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Abstract
We consider two rubidium atoms, prepared in the same S or P Rydberg states, near an optical
nanofibre, and we determine their van der Waals interaction potential as a function of their
separation along the nanofibre axis, their distance to the nanofibre axis, and their relative
azimuthal angle. We compare results obtained through direct diagonalisation of the Hamiltonian
(including quadrupolar interaction terms) with second-order perturbation calculations, and we
identify which couplings mainly contribute to the potential in the presence of the nanofibre and in
free-space. We relate the appearance of new allowed couplings to the broken rotation symmetry
around the interatomic axis due to the presence of the fibre. These couplings induce novel features
and cause a reshaping of the interaction anisotropy and formation of an interaction potential well
for P states near the nanofibre. Our work constitutes an important step in the assessment of
Rydberg atom-nanofibre quantum interfaces and devices.

1. Introduction

Connecting atomic quantum registers via photonic channels into a quantum network is a promising way to
achieve scalability, one of the crucial challenges in quantum technologies. Free-space scenarios considered so
far [1–4] are relatively easy to implement but suffer the drawback of strong losses. Optical nanowaveguides
constitute an interesting alternative which offer strong transverse confinement of the field [5] and hence
strong coupling to atomic nodes in their vicinity. In particular optical nanofibres (ONFs) received much
attention within the past two decades [6–8]. Their evanescent guided modes have been used to trap [9–13]
and detect atoms and related phenomena [14–18]. Recently, a super-extended guided mode, which resides
almost entirely outside the fibre [19], could be achieved by using an extremely thin ONF.

On the other hand, within the past two decades, the giant van der Waals interactions between Rydberg
atoms and the associated blockade phenomenon [20] have been the main ingredient in many quantum
information proposals, including atomic quantum registers [21] and repeaters [22]. In free-space, the energy
shifts induced by the van der Waals interaction between two atoms prepared in levels of principal quantum
numbers n> 50 and a few µm apart can be of the order of tens of GHz and effectively forbid their
simultaneous resonant laser excitation. This blockade mechanism was employed to generate entanglement
and perform gates in systems of individual atoms and atomic ensembles [23].

Recently, preliminary steps were taken towards interfacing Rydberg atoms with an ONF. The excitation of
cold 87Rb atoms towards the Rydberg 29D state was experimentally demonstrated at submicron distances
from an ONF surface in a two-photon ladder-type excitation scheme [24]. The properties of highly excited
alkali atoms near an ONF were also investigated theoretically. The emission rates of a sodium atom into the
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guided and radiative modes of a silica nanofibre were studied in the mode-function approach [25] while the
energy shifts of a Rydberg-excited 87Rb atom [26] were calculated in the framework of macroscopic quantum
electrodynamics [27]. In this article, we proceed further towards building a Rydberg-atom-ONF interface
and theoretically investigate the interaction between two Rb atoms in S and P Rydberg states in the vicinity of
a silica ONF. Our goal is to determine how the fibre modifies the features of the Rydberg–Rydberg
interaction—magnitude, shape—and ultimately the Rydberg blockade phenomenon with respect to the
free-space case. This study follows other works in plane geometries involving Rydberg atoms in front of a
conducting half-space [28].

This article is structured as follows. In section 2, we first present the system under consideration, fix
notations and specify the hypotheses we make. In particular, we briefly recall the form of the interaction
Hamiltonian between two Rydberg atoms in the presence of a dielectric medium. In section 3, we study how
the presence of the fibre modifies the interaction potential between two atoms prepared in the same state
|nS1/2⟩, with n⩾ 30, in specific geometric configurations. In particular, we investigate how this potential
evolves with the interatomic distance and the principal quantum number n. The novel features observed are
attributed to the appearance of new couplings, forbidden in homogeneous free space but allowed by the
fibre-induced symmetry breaking. In the case of two atoms prepared in the state |nP3/2,Mj =

3
2 ⟩ these new

couplings may even dominate those existing in free-space and strongly enhance the potential, as we show in
section 4. Due to the existence of a Förster quasi-resonance, the interaction may also be strongly modified in
its nature as n increases. While the interaction is purely repulsive in free-space, we show that, in the vicinity
of the nanofibre and in certain geometric configurations, an attractive interaction potential well can form. In
section 5, we finally investigate how the interaction potential depends on the relative direction of the atomic
orbital momenta to the interatomic axis in the presence of the fibre and compare to the case of free-space
before concluding in section 6.

2. Presentation of the system, hypotheses and basic equations

We shall consider the idealised configuration represented in figure 1. Two rubidium atoms, 87Rb, denoted by
A and B, respectively, are located near an infinite cylindrical silica ONF of radius a. The Cartesian, (x,y,z),
and cylindrical, (ρ,ϕ,z), coordinates and associated bases,

(
ex,ey,ez

)
and (eρ,eϕ,ez), are defined in figure 1.

In particular, the centres of mass of atoms A and B are identified by their cylindrical coordinates (RA,0,0)
and (RB,∆ϕ,∆z), respectively.

As we shall see, the van der Waals interaction between two Rydberg atoms is mainly due to transitions
between the initial state and close lying excited states. In these highly excited levels, the hyperfine structure is
negligible. The atomic state is therefore correctly specified by (a) the principal quantum number n, (b) the
azimuthal quantum number L, (c) the total angular momentum quantum number J ∈

[[∣∣L− 1
2

∣∣ , ∣∣L+ 1
2

∣∣]]
and (d) the magnetic quantum numberMJ associated with the projection of the total angular momentum
onto the quantisation axis of unit vector eq, i.e. Ĵq ≡ Ĵ · eq. Moreover, for our choice of principal quantum
numbers n= 30− 45, the wavelengths of the transitions which substantially contribute to the van der Waals
interaction potential typically exceed 50µm, so they are at least one order of magnitude larger than all the
dimensions of the system—radius of the nanofibre, distance of the atoms to the fibre axis and interatomic
separation. This justifies our use of the nonretarded approximation. We also note that guided modes play no
significant role here since for the relevant transition frequencies they are all cut off, but for the fundamental
one, HE11, whose contribution is found to be negligible.

In the nonretarded approximation, the interaction between two Rydberg atoms near a medium can be
described by the following effective Hamiltonian, including electric dipolar and quadrupolar contributions
(see [28] for details)

Ĥeff =
1

ϵ0
d̂A ·T(rA,rB) · d̂B +

1

ϵ0
d̂A ·T(rA,rB)⊗∇B • Q̂B +

1

ϵ0
Q̂A •∇A ⊗T(rA,rB) · d̂B

+
1

ϵ0
Q̂A •∇A ⊗T(rA,rB)⊗∇B • Q̂B (1)

where (a) d̂K=A,B =−er̂K and Q̂K=A,B =− e
2 r̂K ⊗ r̂K are the electric dipolar and quadrupolar moment

operators, respectively, of atom K= A,B, with r̂K denoting the position operator of the valence electron in

atom K= A,B relative to the atomic centre of mass, (b) T(rA,rB)≡ limω→0+
(
ω
c

)2
G(rA,rB,ω), (c)∇K is the

gradient operator with respect to the coordinates of atom K= A,B, and (d) a • b≡
∑

i,j aijbji is the Frobenius

product between two tensors a et b defined by their components
{
aij,bij

}
in an orthonormal basis [27]. As

the dyadic Green’s function it is derived from, the tensor T comprises a free-space component,
T0 (r) =− 1

4πr3AB

(
I− 3uAB ⊗uAB

)
, where rAB ≡ |rA − rB| and uAB ≡ 1

rAB
(rB − rA), and a reflected part due to

2
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Figure 1. Two 87Rb atoms, (A,B), near a silica optical nanofibre. Notations. The Cartesian frame (Oxyz) is represented: (i) its
origin, O, is the projection of atom A’s centre of mass on the fibre axis, (ii) the (Oz) axis coincides with the fibre axis and is
directed from atom A towards B, (iii) the (Ox) axis is along (OA), and directed from O towards atom A, (iv) the (Oy) axis is
chosen so that (Oxyz) is a direct frame. The unitary Cartesian basis (ex,ey,ez) is represented on the figure. A pointM of Cartesian
coordinates (x,y,z) is also identified by its cylindrical coordinates (ρ ⩾ 0,0 ⩽ ϕ < 2π, z) defined by (x= ρcosϕ,y= ρ sinϕ,z).
In particular, atoms A and B have respective cylindrical coordinates (RA,0,0) and (RB,∆ϕ,∆z). The local cylindrical basis at
pointM(ρ,ϕ, z) is defined by the unit vectors eρ ≡ cosϕex + sinϕey, eρ ≡− sinϕex + cosϕey. The fibre radius is denoted by a.

the presence of the fibre, denoted by T1. The explicit form of T1 is too cumbersome to be reproduced here,
the expression of the reflected part of the dyadic Green’s function,G1, from which T1 is deduced can be found
in [26]. Note that, in free-space, the dipole-dipole component in the first line in equation (1) reduces to

Ĥeff,0 =− 1

4πϵ0r3AB

[
d̂A · d̂B − 3

(
d̂A ·uAB

)(
d̂B ·uAB

)]
(2)

which allows one to recover, to second order of perturbation theory, the electrostatic potential between

atoms A and B, respectively, prepared in states (|m⟩ , |n⟩), U(0)
AB (rA,rB) =− C6

r6AB
, with

C6 =
1

16ℏπ2ϵ20

∑
k,l

∣∣∣dAmk · d
B
nl − 3

(
dAmk ·uAB

)(
dBnl ·uAB

)∣∣∣2
ωA
mk +ωB

nl

(3)

where (|k⟩ , |l⟩) denote intermediate states of atoms A and B.
In the following sections, we study the interaction potential between two 87Rb atoms, prepared in various

Rydberg states, that we numerically obtain either through direct diagonalisation of the effective Hamiltonian,
equation (1), in a truncated basis or via second order perturbation theory. The truncated basis typically

comprises states
{∣∣∣n(A)L(A)J(A)M(A)

J ;n(B)L(B)J(B)M(B)
J

〉}
which are directly coupled by the Hamiltonian,

equation (1), to the two-atom state of interest |nLJMJ;nLJMJ⟩, with n(A),n(B) ranging from nmin ≈ n− 10 to
nmax ≈ n+ 10. We check the convergence of the calculations by ensuring that increasing (decreasing) nmax

(nmin) by unity does not significantly modify our results.
Finally, we want to stress here that the full dynamics of atoms in the vicinity of a nanofibre is not only

determined by the Hamiltonian, equation (1). It is also crucially governed by single-particle and collective
spontaneous emission terms which result from the coupling to the field degrees of freedom. Such terms give
rise to so-called super- and subradiance phenomena which have recently received considerable renewed
attention in the context of quantum technologies. Collective subradiant modes of atomic arrays interacting
with the evanescent mode of a 1D nanowaveguide such as a nanofibre are, e.g. actively studied since they
pave the way to efficient quantum memories [29]. We intend to address these effects in future work.

3
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3. Interaction of two rubidium atoms in the state
∣∣nS1/2〉

In this section, we study the interaction between atoms (A,B), prepared in the same Rydberg state
∣∣nS1/2〉,

for n⩾ 30. We show how the presence of the nanofibre modifies the potential UAB in the so-called lateral
configuration, i.e. when RA = RB = R and∆ϕ= 0, and for n= 30 (section 3.1). Then, using a simplified
model, we qualitatively account for the behaviour observed (section 3.2) and relate it to the appearance of
new couplings induced by a fibre-assisted symmetry breaking (section 3.3). We study how previous results
evolve when the principal quantum number, n, varies (section 3.4). Finally, we briefly examine other
geometric configurations,∆ϕ ̸= 0, in which the interatomic axis is no longer parallel to the fibre axis, and
which give rise to various behaviours for UAB (section 3.5). In sections 3.1–3.4, we restrict ourselves to the
lateral configuration∆ϕ= 0, RA = RB = R and choose the quantisation axis along (Oz). In section 3.5, we
explore configurations for which∆ϕ ̸= 0.

3.1. Dependence on the lateral distance,∆z
3.1.1. Numerical results
In figure 2, we show variations with∆z of the potential UAB when atoms are prepared in the same state∣∣30S1/2〉 6 and located either (i) in free-space (potential U(0)

AB , blue curves), or (ii) at a distance R= 250nm
from the axis of a nanofibre of radius a= 200nm (potential UAB, red curves). This potential coincides with
the energy shift of the state

∣∣30S1/2,MJ =±1/2
〉
⊗
∣∣30S1/2,MJ =±1/2

〉
induced by the Hamiltonian

equation (1). This is calculated either (a) through diagonalisation of the Hamiltonian equation (1) (full-line
curves), or (b) using second-order perturbation theory relative to the same Hamiltonian (dashed-line
curves). In the considered range of distances, i.e. for not too short distances, the perturbation induced by the
Hamiltonian equation (1) on the initial state

∣∣30S1/2,MJ =±1/2
〉
⊗
∣∣30S1/2,MJ =±1/2

〉
remains moderate.

In figure 3, we show the variations with∆z of the ratio
(
UAB/U(0)

AB

)
of the interaction potentials when

atoms are located (i) at a distance R= (250,300,350,400) nm from the axis of a nanofibre of radius

a= 200 nm (numerator UAB) and (ii) in free-space (denominator U(0)
AB ). The results presented here were

obtained through direct diagonalisation of the Hamiltonian equation (1).
Finally, in figure 4, we show, as a function of∆z, the quadrupolar contribution to the interaction

potential, U(quad)
AB , when atoms are located either (a) in free-space (full-line blue curve), or (b) at a distance

RA = RB = (250,300,350,400) nm from a nanofibre of radius a= 200nm (dashed-line curves).

3.1.2. Analysis and comments
The potential shown in figure 2 is repulsive in free-space as well as in the presence of the nanofibre. As seen in
figure 3, the potential is weaker (resp. larger) in the presence of the nanofibre at small (resp. large) lateral
separations∆z, i.e. UAB/U(0)

AB
< 1 (resp. UAB/U(0)

AB
> 1). For example, for R= 250nm (resp. R= 400nm), the

potential is enhanced for∆z≳ 0.5µm (resp.∆z≳ 1.2µm).
Figure 2 further shows that exact and perturbative results coincide when atoms are sufficiently far apart

from each other, i.e. for distances∆z larger than the van der Waals radius7 RvdW ≈ 0.6µm. In this
perturbative regime, quadrupolar effects are negligible, as can be seen in figure 4, and the interaction
potential is therefore dominated by the contribution of dipolar transitions, both in free-space and near the

nanofibre. In particular, U(0)
AB approximately follows the law U(0)

AB ≈−C(0)
6 (|30S1/2⟩)

∆z6 , with C(0)
6

(
|30S1/2⟩

)
≈

−26MHz · (µm)
6. Moreover, as shown in figure 3, for∆z≫ RvdW, the ratio

(
UAB/U(0)

AB

)
varies slowly as a

function of∆z, and can be considered locally constant, i.e.
(
UAB/U(0)

AB

)
≈ α, with α≈ 2 around

∆z≈ 1.6µm for R= 250nm). Hence, the potential UAB locally follows the usual law UAB ≈−C6(30S1/2)
∆z6 ,

with C6

(
30S1/2

)
= αC(0)

6

(
30S1/2

)
. In other words, the presence of the nanofibre multiplies the C6

coefficient by a factor α and, hence, the blockade radius rblockade ∝ (C6)
1
6 by a factor α

1
6 . The ‘constant’ α

is larger than 1 and increases as atoms get closer to the nanofibre, i.e. for ‘small’ R’s. As we shall see in
section 3.4, α does not depend on the principal quantum number, n.

6 Since the results do not depend onMJ , we merely designate the atomic state by
∣∣30S1/2〉 in figure 2.

7 Van der Waals radius RvdW

(
nS1/2

)
is defined as the distance ∆z between two atoms at which the approximation U

(0)
AB

(
nS1/2

)
=

−
C
(0)
6 (nS1/2)

∆z6
becomes valid.

4
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Figure 2. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ and located in free-space or near an optical

nanofibre. Van der Waals potentials in free-space, U
(0)
AB (blue curves), and near a nanofibre, UAB (red curves), are shown as

functions of the lateral distance∆z in log-log scale and calculated either (i) through direct diagonalisation of the Hamiltonian,
equation (1), including quadrupolar interactions (full-line curves), or (ii) through second-order perturbation theory relative to
the same Hamiltonian (dashed-line curves). The nanofibre radius is a= 200nm,∆ϕ= 0, RA = RB = R= 250nm and the
quantisation axis is along (Oz).

Figure 3. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ and located near an optical nanofibre. We

consider the configuration∆ϕ= 0, RA = RB = R and fix the quantisation axis along (Oz). The ratio
(
UAB/U

(0)
AB

)
of the van der

Waals interaction potentials between the atoms located (i) at a distance R= (250,300,350,400) nm from an optical nanofibre of

radius a= 200nm (numerator UAB), and (ii) in free-space
(
denominator U

(0)
AB

)
is shown as a function of the lateral distance∆z.

3.2. Simplified model:π−π coupling
In this section, we develop a simplified model to qualitatively account for the main features observed on the
potential UAB.

We denote by |n⟩A |n⟩B ≡ |30S1/2⟩A|30S1/2⟩B the state in which atoms A and B are initially prepared. The
partial contribution to the potential UAB due to the coupling of |n⟩A |n⟩B to another state |k⟩A |l⟩B by the

dipole-dipole interaction Hamiltonian is Ukl =
1

ℏϵ20∆kl

∣∣∣dBnl ·T(rB,rA) · dAnk∣∣∣2, with∆kl ≡ ωA
nk +ωB

nl, and

ℏωnk ≡ En − Ek is the energy of the transition |k⟩ → |n⟩. In this expression, the term

∣∣∣dBnl ·T(rB,rA) · dAnk∣∣∣2 = (dAnk ·T(rA,rB) · dBnl)(dBln ·T(rB,rA) · dAkn)
5
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Figure 4. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ and located in free-space or near an optical

nanofibre: contribution of quadrupolar transitions. The quadrupolar contribution, U
(quad)
AB , to the van der Waals potential in

free-space (full-line blue curve) and near an optical nanofibre (dashed-line curves) is shown as a function of∆z. The nanofibre
radius is a= 200nm,∆ϕ= 0, RA = RB = (250,300,350,400) nm and the quantisation axis is fixed along (Oz). The insert shows
a zoom in the vertical direction of the main figure in the range 0.4µm ⩽∆z ⩽ 1µm.

can be interpreted as the exchange of two (real or virtual) photons between the atomic dipoles dA and dB
propagated from A to B and from B to A by the functions T(rB,rA) and T(rA,rB), respectively. In the
nonretarded approximation, this propagation is considered instantaneous. Since T= T0 +T1, one gets

Ukl = U(0)
kl +U(vac−fib)

kl +U(fib−fib)
kl (4)

U(0)
kl =

1

ℏϵ20∆kl

∣∣∣dBnl ·T0 (rB,rA) · dAnk∣∣∣2 (5)

U(vac−fib)
kl =

2

ℏϵ20∆kl
Re
[(
dBnl ·T0 (rB,rA) · d

A
nk

)
×
(
dAkn ·T1 (rB,rA) · d

B
ln

)]
(6)

U(fib−fib)
kl =

1

ℏϵ20∆kl

∣∣∣dBnl ·T1 (rB,rA) · dAnk∣∣∣2 . (7)

In this formula, U(0)
kl can be associated with the direct exchange of two photons in free-space, U(vac−fib)

kl with

the exchange of one photon via free-space and one photon via reflection by the nanofibre, U(fib−fib)
kl with the

exchange of two photons via reflection by the nanofibre. Moreover, with these notations, we have

UAB

U(0)
AB

= 1+

∑
klU

(vac−fib)
kl∑

klU
(0)
kl

+

∑
klU

(fib−fib)
kl∑

klU
(0)
kl

. (8)

3.2.1. Simplified model

We start by a few remarks on the interaction potential in free-space. The numerator
∣∣∣dBnl ·T0 (rB,rA) · dAnk∣∣∣2 of

the partial contribution U(0)
kl (see equation (5)) is always positive, contrary to the denominator∆kl: the

repulsive or attractive nature of the total potential in free-space, U(0)
AB =

∑
klU

(0)
kl , is therefore determined by

the sign of the denominators∆kl and the relative magnitudes of the dipole moments of each transition. In

figure 5 we show the main contributions, U(0)
kl , to the total potential in free-space, U(0)

AB , due to the couplings
|n⟩A |n⟩B ↔ |k⟩A |l⟩B.

The main contributions both coincide with the highest branch and are due to the coupling of |n⟩A |n⟩B
with the states |k⟩A |l⟩B =

{∣∣30P3/2,Mj =± 1
2

〉∣∣29P3/2,Mj =± 1
2

〉
,
∣∣29P3/2,Mj =± 1

2

〉∣∣30P3/2,Mj =± 1
2

〉}
.

6
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Figure 5. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ and located in free-space: partial

contributions, U
(0)
kl , of the main couplings |n⟩A |n⟩B ↔ |k⟩A |l⟩B. The partial contributions are shown as functions of the lateral

distance,∆z, between the two atoms. We fixed∆ϕ= 0, RA = RB = R and the quantisation axis was chosen along (Oz).

This coupling is of ‘π−π’ type, i.e. in this coupling scheme, each atom undergoes a π transition along which
the magnetic quantum numberMj remains unchanged.

The lower two branches are also associated with π−π-type couplings, i.e. |n⟩A |n⟩B ↔ |k⟩A |l⟩B,
respectively with

(a) |k⟩A |l⟩B =
{∣∣30P1/2〉∣∣29P3/2〉 , ∣∣29P3/2〉∣∣30P1/2〉}

(b) |k⟩A |l⟩B =
{∣∣30P3/2〉∣∣29P1/2〉 , ∣∣29P1/2〉∣∣30P3/2〉} .

In our simplified model, we suppose that the potential in free-space, U(0)
AB , is solely determined by the

coupling |n⟩A |n⟩B ↔ |k⟩A |l⟩B, with |k⟩A |l⟩B ≡
{∣∣30P3/2,Mj =± 1

2

〉∣∣29P3/2,Mj =± 1
2

〉
,
∣∣29P3/2,Mj =

± 1
2

〉∣∣30P3/2,Mj =± 1
2

〉}
i.e. U(0)

AB ≈ U(0)
kl , and so is the potential in the presence of the nanofibre, UAB, i.e.

UAB ≈ Ukl. The dipoles
(
dAnk,d

B
nl

)
associated with the main coupling, of π−π type, are real and along the

quantisation axis, (Oz), i.e. dAnk = dA0,nkez and d
B
nl = dB0,nlez. The ratio

(
UAB/U(0)

AB

)
in equation (8) therefore

takes the simple form

UAB

U(0)
AB

=
(
1+ 2π (∆z)3

[
T1 (rB,rA)

]
zz

)2
(9)

where we used
[
T0 (rB,rA)

]
zz
= 1

2π(∆z)3
and the reality of the function

[
T1 (rB,rA)

]
zz
. Remarkably, this ratio

does not depend on dipoles dA0,nk and dB0,nl, and the decrease/enhancement of the interaction potential
induced by the introduction of the fibre with respect to free-space is only determined by the sign of[
T1 (rB,rA)

]
zz
.

3.2.2. Half-space approximation

The function
[
T1 (rB,rA)

](fibre)
zz

can only be calculated numerically from the expression of the reflected dyadic

Green’s function, G1 which can be found in [26]. If, however, R and∆z are small ‘enough’, the fibre surface

can be regarded as a plane of Cartesian equation x= a, and
[
T1 (rB,rA)

](fibre)
zz

coincides approximately with

the function
[
T1 (rB,rA)

](plane)
zz

associated with the dielectric half-space (x< a) the expression of which can
be found, e.g. in [27]

[
T1 (rB,rA)

](fibre)
zz

≈
[
T1 (rB,rA)

](plane)
zz

=
1

4π

(
n(0)2 − 1

n(0)2 + 1

)
(2X)2 − 2(∆z)2[
(2X)2 +(∆z)2

] 5
2

7
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Figure 6. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ in the neighbourhood of a nanofibre and a
dielectric half-space. We consider the configuration∆ϕ= 0, RA = RB = R and choose the quantisation axis along (Oz). We

present as functions of the lateral distance∆z the ratios
(
UAB/U

(0)
AB

)
of van der Waals interaction potentials between two atoms

located (i) at the distance X= R− a= (50,150)nm from the surface of a nanofibre of radius a= 200nm (red curves) or a

dielectric half-space of the same index (blue curves), (numerator UAB), and (ii) in free-space
(
denominator U

(0)
AB

)
. The insert

shows a zoom of the main figure in the range 0µm⩽∆z ⩽ 0.25µm.

where X≡ R− a is the distance of atoms A and B to the fibre surface.
In figure 6 we show, as a function of the distance∆z, the ratio

(
UAB/U(0)

AB

)
of (i) the potentials between

the two atoms located at the distance X= R− a= (50,150) nm from the surface of a nanofibre of radius
a= 200nm (red curves) or a dielectric half-space of the same optical index (blue curves), (numerator UAB),

and (ii) in free-space
(
denominator U(0)

AB

)
. The results presented in figure 6 were obtained in the framework

of our simplified model. When∆z≪ X,(R− a), atoms do not ‘see’ the nanofibre or dielectric half-space and

the direct exchange of photons dominates, i.e.
(
UAB/U(0)

AB

)
→ 1. As long as∆z< a, the results obtained with

the half-space and fibre coincide. When∆z> a, the half-space approximation is no longer valid: in the fibre

case, UAB first increases with∆z(> a), exceeds U(0)
AB , and reaches a maximum before slowly decreasing. Note

that the maximum is higher for atoms closer to the fibre.
Figure 6 suggests that UAB/U(0)

AB
tends towards a nonvanishing limiting value when∆z increases. Because

of numerical issues we were not able to confirm this observation. Moreover, our calculation is performed in
the nonretarded approximation and therefore it cannot be applied for distances∆z larger than relevant
transition wavelengths, i.e. a few 100µm.

3.2.3. Comparison with the full calculation
Our simplified model, the results of which are presented in figure 6, qualitatively account for the behaviour
of the interaction potential, shown in figure 3: (a) at short distance,∆z< (∆z)lim, the presence of the fibre
decreases the potential then (b) enhances it for∆z> (∆z)lim, the value (∆z)lim increases with (R− a);

finally (c) when∆z≫ (R− a), the ratio
(
UAB/U(0)

AB

)
seems to tend towards a finite limit which is higher for

lower values of (R− a). We underline, however, that our simplified model severely underestimates the
potential at short distances∆z, since it neglects the contributions of couplings involving σ±-type transitions
which enhance the potential with respect to free-space.

3.3. Breaking of the rotation symmetry around the interatomic axis and appearance of new couplings
In the previous section, we qualitatively reproduced the main features of the interaction potential in the
presence of an ONF, thanks to a simplified model restricted to the dominating π−π-type coupling.
Quantitative discrepancies with the full treatment, however, exist and we relate them to the existence of other

8
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Figure 7. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ near a nanofibre: partial contributions of the
couplings ‘allowed’ and ‘forbidden’ in free-space. We fix∆ϕ= 0, RA = RB = R and choose the quantisation axis along (Oz). We

represent the ratios

(
U
(π−σ)
AB +U

(σ±−σ±)
AB

)
/U

(0)
AB

(green curve),

(
U
(π−π)
AB +U

(σ±−σ∓)
AB

)
/U

(0)
AB

(red curve), and UAB

U
(0)
AB

(blue

curve) as functions of∆z for R= 300 nm, where U
(0)
AB designates the van der Waals potential between A and B in free-space, U

(γ)
AB

the partial contribution of a coupling of type γ = π−π,π−σ±,σ± −σ±,σ± −σ∓ to the total van der Waals potential, UAB,
in the neighbourhood of the fibre.

couplings. More precisely, there exist π−π-, π−σ±-, σ± −σ±-, and σ± −σ∓-type couplings. We recall
that the dipole of a σ± transition writes d± = d±√

2

(
ex ± iey

)
, the dipole of a π transition is d0 = d0ez, and the

partial contribution to the van der Waals potential of the |n⟩A |n⟩B → |k⟩A |l⟩B coupling, denoted by Ukl, is

proportional to
∣∣∣dAnk ·T · dBnl∣∣∣2.

In the considered configuration, the free-space propagator takes the following diagonal form in the basis[
ei ⊗ ej

]
i,j=x,y,z

T0 (rA,rB) =
1

4π (∆z)3

 −1 0 0
0 −1 0
0 0 2

 . (10)

The rotation symmetry around the interatomic axis of T0 implies: (a)
[
T
]
xz
=
[
T
]
yz
= 0 hence∣∣d0 ·T0 (rA,rB) · d±∣∣= 0, and the π−σ-type couplings do not contribute to the potential U(0)

AB ;
(b)
[
T
]
xx
=
[
T
]
yy
and

[
T
]
yx
= 0 hence

∣∣d± ·T0 (rA,rB) · d±
∣∣= 0, and σ± −σ±-type couplings do not

contribute to the potential U(0)
AB .

The presence of a dielectric medium, fibre or half-space, breaks this symmetry and some couplings,
which were forbidden in free-space, become allowed. In the considered so-called lateral configuration, it can
be proved that T1 takes the following generic form

T1 =

 Txx 0 Txz

0 Tyy 0
−Txz 0 Tzz

 (11)

for both the fibre and half-space, with Txx ̸= Tyy and Txz ̸= 0, in general. We then check that∣∣d0 ·T1 (rA,rB) · d±∣∣= ∣∣d± ·T1 (rA,rB) · d±
∣∣ ̸= 0.

The partial contributions to the potential, UAB, of the π−π, π−σ±, σ± −σ± and σ± −σ∓ couplings,

respectively denoted by U(π−π)
AB , U

(π−σ±)
AB , U

(σ±−σ±)
AB and U

(σ±−σ∓)
AB can be calculated through (a) a

perturbative approach by restricting the couplings to the relevant states |k⟩A |l⟩B, or (b) direct diagonalisation
of the effective Hamiltonian by setting to zero the terms dAnk ·T · d

B
ml which correspond to unwanted

transitions. In figure 7 are shown the ratios

(
U(π−π)

AB +U
(σ±−σ∓)
AB

)
/U(0)

AB
(red curve) and

9
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Figure 8. Interaction between two 87Rb atoms, (A,B), prepared in the state |nS1/2⟩ near a nanofibre: influence of the principal
quantum number, n. We fix∆ϕ= 0, RA = RB = R and choose the quantisation axis along (Oz). We represent as functions of the

lateral distance∆z the ratio
(
UAB/U

(0)
AB

)
of the van der Waals potentials between two atoms prepared in the state |nS1/2⟩, for

n= 30,35,40,45, and located (i) at the distance R= 250nm from the axis of a nanofibre of radius a= 200nm (numerator UAB)

and (ii) in free-space
(
denominator U

(0)
AB

)
.

(
U(π−σ)

AB +U
(σ±−σ±)
AB

)
/U(0)

AB
(green curve) as functions of the distance∆z and for R= 300nm. These two

ratios characterise the respective weights of the contributions to the potential near the fibre due to couplings
which are allowed and forbidden in free-space. When atoms are very close, i.e. when∆z→ 0, the direct
exchange of photons between atoms dominates and hence the weight of couplings forbidden in free-space is
strongly decreased. The new contributions allowed by the fibre at larger distances reinforce the enhancement
of the potential: these new couplings are responsible for the discrepancies between the results obtained via
the full calculation of the potential UAB (figure 3) and our simplified model involving a single π−π coupling
(figure 6). We note, however, that this discrepancy remains moderate. This effect is more dramatic for atoms
prepared in a P state, as we shall see in section 4.

We conclude this section by making two remarks. We first underline that the fibre-induced symmetry
breaking is expected to lead to new allowed couplings in the so-called spin-flip resonant configuration, not
considered here. The latter has been recently investigated for potential applications in quantum simulation
with Rydberg atoms [30]. Secondly, the symmetry breaking should also affect the collective emission
properties of atoms in the vicinity of the nanofibre, embodied by two-body emission rates in the master
equation for the atoms [5]. The calculation and analysis of these terms shall be addressed in future work.

3.4. Dependence on the principal quantum number, n
Using the simplified model restricted to a single π−π coupling presented in section 3.2, we showed that the

ratio
(
UAB/U(0)

AB

)
depends neither on the dipoles nor on the principal quantum number, n. In the validity

range of this model, the curves in figure 3 are therefore universal, in the sense that they remain unchanged as

n varies. To check this property we show in figure 8 the ratio
(
UAB/U(0)

AB

)
of the potentials when atoms are

prepared in the same state |nS1/2⟩ for n= 30,35,40,45, and (a) located at the distance R= 250 nm from the

nanofibre (numerator UAB) and (b) in free-space
(
denominator U(0)

AB

)
as a function of the distance∆z.

Table 1 gives the numerical values of C(0)
6 coefficients and van der Waals radius, RvdW, which characterise the

interaction in free-space between two atoms prepared in the same state |nS1/2⟩.
The invariance of the ratio

(
UAB/U(0)

AB

)
with respect to n is indeed observed for∆z≳ 2RvdW, i.e. in the

range where perturbation theory is valid and where U(0)
AB scales as 1/∆z6. For∆z≲ 2RvdW, the curves for

different n’s no longer coincide, though their shapes are much alike. Moreover, as already noted in

section 3.1, for∆z≳ 2RvdW, the ratio
(
UAB/U(0)

AB

)
varies slowly—especially for large∆z’s—and may

therefore be considered locally constant. For any n, one has locally
(
UAB/U(0)

AB

)
≈ α, i.e. UAB ≈−C6(nS1/2)

∆z6

10
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Table 1. Numerical values of C
(0)
6 coefficients and van der Waals radii, RvdW, which characterise the interaction in free-space between

two atoms prepared in the same state |nS1/2⟩, for n= 30,35,40,45.

n 30 35 40 45

C(0)
6 (GHz · (µm)6) −0.026 −0.185 −0.98 −4.23

RVdW (µm) 0.5 0.6 0.9 1.5

Figure 9. Interaction between two 87Rb atoms, (A,B), prepared in the state |30S1/2⟩ near a nanofibre: influence of∆ϕ. We
consider RA = RB = R and choose the quantisation axis along (Oz). We represent as functions of the lateral distance∆z, the ratio(
UAB/U

(0)
AB

)
of van der Waals potentials between the two atoms located (i) at the distance R= 250 nm (left curve), 350 nm (right

curve) from the axis of a nanofibre of radius a= 200nm (numerator UAB) and (ii) in free-space
(
denominator U

(0)
AB

)
for

different values of∆ϕ= 0, π
2
,π. The full red line corresponds to equality of both potentials.

with C6

(
nS1/2

)
≈ αC(0)

6

(
nS1/2

)
. Introducing the nanofibre hence multiplies the C6 coefficient by the factor

α—and therefore the blockade radius rblockade ∝ (C6)
1
6 by the factor α

1
6 . Figure 8 shows that this factor

does not depend on the principal quantum number—it, however, depends on the distance from the atoms to
the fibre.

3.5. Dependence on∆ϕ

Until now, we focussed on the so-called lateral configuration defined by∆ϕ= 0 and RA = RB = R. In this
section, we briefly investigate how UAB varies with∆z for∆ϕ ̸= 0, keeping RA = RB = R and choosing the
quantisation axis along (Oz). The half-space approximation is, a priori, no longer applicable for this new
type of configuration nor is the simplified model restricted to a single π−π coupling because the
interatomic axis does not coincide with the quantisation axis.

In figure 9 we represented the ratio
(
UAB/U(0)

AB

)
of the potentials when atoms are (i) near a nanofibre

(numerator UAB), and (ii) in free-space
(
denominator U(0)

AB

)
, as a function of the lateral distance∆z. The

fibre radius is a= 200 nm, the two atoms are located at the same distance from the fibre axis, i.e. R= 250 nm
(left plot) and R= 350 nm (right plot) and∆ϕ= 0, π2 ,π. At short distance,∆z≲ 10×R, the behaviour of(
UAB/U(0)

AB

)
strongly varies from one configuration to another. The physical situation is indeed very

different, e.g. between∆ϕ= 0 and∆ϕ= π: (a) in the former case, when∆z→ 0, rAB → 0 8 and the direct

free-space interaction dominates, hence
(
UAB/U(0)

AB

)
→ 1; (b) in the latter case, even for∆z= 0, rAB ̸= 0 and

the field reflected onto the fibre always plays an important role. At large distance, i.e. for∆z≫ R, even
though rAB ≈∆z and the quantisation and interatomic axes almost coincide for all∆ϕ’s, the contribution of
the reflected field to the potential strongly differs from one configuration to the other—in general, however,
the presence of the nanofibre seems to enhance the potential. Until now, we were not able to design a simple
model allowing us to account for the features observed: we can make a guess that different values of∆ϕ
favour the coupling of different transitions to different modes of the reflected field. Numerical integration

8 The distance between the two atoms is given by rAB =
√

∆z2 + 4R2 sin2 ∆ϕ
2
.
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issues, however, prevent us from pushing calculations to large values of∆z: even though the curves seem to
tend towards an asymptote, we were neither able to confirm this guess with certainty, nor could we
determine the hypothetical limiting value.

4. Interaction between two atoms in the state |nP3/2,Mj =
3
2⟩

As seen above, the presence of a nanofibre breaks the rotation symmetry of the tensor T around the
interatomic axis, which is arbitrarily fixed along the quantisation axis. It also activates σ± −σ±-type
couplings which are forbidden in free-space. For S states, studied in the previous section, these new
couplings do not modify the nature of the interaction between atoms. It is quite different when atoms are
prepared in a P state as we shall see below. To be more specific, in the following, we consider that the atoms
are both prepared in the state |nP3/2,Mj =

3
2 ⟩.

We shall first investigate the dependence of the interaction potential on the interatomic distance∆z in the
‘lateral’ configuration∆ϕ= 0 and RA = RB = R, (section 4.1). We will show that the new couplings induced
by the presence of the fibre (a) strongly dominate the couplings allowed in free-space, (b) strongly enhance
the potential, and (c) under certain conditions can also make the potential attractive. We shall finally consider
other geometric configurations and study the dependence of the potentials on the angle∆ϕ (section 4.2).

4.1. Dependence on the lateral distance∆z

In figure 10, we show as functions of∆z the potentials (i) in free-space, U(0)
AB , and (ii) at the distance

R= 250 nm of a fibre of radius a= 200nm, UAB. In free-space, the potential U(0)
AB is repulsive, with the

van der Waals radius RvdW ≈ 0.25 µm and coefficient C6

(
|30P3/2,mj =

3
2 ⟩
)
≈−2.6MHz · (µm)

6 for
∆z≫ RvdW. Similarly to the states |30S1/2⟩, the quadrupolar contribution is non negligible for∆z< 0.6µm,
though not dominant. By contrast, contrary to the case of S states, the potential is here always enhanced by
the presence of the nanofibre, and this increase is about one order of magnitude for∆z> 0.4µm. Moreover,
here, the second-order perturbation theory is only valid for∆z⩾ 5RVdW.

To interpret this behaviour in the same spirit as in section 3.3, we show, in figure 11, the ratio(
UAB/U(0)

AB

)
as a function of∆z (blue curve) as well as the respective contributions to this ratio of the

couplings allowed in free-space, i.e. σ± −σ∓ and π−π (red curve), and of the new couplings induced by
the fibre, i.e. σ± −σ± and π−σ (green curve). It appears that, contrary to the case of S states, the new
couplings strongly dominate. More precisely, following the same kind of analysis as in section 3.2
(cf figure 5), one identifies, in each situation, the main coupling |n⟩A |n⟩B ↔ |k⟩A |l⟩B, with |k⟩A |l⟩B ={∣∣30S1/2,Mj =

1
2

〉∣∣29D5/2,Mj =
5
2

〉
,
∣∣29D5/2,Mj =

5
2

〉∣∣30S1/2,Mj =
1
2

〉}
in free-space and |k⟩A |l⟩B ={∣∣30S1/2,Mj =

1
2

〉∣∣31S1/2,Mj =
1
2

〉
,
∣∣31S1/2,Mj =

1
2

〉∣∣30S1/2,Mj =
1
2

〉}
near the fibre. The σ+ −σ+-type

coupling, forbidden in free-space but allowed in the presence of the fibre, strongly dominates due to the
existence of a so-called (quasi) Förster resonance.

To further investigate this point, we show, in figure 12, as functions of the principal quantum number, n,
(i) the detunings∆1 (n) and∆2 (n) of the transitions (1)

∣∣nP3/2〉∣∣nP3/2〉→ ∣∣nS1/2〉∣∣(n− 1)D5/2

〉
and

(2)
∣∣nP3/2〉∣∣nP3/2〉→ ∣∣nS1/2〉∣∣(n+ 1)S1/2

〉
(figure 12, left panel), and (ii) the ratio∆1 (n)/∆2 (n)

(figure 12, right panel). Coupling (1) dominates the potential in free-space, U(0)
AB , while coupling (2)

dominates the potential in the presence of the fibre, UAB. We therefore have U(0)
AB ≈ 1

ℏϵ20
|dA1 ·T0·dB1 |2

∆1(n)
and

UAB ≈ 1
ℏϵ20

|dA2 ·T1·dB2 |2
∆2(n)

, where dK=A,B
j=1,2 is the dipole operator of atom K involved in the process ( j). We observe

that, for n= 30,∆2 ≪∆1—to be more explicit∆2 ≈ ∆1
35 . Assuming that

∣∣∣dA1 ·T0 · dB1 ∣∣∣2 and ∣∣∣dA2 ·T1 · dB2 ∣∣∣2
have the same order of magnitude, coupling (2) therefore highly dominates coupling (1) in the presence of
the nanofibre, and the total potential is greatly enhanced due to the presence of the fibre. Moreover, the ratio
∆1 (n)/∆2 (n)—and therefore the enhancement of the total potential in the presence of the fibre—first
increases with n up to n= 38, at which a so-called Förster (quasi-)resonance is observed, i.e.∆2 ≈ 0. For

n> 38,∆2 (n) becomes negative. The total potential in the presence of the nanofibre, UAB ≈ 1
ℏϵ20

|dA2 ·T1·dB2 |2
∆2

, is

repulsive for n< 38 and becomes attractive for n> 38. By contrast,∆1 (n) remains positive and the potential

in free-space, U(0)
AB ≈ 1

ℏϵ20
|dA1 ·T0·dB1 |2

∆1(n)
, remains repulsive on the considered range. For n> 38, the presence of the

nanofibre hence modifies the nature of the van der Waals force, which suddenly becomes attractive.
This conclusion is confirmed and complemented by the results displayed in figure 13. The potential UAB

is shown as a function of∆z when atoms are prepared in the states
∣∣35P3/2,MJ =

3
2

〉
(full-line curve) and∣∣45P3/2,MJ =

3
2

〉
(dashed-line curve), and located at the same distance RA = RB = R= 250nm from the

12
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Figure 10. Interaction between two 87Rb atoms (A,B), prepared in the state
∣∣30P3/2,Mj =

3
2

〉
near a nanofibre. We fix∆ϕ= 0,

RA = RB = R and choose the quantisation axis along (Oz). We show in log-log scale and as functions of the lateral distance∆z
the van der Waals interaction potentials between two atoms located (i) at a distance R= 250nm of an optical nanofibre of radius

a= 200nm, UAB (red curves), and (ii) in free-space, U
(0)
AB (blue curves). Results presented here were obtained either (a) through

direct diagonalisation of the Hamiltonian equation (1) including the quadrupolar component (full-line curves), or (b) via
second-order perturbation theory relative to the same Hamiltonian (dashed-line curves).

Figure 11. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣∣30P3/2,Mj =

3
2

〉
near a nanofibre: partial

contributions of the couplings allowed and forbidden in free-space. We fix∆ϕ= 0, RA = RB = R and choose the quantisation

axis along (Oz). We show

(
U
(π−σ)
AB +U

(σ±−σ±)
AB /U

(0)
AB

)
(green curve),

(
U
(π−π)
AB +U

(σ±−σ∓)
AB /U

(0)
AB

)
(red curve), and

UAB

U
(0)
AB

(blue curve) as functions of∆z for R= 300 nm, where U
(0)
AB is the van der Waals interaction potential between A and B in

free-space, U
(γ)
AB is the partial contribution of a coupling of type γ = π−π,π−σ±,σ± −σ±,σ± −σ∓ to the total van der

Waals potential, UAB, in the vicinity of the fibre.

nanofibre. In free-space, both potentials are of repulsive nature, approximately scaling as C6/∆z6 with
C6

(∣∣35P3/2,Mj =
3
2

〉)
≈ 17MHz · (µm)

6 and C6

(∣∣45P3/2,Mj =
3
2

〉)
≈ 500MHz · (µm)

6 on the considered
range of distances. For atoms prepared in the state

∣∣35P3/2,MJ =
3
2

〉
,∆2 > 0 and the presence of the

nanofibre enhances the potential UAB with respect to free-space (by a factor≈ 50 for∆z> 1µm) without
changing its nature. By contrast, in the state

∣∣45P3/2,MJ =
3
2

〉
,∆2 < 0, and the presence of the nanofibre

therefore modifies the nature of the potential which becomes attractive for∆z> 0.6µm. When atoms get
closer, the effect of the fibre gets weaker and the direct exchange of photons between atoms dominates: the
total potential hence becomes repulsive again and one observes the formation of an approximately 2.5GHz
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Figure 12. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣∣nP3/2,Mj =

3
2

〉
near an optical nanofibre: existence

of a (quasi) Förster resonance. We fix∆ϕ= 0, RA = RB = R and choose the quantisation axis along (Oz). We show as functions
of the principal quantum number, n, (i) the detunings∆1 (n) and∆2 (n) of the couplings (1) and (2) (cf main text) which
dominate the interaction potential in free-space and in the neighbourhood of the fibre, respectively, (left and middle panels), and

(ii) the ratio∆1/∆2 (right panel).

Figure 13. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣∣nP3/2,Mj =

3
2

〉
near a nanofibre: modification of

the nature of the potential close to a Förster (quasi-)resonance. We fix∆ϕ= 0, RA = RB = R and choose the quantisation axis
along (Oz). We show as functions of the lateral distance∆z the van der Waals interaction potentials between the atoms located

(i) at a distance R= 250nm from an optical nanofibre of radius a= 200nm, UAB (red curves), and (ii) in free-space, U
(0)
AB (blue

curves) in the case (i) n= 35 (full-line curves) and (ii) n= 45 (dashed-line curves). The results presented here were obtained
through direct diagonalisation of the Hamiltonian equation (1).

≈ 3.8× 10−7EH -deep well whose minimum is located around∆z≈ 0.6µm. Using a crude harmonic
approximation around the minimum, we find that the potential can accommodate approximately 1200
bound states. For sake of comparison, we recall the depth of the well, e.g. of the ground molecular singlet
state X1Σ+

g is≈ 0.018EH [31]. We moreover note that molecular photoassociation mediated via
nanowaveguides, albeit photonic crystal waveguides, has already been studied [32].

4.2. Dependence on the angle∆ϕ

In the previous section, the observed enhancement of the interaction between two atoms in the presence of
an ONF was explained by the appearance of a new and strongly dominating coupling, forbidden in
free-space but activated by the symmetry breaking induced by the fibre. These results were obtained in the
lateral configuration, i.e. for∆ϕ= 0 et RA = RB = R (I), and when the fibre, interatomic and quantisation
axes coincide with (Oz) (II). Out of this configuration, previous conclusions, a priori, no longer hold. In

14
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Figure 14. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣∣35P3/2,Mj =

3
2

〉
near a nanofibre: influence of∆ϕ.

We fix RA = RB = R and choose the quantisation axis along (Oz). We show as functions of∆ϕ, the van der Waals interaction

potentials between the two atoms located (i) in free-space, U
(0)
AB (dashed-line curves), and (ii) in the neighbourhood of a

nanofibre of radius a= 200nm, UAB (full-line curves). We fix∆z= 1µm and consider three values for the distance of the atoms
to the fibre axis, R= 250,300,350nm.

Figure 15. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣∣45P3/2,Mj =

3
2

〉
near a nanofibre: influence of∆ϕ.

We fix RA = RB = R and choose the quantisation axis along (Oz). We show as functions of∆ϕ the van der Waals potentials

between the atoms located (i) in free-space, U
(0)
AB (dashed-line curves), and (ii) near a nanofibre of radius a= 200nm, UAB

(full-line curves). We fix∆z= 1µm and consider three values for the distance of the atoms to the fibre axis, R= 250,300,350nm.

particular, the couplings which were forbidden in free-space under assumptions (I) and (II) may become
allowed and we therefore expect the relative enhancement of the potential due to the introduction of the fibre
to be less pronounced.

To be more explicit, we show as functions of∆ϕ the potentials when atoms are located (i) in free-space,

U(0)
AB , and (ii) near a nanofibre, UAB, separated by a distance∆z= 1µm and both prepared in the states

|35P3/2,Mj =
3
2 ⟩ (figure 14) and |45P3/2,Mj =

3
2 ⟩ (figure 15), for three values of the distance to the fibre axis

(Oz) RA = RB = R= (250,300,350)nm. The quantisation axis is chosen along (Oz) for all values of∆ϕ.
The system is symmetric with respect to the plane which contains atom A and (Oz) axis, therefore

UAB (π−∆ϕ) = UAB (∆ϕ), as can be seen in figures 14 and 15. The potential is also obviously 2π-periodic

with∆ϕ, i.e. UAB (∆ϕ+ 2π) = UAB (∆ϕ). We also underline that the potential in free-space, U(0)
AB , implicitly
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depends on R through the interatomic distance rAB =
√
∆z2 + 4R2 sin2 ∆ϕ

2 , and the inclination of the

interatomic axis on the quantisation axis9.

For n= 35, the potential UAB exhibits stronger variations than U(0)
AB which always remains between 2.5

and 6GHz. For 0⩽∆ϕ⩽ π
4 , the interaction potential is strongly enhanced by the presence of the nanofibre,

i.e. UAB/U(0)
AB ≫ 1. This enhancement disappears in the range π

2 ⩽∆ϕ⩽ 3π
2 where UAB becomes comparable

with U(0)
AB . The same features are observed for n= 45. The (negative) potential UAB decreases in magnitude

when∆ϕ increases from 0 to π. Around∆ϕ= π, UAB and U(0)
AB have the same order of magnitude and sign.

In particular, these plots show that the sign change of the potential induced by the presence of the nanofibre,
previously observed for∆ϕ= 0, actually extends to the range 0⩽∆ϕ⩽ π

2 .

5. Rotation of the quantisation axis of the atomic angular momentum eigenstates

The van der Waals interaction between two atoms in free-space is, a priori, anisotropic. According to

equation (3), the potential U(0)
AB indeed depends on the relative direction of the interatomic and quantisation

axis of the atomic angular momentum eigenstates. To be more explicit, denoting by uAB ≡ rB−rA
|rB−rA| and eq the

respective unit vectors of these axes andΘ the angle they form
(
eq ·uAB = cosΘ

)
, one has C(0)

6 = C(0)
6 (Θ).

This anisotropy was demonstrated experimentally and its influence on the Rydberg blockade was
investigated [33].

The presence of an ONF brings a new privileged direction, i.e. the fibre axis, which is conventionally
taken as (Oz) axis. Until now, we fixed the quantisation axis used to define atomic states along (Oz), i.e. we
assumed the atomic dipoles pointed along the same direction Oz, and studied how changing the direction of
the interatomic axis modifies the interaction potential (sections 3.5 and 4.2). By contrast, in this section, we
shall assume the interatomic axis along (Oz), fix∆ϕ= 0 and RA = RB = R, and shall consider that
quantisation axis is along an arbitrary unit vector eq defined by the angles (Θ,Φ) (see figure 16). Note that
the rotation symmetry around the interatomic axis which exists in free-space is no longer fulfilled near the
nanofibre. The C6 coefficient, a priori, depends not only on the angleΘ but also on Φ.

We first study how the rotation of the quantisation axis modifies the interaction potential when atoms
are prepared in the state

∣∣30P3/2,Mj =
3
2

〉
(section 5.1). We qualitatively reproduce the results obtained via a

simplified model, restricted to a single σ+ −σ+-type coupling, which allows us to relate the modification of
the potential to the fibre-induced symmetry breaking (section 5.2).

5.1. State
∣∣30P3/2,Mj =

3
2

〉
In figure 17 we show the potentials in free-space, U(0)

AB , and near a nanofibre, UAB, when atoms are prepared
in the state |30P3/2,Mj =

3
2 ⟩, as functions ofΘ for Φ= 0 (left panel) and of Φ forΘ= π

2 (right panel). The
radius of the nanofibre is a= 200nm, the interatomic lateral distance is∆z= 1µm,∆ϕ= 0 and we consider
two values for the distance of atoms to the (Oz) axis, RA = RB = R= 250,350nm.

As a function ofΘ, the free-space potential U(0)
AB

(
|30P3/2,Mj =

3
2 ⟩
)
, is maximal (resp. minimal) inΘ= π

2
(resp.Θ= (0,π)), i.e. when dipoles point orthogonally to (resp. are along) the interatomic axis. As expected,

U(0)
AB

(
|30P3/2,Mj =

3
2 ⟩
)
does not depend on Φ.

In the presence of the nanofibre, the potential, UAB, behaves in quite a different manner.
A. When the quantisation axis rotates in the plane (Oxz), i.e. whenΘ varies and Φ= 0 (left panel): (a) if

R is weak enough (250nm), the absolute minimum reached in free-space for eq = ez becomes the absolute
maximum; if R increases, this maximum remains, though local. (b) The potential maximum in free-space,
reached inΘ= π

2 , i.e. when eq = ex, remains a local maximum in the presence of the nanofibre, though
much weaker; (c) potential minima in the presence of the fibre are reached inΘ= π

4 ,
3π
4 , by contrast with

free-space where these minima are achieved inΘ= 0,π.
B. When the quantisation axis rotates in the plane (Oxy) around the interatomic axis (Oz), i.e. when Φ

varies andΘ= π
2 (right panel), the potential minimum is reached in Φ= 0, i.e. when eq = ex, while the

(absolute) maximum is reached in Φ= π
2 , i.e. when eq = ey. This second plot shows that the

nanofibre-induced symmetry breaking causes the potential to depend on the angle Φ.
To qualitatively account for these results, we develop below a simplified model restricted to a single

coupling, in the same spirit as in section 3.2.

9 Denoting byΘ the angle made by the interatomic and quantisation axes, one has cosΘ=
(∆z

R )√
(∆z

R )2+sin2 ∆ϕ
.
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Figure 16. Two 87Rb atoms, (A,B), near a silica optical nanofibre: quantisation axis of arbitrary direction. We use the same
Cartesian frame as in figure 1 and we fix∆ϕ= 0 and RA = RB = R, so that the interatomic axis is parallel to the fibre axis taken
as (Oz) axis. The quantisation axis has the unit vector eq defined by its spherical coordinates (Θ,Φ), i.e. eq = sinΘcosΦ ex
+ sinΘ sinΦ ey + cosΘ ez.

Figure 17. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣∣30P3/2,Mj =

3
2

〉
near a nanofibre: influence of the

rotation of the quantisation axis. We fix∆ϕ= 0 and RA = RB = R. We show the van der Waals potentials between the atoms

(i) in free-space, U
(0)
AB (full-line curves), and (ii) near a nanofibre of radius a= 200nm, UAB (dashed-line curves), as functions of

(i)Θ forΦ= 0, i.e. for the quantisation axis rotating in the plane (Oxz) (left panel), and (ii)Φ forΘ= π
2
, i.e. for the

quantisation axis rotating in the plane (Oxy) (right panel). We fix∆z= 1µm and consider two values for the distance of the
atoms from the (Oz) axis, R= 250,350nm.

5.2. Simplified model restricted to aσ+ −σ+ coupling
The potential UAB is found to be dominated by the following σ+ −σ+-type coupling,∣∣30P3/2,Mj =

3
2

〉∣∣30P3/2,Mj =
3
2

〉
→
∣∣30S1/2,Mj =

1
2

〉∣∣31S1/2,Mj =
1
2

〉
, already identified in the previous

section. It is also true for the potential in free-space, U(0)
AB , except around eq = ez. In the rest of this section,

we shall restrict ourselves to this single coupling.

We assume the quantisation axis is defined by the angles (Θ,Φ) (figure 16), and the dipoles dσ
+

A and dσ
+

B

take the following form

 dx
dy
dz


σ+

=
dσ

+

√
2

 −cosΘcosΦ− i sinΦ
−cosΘ sinΦ+ i cosΦ

sinΘ
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Table 2. Function
(
sin2Θ− η1

)2
: maxima A1 and A2 reached inΘ= 0 andΘ= π

2
, zeroΘmin. These values are calculated from the

Green’s function of the fibre for∆z= 1µm and RA = RB = R= 250,350nm.

A1 A2 Θmin (
◦)

R= 250nm 0.52 0.08 63
R= 350nm 0.16 0.35 39

The non-retarded Green’s functions, T0 (rA,rB) and T1 (rA,rB), equations (10) and (11), lead to

dσ
+

A ·T0 · dσ
+

B =
dσ

+

A dσ
+

B

2

3

4π

1

(∆z)3
sin2Θ

dσ
+

A ·T1 · dσ
+

B =
dσ

+

A dσ
+

B

2

[
Tm sin

2Θ+∆T
(
1+ cos2Θ

)
cos2Φ− i∆TcosΘ sin2Φ

]
where we set∆T≡ 1

2

([
T1
]
xx
−
[
T1
]
yy

)
, Tm ≡

[
T1
]
zz
− 1

2

([
T1
]
xx
+
[
T1
]
yy

)
and T1 ≡

∑
ij=x,y,z

[
T1
]
ij
ei ⊗ ej.

Note that (i)∆T characterises the nanofibre-induced symmetry breaking and (ii)∆T and Tm do not depend
on the quantisation axis direction but only on the fibre geometric characteristics and the positions of the
atoms.

We first deduce that U(0)
AB ∝

∣∣∣dσ+

A ·T0 · dσ
+

B

∣∣∣2 ∝ sin4Θ which agrees with the results displayed in

figure 17. In particular, in free-space, the potential does not depend on Φ, vanishes whenΘ= 0, and reaches
its maximum inΘ= π

2 .
Moreover, we get

∣∣∣dσ+

A ·
(
T1 +T0

)
· dσ

+

B

∣∣∣2 =
(
dσ

+

A dσ
+

B

)2
4

×

{
(T0 +Tm −∆T)2

(
sin2Θ− η1

)2
for Φ= 0

(T0 +Tm)
2
(1− η2 cos2Φ)

2 forΘ= π
2

(12)

where we set T0 ≡ 3
4π

1
(∆z)3

, η1 ≡− 2∆T
T0+Tm−∆T and η2 ≡− ∆T

T0+Tm
. We shall see that this formula enables us to

account for the features of the potential near the nanofibre, UAB ∝
∣∣∣dσ+

A ·
(
T1 +T0

)
· dσ

+

B

∣∣∣2. We underline

that in the lateral configuration, i.e. for∆ϕ= 0 and RA = RB = R,∆T is always negative for∆z large
enough, i.e.∆z> 270nm (resp. 500nm) for R= 250nm (resp. 350nm).

5.3. Dependence onΘ forΦ = 0

For Φ= 0, the potential UAB, as a function ofΘ, varies as
(
sin2Θ− η1

)2
which has two local maxima in

Θ= 0, π2 , respectively A1 = η21 and A2 = (1− η1)
2, and two zeroes inΘmin = arcsin

(√
η1
)
etΘ= π−Θmin.

The values (A1,A2,Θmin) given in table 2 were obtained for a system of two atoms separated by
∆z= 1µm and located at the distance RA = RB = R= (250,350)nm from the fibre axis. These values allow
us to account for the behaviour of the potential UAB represented in figure 17 (left panel). For R= 350nm,
A1 < A2, and, as expected from equation (12), the local maximum inΘ= 0 is less marked than the
maximum inΘ= π

2 . By contrast, for R= 250nm, A1 > A2, and the opposite behaviour is observed. We also
recover the position of the minimum : for R= 250nm (resp. 350nm), it is reached inΘmin >

π
4 (resp.< π

4 ).
We underline that the departure between the potentials in the neighbourhood of the nanofibre and in

free-space is governed by the term η1. For η1 → 0, one has A1 → 0, A2 → 1 andΘmin → 0. For η1 > 0.5, the
maximum inΘ= 0 becomes the absolute maximum and the maximum in π

2 becomes local. Finally, for
η1 → 1, the profile is inversed, A1 → 4, A2 → 0, and the potential zero is achieved inΘmin =

π
2 .

5.4. Dependence onΦ forΘ = π
2

ForΘ= π
2 , the potential UAB, as a function of Φ, varies as (1+ η2 cos2Φ)

2. For∆T< 0, this function has a
minimum in Φ= 0 and a maximum in Φ= π

2 , which indeed corresponds to the behaviour observed for UAB

in figure 17 (right panel). We underline that the departure between the potentials in the neighbourhood of

the nanofibre and in free-space is governed by the term η2—in the latter case, U(0)
AB does not depend on Φ.

5.5. General case
As seen above, coefficients (η1,η2) characterise the discrepancy between the interaction potentials in
free-space and in the neighbourhood of the nanofibre. For weak η1, potential UAB as a function ofΘ
approximately varies as sin4Θ. For weak η2, UAB does not depend on Φ.
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Figure 18. Coefficients (η1,η2) which characterise the discrepancy between the interaction potentials in free-space and in the
neighbourhood of a nanofibre: dependence on the interatomic lateral distance,∆z, and the distance of the atoms to the fibre axis,
R. We fix∆ϕ= 0 and RA = RB = R. We show the coefficients η1 =− 2∆T

T0+Tm−∆T
(red curves) and η2 =− ∆T

T0+Tm
(blue curves) as

functions of the interatomic lateral distance∆z for two values of the distance R= 350nm (full-line curves) and 250nm
(dashed-line curves).

In the general case, i.e. for arbitraryΘ and Φ, these two coefficients simultaneously come into play.
To complement our discussion, we show in figure 18 coefficients η1 and η2 as functions of∆z for

R= 250nm (full-line curves) and R= 350nm (dashed-line curves). For each value of R, there exists a certain
distance∆zmax around which the discrepancy between U(0)

AB and UAB is the most marked. From the plot,
one gets∆zmax ≈ 0.7µm (resp. 1.2µm) for R= 250nm (resp. 350nm). When atoms are too close, i.e.
∆z<∆zmax, this discrepancy gets weaker. In the same way, when∆z→+∞, η1 and η2 slowly decrease,
seemingly towards a limiting value—though we were not yet able to prove it—which is higher for lower
values of R.

6. Conclusion

In this article, we have theoretically investigated the van der Waals interaction of two Rydberg rubidium
atoms 87Rb in the presence of a silica ONF. In the case of S states, when the interatomic and fibre axes are
parallel, the repulsive potential is enhanced (resp. decreased) at long (resp. short) interatomic distances with
respect to free-space, and the blockade radius is enhanced. The ratio between the potentials in free-space and
in the presence of the nanofibre moreover does not depend on n at a large distance. Restricting ourselves to
dominating couplings, we could account for the main features observed and relate them to the activation of
new couplings—forbidden in free-space—due to the fibre-induced breaking of the rotation symmetry
around the interatomic axis. In the case of P Rydberg states, we showed the interaction potential is always
increased by the presence of the nanofibre. New couplings induced by the nanofibre-assisted-symmetry-
breaking now dominate due to the existence of a Förster quasi-resonance. They may even make the potential
attractive for some distance range, therefore leading to the formation of a well close to the nanofibre. This
observation may pertain even when the interatomic and fibre axes are not parallel. We finally showed that the
presence of the fibre causes new anisotropic features in the interaction between two P Rydberg rubidium
atoms. In particular, the rotation symmetry around the interatomic axis is broken, and the dependence on
the angle between the interatomic and quantisation axes is reshaped by the presence of the fibre.

The work presented in this article is merely a glimpse into the richness of Rydberg-atom interactions near
an ONF. It calls for a thorough and systematic investigation of the wealth of possible configurations,
including, for instance, the interaction between atoms in different states, or with arbitrary interatomic and
quantisation axes. Besides its fundamental interest, such a study holds promises for application in quantum
technologies. For instance the identification of interacting versus non-interacting—and therefore blockading
versus non-blockading—configurations may pave the way to quantum devices, such as Bragg mirrors and
gates, with highly interesting functionalised properties.

19



New J. Phys. 25 (2023) 023022 E Stourm et al

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

S N C acknowledges support by JSPS KAKENHI (Grant-in-Aid for Scientific Research (C)) 19K05316 and
Investments for the Future from LabEx PALM (ANR-10-LABX-0039-PALM). This research was funded in
part by l’Agence Nationale de la Recherche (ANR), Project ANR-22-CE47-0011. For the purpose of open
access, the authors have applied a CC-BY public copyright licence to any Author Accepted Manuscript
(AAM) version arising from this submission. E B and J R dedicate this work to the memory of V M Akulin.

ORCID iDs

S Nic Chormaic https://orcid.org/0000-0003-4276-2014
K Mølmer https://orcid.org/0000-0002-2372-869X
E Brion https://orcid.org/0000-0002-7051-1485

References

[1] Hammerer K, Sørensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
[2] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706
[3] Chou CW, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J and Kimble H J 2005 Nature 438 828
[4] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[5] Chang D E, Douglas J S, González-Tudela A, Hung C-L and Kimble H J 2018 Rev. Mod. Phys. 90 031002
[6] Nieddu T, Gokhroo V and Nic Chormaic S 2016 J. Opt. 18 053001
[7] Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. At. Mol. Opt. Phys. 66 439
[8] Ruddell S K, Webb K E, Herrera I, Parkins A S and Hoogerland M D 2017 Optica 4 576
[9] Balykin V I, Hakuta K, Kien F L, Liang J Q and Morinaga M 2004 Phys. Rev. A 70 011401(R)
[10] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
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