we need to
account for the fact that to each cell corresponds coefficients of a linear fit with
associated p-values, i.e., one makes one null hypothesis per cell. We thus need
to use multiple hypothesis correction to check globally which cells are statistically
significant results. Here, we choose to control the False Discovery Rate with the
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). We set the FDR
to 5%, which means that there are only about 3 false discoveries in each of the
reported tables.

7 Conclusion
While ESG data are not yet fully mature and lack long enough quality records to be
amenable to easy conclusions, powerful machine learning and validation techniques
make it already possible to show that they do influence yearly price returns, and
increasingly so. We stress that our results are specific to the Refinitiv ESG dataset,
for the European market. Breaking down their influence sector by sector, subscore-
wise and according to market capitalization clearly demonstrates that an average
approach will fail to be informative. We found in particular that the relationship
between controversies and price return is the most robust one. The average influence
of all the other ESG scores depends much on the capitalization of a company: strik-
ingly, most of the statistically significantly influential ESG scores weigh negatively
on price returns of small or mid-size companies. Large-capitalization companies on
the other hand have significantly advantageous ESG score types.

While this work proposes a methodology suitable to an explanatory setting, our
methodology can be used to explore the predictive power of ESG data provided that
data revision is under control.

While this work focuses on explaining the idiosyncratic part of price returns
derived from the CAPM model, those derived from the Fama-French 3-factor model
lead to results that are less clear cut for the time being but less and less so as
time goes on: the correlations between the errors in the validation and test sets
increased in 2018 and 2019 and thus ESG data seems to become more informative.
Future work will focus on the study of the full 2020 and 2021 years to check if this
is confirmed.

Future work will also include studying outliers of the SHAP values distribution
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Figure 13: Materiality matrix: marginal effects of the combination ESG fea-
ture/Sector feature on the predicted probability of having a positive return. Blank
cells are those which were not found statistically significant by the Benjamini-
Hochberg procedure.
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(b) Mid market capitalization (>2B, <10B)
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Figure 14: Materiality matrices: marginal effects of the combination ESG fea-
ture/Sector feature on the predicted probability of having a positive return, bucketed
by market capitalization. Blank cells are those which were not found statistically
significant by the BenjaminiHochberg procedure.
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and verifying the hypothesis that extreme scores in the ESG field are more infor-
mative. In addition, the link between ESG and equity returns is complete only if
the systematic and idiosyncratic aspects of risks and returns are studied together
(Giese and Lee, 2019): indeed, it may be that having better ESG scores not only
decreases price returns but also risk.
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A 10 Pillar Scores

A.1 Environmental scores
• Resource Use: Reduce the use of natural resources and find more eco-efficient

solutions by improving supply chain management.

• Emissions: Commitment and effectiveness towards reducing environmental
emissions in the production and operational processes.

• Innovation: Reduce the environmental costs for customers, and thereby cre-
ating new market opportunities through new environmental technologies and
processes or eco-designed products.

A.2 Social scores
• Workforce: Job satisfaction, healthy and safe workplace, maintaining diversity

and equal opportunities, development opportunities for workforce.

• Human Rights: Respecting the fundamental human rights conventions.

• Community: Commitment towards being a good citizen, protecting public
health and respecting business ethics.

• Product Responsibility: Producing quality goods and services integrating the
customer’s health and safety, integrity and data privacy.

A.3 Governance scores
• Management: Commitment and effectiveness towards following best practice

corporate governance principles. Composition, remuneration, transparency of
the board.

• Shareholders: Equal treatment of shareholders, use of anti-takeover devices.

• CSR Strategy: Integration of social and environmental dimensions into the
day-to-day decision-making processes, in addition to economic and financial
ones.
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Company-wise 5-fold cross-validation
Year Pearson correlation R2 Kendall tau p-value of Kendall tau
2016 -0.23 0.052 -0.14 4.4−2

2017 -0.054 0.0030 0.010 8.8−1

2018 0.29 0.085 0.19 4.2−3

2019 0.67 0.44 0.49 7.1−13

2020 0.053 0.0028 0.017 8.0−1

Table 3: Dependence measures between the cross-entropy losses in the validation
and test sets, for the 100 best models of the random hyperparameters search, for a
target computed using the Fama-French 3-factor model.

Company-wise 5-fold cross-validation
Only Benchmark features Benchmark and ESG features

Year Balanced Accuracy Cross-entropy loss Balanced Accuracy Cross-entropy loss
2016 57.9 65.8 56.0 66.7
2017 55.0 70.6 55.2 71.6
2018 56.0 70.4 56.0 71.1
2019 62.4 64.6 64.7 64.1
2020 56.1 72.2 55.3 71.3

Table 4: Performance measures in percent on the test set, for a target computed
using the Fama-French 3-factor model.

B Results with the target derived from the Fama-
French 3-factor model

The following results were obtained with a target derived from the Fama-French
3-factor model as exposed in 4.1. This target was not selected as results were not
as good as those obtained with the target derived from the CAPM model. How to
interpret results with this target, especially in terms of materiality matrices, was also
less clear. For the interested reader, we present our results, using a 5-fold company-
wise splitting strategy, in Tab. 3 and 4. Display of the relationship between Ltest

m

versus Lvalidation
m for each model m ranking in the top 100 validation cross-entropy

losses are shown in Fig. 15.
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Figure 15: Company-wise cross-validation: test set cross-entropy versus validation
cross-entropy of the 100 best models of the random hyperparameters search, for a
target computed using the Fama-French 3-factor model.
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Figure 16: Standard temporal split: test set cross-entropy versus validation cross-
entropy of the 100 best models of the random hyperparameters search.

C Relationship between validation and test cross-
entropy losses for the temporal train/validation
scheme

We assess the relationship Ltest
m versus Lvalidation

m for each model m ranking for the
100 models with the best validation cross-entropy losses, for each of the five sets of
(train+validation)-test sets. Figures 16a to 16e display these relationships for the
standard time splitting scheme.
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