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Abstract. We consider two rubidium atoms, prepared in the same S or P Rydberg

states near an optical nanofibre. We determine the van der Waals interaction between

them and identify novel features, including the reshaping of the interaction anisotropy

and the formation of an interaction potential well near the nanofibre for P states.

We attribute these phenomena to the breaking of the rotation symmetry around the

interatomic axis due to the presence of the fibre. Our work constitutes an important

step in the assessment of Rydberg atom-nanofibre quantum interfaces and devices.

1. Introduction

Interfacing atomic ensembles with light in a quantum network is a promising way to

achieve scalability of quantum architectures and devices, one of the crucial challenges in

quantum technologies. Photons are ideal messengers between the atomic nodes of such

a network. Protocols considered so far include free-space setups [1, 2, 3, 4], which

are relatively easy to implement but suffer the drawback of strong losses. Optical

nanowaveguides, in particular optical nanofibres (ONFs), constitute an interesting

alternative. which offer strong transverse confinement of the field [5] and hence strong

coupling. ONFs received much attention within the past two decades [6, 7]. For instance,

the coupling to evanescent guided modes was used to trap [8, 9] and detect atoms [10]

near a nanofibre. It was also theoretically shown that energy can be exchanged between

two distant atoms via these modes [11].

http://arxiv.org/abs/2209.06542v1
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Within the past two decades, the strong dipole-dipole interaction experienced

by two neighbouring Rydberg-excited atoms and the associated so-called Rydberg

blockade phenomenon [12] became the main ingredient for many atom-based quantum

information protocol proposals [13], including atomic quantum registers [14] and

repeaters [15]. Recently, preliminary steps were taken towards building a quantum

network based on Rydberg-blockaded atomic ensembles linked via an optical nanofibre.

The excitation of cold 87Rb atoms towards Rydberg 29D state was thus experimentally

demonstrated at submicron distances from an optical nanofibre surface in a two-photon

ladder-type excitation scheme [16].

On the theory side, the spontaneous emission of a highly excited sodium atom in

the neighbourhood of a silica optical nanofibre was investigated [17]. The dependence

of the emission rates into the guided and radiative modes on the radius of the fibre,

the distance of the atom to the fibre, and the symmetry of the Rydberg state was

studied. Since it used the so-called mode function approach, this work did not account

for the fibre’s absorption and dispersion. This is critical for Rydberg atoms that can de-

excite along transitions of different frequencies for which the fibre index is different and

potentially complex. Hence, the framework of Macroscopic Quantum Electrodynamics

(MQE) [18] has been employed to study a Rydberg-excited 87Rb atom near a silica

nanofibre [19]. In MQE, one can take the exact refractive index of silica into account,

thereby relaxing all constraints on addressable transitions. MQE also offers a natural

way to compute not only atomic spontaneous emission rates but also Lamb shifts, which

are modified by the presence of the nanofibre when compared to free-space, as was

recently shown for low-lying excited levels of alkali-metal atoms [20]. As n increases,

the contribution of quadrupolar transitions to Lamb shifts and associated dispersion

forces becomes important, as previously established for Rydberg atoms near metallic

surfaces [21]. This contrasts with spontaneous emission rates for which quadrupolar

transitions have negligible influence. Moreover, as already noticed for low-excited atoms

[22], spontaneous emission may become directional when an atom is prepared in an

excited angular momentum eigenstate defined relative to a quantisation axis which

differs from the fibre axis. This effect is due to the peculiar polarisation structure of the

field in the neighbourhood of the fibre. It is particularly strong for photons emitted into

the fibre-guided modes and persists even for high principal quantum numbers, n. This

is promising in view of potential applications in chiral quantum information protocols

[23] based on a Rydberg atom-nanofibre interface.

Giant van der Waals interactions are among Rydberg atoms’ most striking features.

In free-space, for two atoms prepared in levels of principal quantum numbers n > 50

and a few µm apart, such interactions can indeed induce energy shifts of the order of

tens of GHz. In this scenario, the potential between two atoms (A,B) separated by the

distance rAB follows the law identified by London [24]

U
(0)
AB = −C6 (A,B)

r6AB

The C6 coefficient depends on the states in which the atoms (A,B) are prepared as
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well as their geometric arrangement. It scales with the principal quantum number as

n11. For a pair of rubidium atoms in the state |60S1/2〉 in free-space it is of the order of

100 GHz. (µm)−6.

In this article, we investigate how the presence of the fibre modifies this interaction

with respect to the free-space case. This study follows other works in plane geometries

involving Rydberg atoms in front of a conducting half-space [25]. In Sec. 2, we first

present the system under consideration, fix notations and specify the hypotheses we

make. In particular, we briefly recall the form of the interaction Hamiltonian between

two Rydberg atoms in the presence of a dieletric medium. In Sec. 3, we study how the

presence of the fibre modifies the interaction potential between two atoms prepared in

the same state |nS1/2〉, with n ≥ 30, in specific geometric configurations. In particular,

we investigate how this potential evolves with the interatomic distance and the principal

quantum number n. The novel features observed are attributed to the appearance of

new couplings, forbidden in homogeneous free space but allowed by the fibre-induced

symmetry breaking. In the case of two atoms prepared in the state |nP3/2,Mj =
3
2
〉 these

new couplings may even dominate those existing in free-space and strongly enhance the

potential, as we show in Sec. 4. Due to the existence of a Förster quasi-resonance,

the interaction may also be strongly modified in its nature as n increases. While the

interaction is purely repulsive in free-space, we show that, in the vicinity of the nanofibre

and in certain geometric configurations, an interaction potential well can form. In Sec.

5, we finally investigate how the interaction potential depends on the relative direction

of the atomic orbital momenta to the interatomic axis in the presence of the fibre and

compare to the case of free-space before concluding in Sec. 6.

2. Presentation of the system, hypotheses and basic equations

We shall consider the idealised configuration represented in figure 1. Two rubidium

atoms, 87Rb, denoted by A and B, respectively, are located near an infinite cylindrical

silica optical nanofibre of radius a. The Cartesian, (x, y, z), and cylindrical, (ρ, φ, z),

coordinates and associated bases, (ex, ey, ez) and (eρ, eφ, ez), are defined in figure 1.

In particular, the centres of mass of atoms A and B are identified by their cylindrical

coordinates (RA, 0, 0) and (RB,∆φ,∆z), respectively.

As we shall see, the van der Waals interaction between two Rydberg atoms are

mainly due to transitions between the initial state and close excited states. In these

highly excited levels, the hyperfine structure is negligible. The atomic state is therefore

correctly specified by i) the principal quantum number n, ii) the azimuthal quantum

number L, iii) the total angular momentum quantum number J ∈
q
∣

∣L− 1
2

∣

∣ ,
∣

∣L+ 1
2

∣

∣

y

and iv) the magnetic quantum number MJ associated with the projection of the total

angular momentum onto the quantisation axis of unit vector eq, i.e. Ĵq ≡ Ĵ · eq.
In the nonretarded approximation, the interaction between two Rydberg atoms near

a medium can be described by the following effective Hamiltonian, including electric
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dipolar and quadrupolar contributions (see [25] for details)

Ĥeff =
1

ǫ0
d̂A ·T (rA, rB) · d̂B

+
1

ǫ0
d̂A ·T (rA, rB)⊗∇B • Q̂B

+
1

ǫ0
Q̂A • ∇A ⊗T (rA, rB) · d̂B

+
1

ǫ0
Q̂A • ∇A ⊗T (rA, rB)⊗∇B • Q̂B (1)

where i) d̂K=A,B = −er̂K and Q̂K=A,B = − e
2
r̂K ⊗ r̂K are the electric dipolar and

quadrupolar moment operators, respectively, of atom K = A,B, with r̂K denoting the

position operator of the valence electron in atom K = A,B relative to the atomic centre

of mass, ii) T (rA, rB) ≡ limω→0+
(

ω
c

)2
G (rA, rB, ω), iii) ∇K is the gradient operator

with respect to the coordinates of atom K = A,B, and iv) a • b ≡
∑

i,j aijbji is the

Frobenius product between two tensors a et b defined by their components {aij , bij}
in an orthonormal basis [18]. As the dyadic Green’s function it is derived from, the

tensor T comprises a free-space component, T0 (r) = − 1
4πr3AB

(

I− 3uAB ⊗ uAB

)

, where

rAB ≡ |rA − rB| and uAB ≡ 1
rAB

(rB − rA), and a reflected part due to the presence of

the fibre, denoted by T1. The explicit form of T1 is too cumbersome to be reproduced

here, the expression of the reflected part of the dyadic Green’s function, G1, from which

T1 is deduced can be found in [19]. Note that, in free-space, the dipole-dipole component

in the first line in equation (1) reduces to

Ĥeff,0 = − 1

4πǫ0r3AB

[

d̂A · d̂B − 3
(

d̂A · uAB

)(

d̂B · uAB

)]

(2)

which allows one to recover, to the second order of the perturbation theory, the

electrostatic potential between atoms A and B respectively prepared in states (|m〉 , |n〉),
U

(0)
AB (rA, rB) = − C6

r6AB
, with

C6 =
1

16~π2ǫ20

∑

k,l

∣

∣dA
mk · dB

nl − 3
(

dA
mk · uAB

) (

dB
nl · uAB

)∣

∣

2

ωA
mk + ωB

nl

(3)

where (|k〉 , |l〉) denote intermediate states of atoms A and B.

In the following sections, we study the interaction potential between two 87Rb

atoms, prepared in various Rydberg states, that we numerically obtained either through

direct diagonalisation of the effective Hamiltonian, equation (1), in a truncated basis

or via second order perturbation theory. The truncated basis typically comprises

states
{∣

∣

∣
n(A)L(A)J (A)M

(A)
J ;n(B)L(B)J (B)M

(B)
J

〉}

which are directly coupled by the

Hamiltonian, equation (1), to the two-atom state of interest |nLJMJ ;nLJMJ〉, with
n(A), n(B) ranging from nmin to nmax and nmin ≈ n−10 and nmax ≈ n+10. We check the

convergence of the calculations by ensuring that adding (subtracting) 1 to nmax (resp.

nmin) does not significantly modify our results.
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Figure 1. Two 87Rb atoms, (A,B), near a silica optical nanofibre. Notations.

The Cartesian frame (Oxyz) is represented: i) its origin, O, is the projection of atom

A’s centre of mass on the fibre axis, ii) the (Oz) axis coincides with the fibre axis and

is directed from atom A towards B, iii) the (Ox) axis is along (OA), and directed

from O towards atom A, iv) the (Oy) axis is chosen so that (Oxyz) is a direct

frame. The unitary Cartesian basis (ex, ey, ez) is represented on the figure. A point

M of Cartesian coordinates (x, y, z) is also identified by its cylindrical coordinates

(ρ ≥ 0, 0 ≤ φ < 2π, z) defined by (x = ρ cosφ, y = ρ sinφ, z). In particular, atoms A

and B have respective cylindrical coordinates (RA, 0, 0) and (RB,∆φ,∆z). The local

cylindrical basis at pointM (ρ, φ, z) is defined by the unit vectors eρ ≡ cosφex+sinφey,

eρ ≡ − sinφex + cosφey . The fibre radius is denoted by a.

3. Interaction of two rubidium atoms in the state
∣

∣nS1/2

〉

In this section, we study the interaction between atoms (A,B), prepared in the same

Rydberg state
∣

∣nS1/2

〉

, for n ≥ 30. We show how the presence of the nanofibre modifies

the potential UAB in the so-called lateral configuration, i.e. when RA = RB = R and

∆φ = 0, and for n = 30 (Sec. 3.1). Then, using a simplified model, we qualitatively

account for the behaviour observed (Sec. 3.2) and relate it to the appearance of new

couplings induced by a fibre-assisted symmetry breaking (Sec. 3.3). We study how

previous results evolve when the principal quantum number, n, varies (Sec. 3.4). Finally,

we briefly examine other geometric configurations, ∆φ 6= 0, in which the interatomic

axis is no longer parallel to the fibre axis, and which give rise to various behaviours

for UAB (Sec. 3.5). In Secs (3.1-3.4), we restrict ourselves to the lateral configuration

∆φ = 0, RA = RB = R and choose the quantisation axis along (Oz). In Sec. 3.5, we

explore configurations for which ∆φ 6= 0.
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3.1. Dependence on the lateral distance, ∆z

Numerical results In figure 2, we show variations with ∆z of the potential UAB when

atoms are prepared in the same state
∣

∣30S1/2

〉

‡ and located either i) in free-space

(potential U
(0)
AB, blue curves), or ii) at a distance R = 250 nm from the axis of a

nanofibre of radius a = 200 nm (potential UAB, red curves). This potential coincides

with the energy shift of the state
∣

∣30S1/2,MJ = ±1/2
〉

⊗
∣

∣30S1/2,MJ = ±1/2
〉

induced

by the Hamiltonian equation (1). This is calculated either a) through diagonalisation of

the Hamiltonian equation (1) (full-line curves), or b) using second-order perturbation

theory relative to the same Hamiltonian (dashed-line curves). In the considered range of

distances, i.e. for not too short distances, the perturbation induced by the Hamiltonian

equation (1) on the initial state
∣

∣30S1/2,MJ = ±1/2
〉

⊗
∣

∣30S1/2,MJ = ±1/2
〉

remains

moderate and it is possible to adiabatically follow its energy.

In figure 3, we show the variations with ∆z of the ratio (UAB/U (0)
AB) of the interaction

potentials when atoms are located i) at a distance R = (250, 300, 350, 400)nm from

the axis of a nanofibre of radius a = 200 nm (numerator UAB) and ii) in free-

space (denominator U
(0)
AB). The results presented here were obtained through direct

diagonalisation of the Hamiltonian equation (1).

Finally, in figure 4, we show, as a function of ∆z, the quadrupolar contribution to

the interaction potential, U
(quad)
AB , when atoms are located either i) in free-space (full-line

blue curve), or ii) at a distance RA = RB = (250, 300, 350, 400)nm from a nanofibre of

radius a = 200 nm (dashed-line curves).

Analysis and comments The potential plotted in figure 2 is repulsive in free-space as

well as in the presence of the nanofibre. As seen in figure 3, the potential is weaker (resp.

larger) in the presence of the nanofibre at short (resp. large) lateral separations ∆z, i.e.
UAB/U (0)

AB < 1 (resp. UAB/U (0)
AB > 1). For example, for R = 250 nm (resp. R = 400 nm),

the potential is enhanced for ∆z & 0.5 µm (resp. ∆z & 1.2 µm).

Figure 2 further shows that exact and perturbative results coincide when atoms

are sufficiently far apart from each other, i.e. for distances ∆z larger than the van

der Waals radius§ RvdW ≈ 0.6 µm. In this perturbative regime, quadrupolar effects

are negligible, as can be seen in figure 4, and the interaction potential is therefore

dominated by the contribution of dipolar transitions, both in free-space and near the

nanofibre. In particular, U
(0)
AB approximately follows the law U

(0)
AB ≈ −C

(0)
6 (|30S1/2〉)

∆z6
, with

C
(0)
6

(

|30S1/2〉
)

≈ −26 MHz. (µm)6. Moreover, as shown in figure 3, for ∆z ≫ RvdW,

the ratio (UAB/U (0)
AB) varies slowly as a function of ∆z, and can be considered locally

constant, i.e. (UAB/U (0)
AB) ≈ α, with α ≈ 2 around ∆z ≈ 1.6 µm for R = 250 nm).

Hence, the potential UAB locally follows the usual law UAB ≈ −C6(30S1/2)
∆z6

, with

‡ Since the results we obtained do not depend on MJ , we merely designate the atomic state by
∣

∣30S1/2

〉

in figure 2.
§ Van der Waals radius RvdW

(

nS1/2

)

is defined as the distance ∆z between two atoms at which the

approximation U
(0)
AB

(

nS1/2

)

= −C
(0)
6 (nS1/2)

∆z6 becomes valid.
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Figure 2. Interaction between two 87Rb atoms, (A,B), prepared in the state

|30S1/2〉 and located in free-space or near an optical nanofibre. Van der Waals

potentials in free-space, U
(0)
AB (blue curves), and near a nanofibre, UAB (red curves), are

plotted as functions of the lateral distance ∆z and calculated either i) through direct

diagonalisation of the Hamiltonian, equation (1), including quadrupolar interactions

(full-line curves), or ii) through second-order perturbation theory relative to the same

Hamiltonian (dashed-line curves). The insert shows a zoom of the main figure in the

range 0.45 µm ≤ ∆z ≤ 0.7 µm. The nanofibre radius is a = 200 nm, ∆φ = 0,

RA = RB = R = 250 nm and the quantisation axis is along (Oz).

C6

(

30S1/2

)

= αC
(0)
6

(

30S1/2

)

. In other words, the presence of the nanofibre multiplies

the C6 coefficient by a factor α and, hence, the blockade radius rblockade ∝ (C6)
1
6 by

a factor α
1
6 . The “constant” α is larger than 1 and increases as atoms get closer to the

nanofibre, i.e. for “small” R’s. As we shall see in Sec. 3.4, α does not depend on the

principal quantum number, n.

3.2. Simplified model : π − π coupling

In this section, we develop a simplified model to qualitatively account for the main

features observed on the potential UAB.

We denote by |n〉A |n〉B ≡
∣

∣30S1/2

〉

A

∣

∣30S1/2

〉

B
the state in which atoms A and B are

initially prepared. The partial contribution to the potential UAB due to the coupling

of |n〉A |n〉B to another state |k〉A |l〉B by the dipole-dipole interaction Hamiltonian is

Ukl =
1

~ǫ20∆kl

∣

∣dB
nl ·T (rB, rA) · dA

nk

∣

∣

2
, with ∆kl ≡ ωA

nk + ωB
nl, and ~ωnk ≡ En − Ek is the

energy of the transition |k〉 → |n〉. In this expression, the term
∣

∣dB
nl ·T (rB, rA) · dA

nk

∣

∣

2
=
(

dA
nk ·T (rA, rB) · dB

nl

) (

dB
ln ·T (rB, rA) · dA

kn

)

can be interpreted as the exchange of two (real or virtual) photons between the atomic
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Figure 3. Interaction between two 87Rb atoms, (A,B), prepared in the state

|30S1/2〉 and located in free-space or near an optical nanofibre. We consider

the configuration ∆φ = 0, RA = RB = R and fix the quantisation axis along (Oz).

The ratio (UAB/U(0)
AB) of the van der Waals interaction potentials between the atoms

located i) at a distance R = (250, 300, 350, 400)nm from an optical nanofibre of radius

a = 200 nm (numerator UAB), and ii) in free-space
(

denominator U
(0)
AB

)

is plotted as

a function of the lateral distance ∆z.

dipoles dA and dB propagated from A to B and from B to A by the functions T (rB, rA)

and T (rA, rB), respectively. In the nonretarded approximation, this propagation is

considered instantaneous. Since T = T0 +T1, one gets

Ukl = U
(0)
kl + U

(vac−fib)
kl + U

(fib−fib)
kl (4)

U
(0)
kl =

1

~ǫ20∆kl

∣

∣dB
nl ·T0 (rB, rA) · dA

nk

∣

∣

2
(5)

U
(vac−fib)
kl =

2

~ǫ20∆kl
Re
[(

dB
nl ·T0 (rB, rA) · dA

nk

)

(6)

×
(

dA
kn ·T1 (rB, rA) · dB

ln

)]

U
(fib−fib)
kl =

1

~ǫ20∆kl

∣

∣dB
nl ·T1 (rB, rA) · dA

nk

∣

∣

2
(7)

In this formula, U
(0)
kl can be associated with the direct exchange of two photons in free-

space, U
(vac−fib)
kl with the exchange of one photon via free-space and one photon via

reflection onto the nanofibre, U
(fib−fib)
kl with the exchange of two photons via reflection

onto the nanofibre. Moreover, with these notations, we have

UAB

U
(0)
AB

= 1 +

∑

kl U
(vac−fib)
kl

∑

kl U
(0)
kl

+

∑

kl U
(fib−fib)
kl

∑

kl U
(0)
kl

(8)

Simplified model We start by a few remarks on the interaction potential in free-space.

The numerator
∣

∣dB
nl ·T0 (rB, rA) · dA

nk

∣

∣

2
of the partial contribution U

(0)
kl (see equation 5)
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Figure 4. Interaction between two 87Rb atoms, (A,B), prepared in the state

|30S1/2〉 and located in free-space or near an optical nanofibre: contribution

of quadrupolar transitions. The quadrupolar contribution, U
(quad)
AB , to the van

der Waals potential in free-space (full-line blue curve) and near an optical nanofibre

(dashed-line curves) is plotted as a function of ∆z. The nanofibre radius is a = 200 nm,

∆φ = 0, RA = RB = (250, 300, 350, 400)nm and the quantisation axis is fixed along

(Oz). The insert shows a zoom in the vertical direction of the main figure in the range

0.4µm ≤ ∆z ≤ 1µm.

is always positive, contrary to the denominator ∆kl : the repulsive or attractive nature

of the total potential in free-space, U
(0)
AB =

∑

kl U
(0)
kl , is therefore determined by the sign

of the denominators ∆kl and the relative magnitudes of the dipole momenta of each

transition. In figure 5 are plotted the main contributions, U
(0)
kl , to the total potential in

free-space, U
(0)
AB, due to the couplings |n〉A |n〉B ↔ |k〉A |l〉B.

The main contributions both coincide with the highest branch and are due to

the coupling of |n〉A |n〉B with the states |k〉A |l〉B and |l〉A |k〉B, briefly denoted by

(|k〉A ↔ |l〉B), with |k〉 ≡
∣

∣30P3/2,Mj = ±1
2

〉

and |l〉 ≡
∣

∣29P3/2,Mj = ±1
2

〉

. This

coupling is of “π − π” type, i.e. in this coupling scheme, each atom undergoes a π

transition along which the magnetic quantum number Mj remains unchanged.

The lower two branches are also associated with π − π-type couplings, i.e.

|n〉A |n〉B → (|k〉A ↔ |l〉B), respectively with

i)
{

|k〉 ≡
∣

∣30P1/2

〉

, |l〉 ≡
∣

∣29P3/2

〉}

ii)
{

|k〉 ≡
∣

∣30P3/2

〉

, |l〉 ≡
∣

∣29P1/2

〉}

In our simplified model, we suppose that the potential in free-space, U
(0)
AB, is solely

determined by the coupling |n〉A |n〉B → (|k〉A ↔ |l〉B), with |k〉 ≡
∣

∣30P3/2,Mj = ±1
2

〉

and |l〉 ≡
∣

∣29P3/2,Mj = ±1
2

〉

, i.e. U
(0)
AB ≈ U

(0)
kl , and so is the potential in the presence
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Figure 5. Interaction between two 87Rb atoms, (A,B), prepared in the state

|30S1/2〉 and located in free-space : partial contributions, U
(0)
kl , of the main

couplings |n〉A |n〉B ↔ |k〉A |l〉B. The partial contributions are plotted as functions

of the lateral distance, ∆z, between the two atoms. We fixed ∆φ = 0, RA = RB = R

and the quantisation axis was chosen along (Oz).

of the nanofibre, UAB, i.e. UAB ≈ Ukl. The dipoles
(

dA
nk,d

B
nl

)

associated with the main

coupling, of π−π type, are real and along the quantisation axis, (Oz), i.e. dA
nk = dA0,nkez

and dB
nl = dB0,nlez. The ratio (UAB/U (0)

AB) in equation (8) therefore takes the simple form

UAB

U
(0)
AB

=
(

1 + 2π (∆z)3
[

T1 (rB, rA)
]

zz

)2
(9)

where we used
[

T0 (rB, rA)
]

zz
= 1

2π(∆z)3
and the reality of the function

[

T1 (rB, rA)
]

zz
.

Remarkably, this ratio does not depend on dipoles dA0,nk and dB0,nl, and the

decrease/enhancement of the interaction potential induced by the introduction of the

fibre with respect to the free-space is only determined by the sign of
[

T1 (rB, rA)
]

zz
.

Half-space approximation The function
[

T1 (rB, rA)
](fibre)

zz
can only be numerically

computed from the expression of the reflected dyadic Green’s function, G1 which can

be found in [19]. If, however, R and ∆z are short “enough”, the fibre surface can be

regarded as a plane of Cartesian equation x = a, and
[

T1 (rB, rA)
](fibre)

zz
approximately

coincides with the function
[

T1 (rB, rA)
](plane)

zz
associated with the dielectric half-space

(x < a) the expression of which can be found, e.g., in [18]

[

T1 (rB, rA)
](fibre)

zz
≈
[

T1 (rB, rA)
](plane)

zz
=

1

4π

(

n (0)2 − 1

n (0)2 + 1

)

(2X)2 − 2 (∆z)2

[

(2X)2 + (∆z)2
]

5
2
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Figure 6. Interaction between two 87Rb atoms, (A,B), prepared in the state

|30S1/2〉 in the neighbourhood of a nanofibre and a dielectric half-space. We

consider the configuration ∆φ = 0, RA = RB = R and choose the quantisation axis

along (Oz). We represented as functions of the lateral distance ∆z the ratios (UAB/U(0)
AB)

of van der Waals interaction potentials between two atoms located i) at the distance

X = R − a = (50, 150)nm from the surface of a nanofibre of radius a = 200 nm (red

curves) or a dielectric half-space of same index (blue curves), (numerator UAB), and

ii) in free-space
(

denominator U
(0)
AB

)

.

where X ≡ R − a is the distance of atoms A and B to the fibre surface.

In figure 6 is plotted, as a function of the distance ∆z, the ratio (UAB/U (0)
AB) of i) the

potentials between the two atoms located at the distance X = R − a = (50, 150) nm

from the surface of a nanofibre of radius a = 200 nm (red curves) or a dielectric

half-space of same optical index (blue curves), (numerator UAB), and ii) in free-space
(

denominator U
(0)
AB

)

. The results presented in figure 6 were obtained in the framework

of our simplified model. When ∆z ≪ X, (R− a), atoms do not “see” the nanofibre or

dielectric half-space and the direct exchange of photons dominates, i.e. (UAB/U (0)
AB) → 1.

As long as ∆z < a, the results obtained with the half-space and fibre coincide. When

∆z > a, the half-space approximation is no longer valid : in the fibre case, UAB first

increases with ∆z (> a), exceeds U
(0)
AB, and reaches a maximum before slowly decreasing.

Note that the maximum is higher for atoms closer to the fibre. Unfortunately, because

of numerical issues appearing for large ∆z, we were not yet able to determine whether
UAB/U (0)

AB tends towards a nonvanishing limiting value when ∆z → +∞, as figure 6

suggests.
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Comparison with the full calculation Our simplified model, the results of which are

presented in figure 6, qualitatively account for the actual behaviour of the interaction

potential, plotted in figure 3 : i) at short distance, ∆z < (∆z)lim, the presence of the fibre

decreases the potential then ii) enhances it for ∆z > (∆z)lim, the value (∆z)lim increases

with (R− a) ; finally iii) when ∆z ≫ (R− a), the ratio (UAB/U (0)
AB) seems to tend towards

a finite limit which is higher for lower values of (R− a). We underline, however, that

our simplified model severely underestimates the potential at short distances ∆z, since

it neglects the contributions of couplings involving σ±-type transitions which enhance

the potential with respect to free-space.

3.3. Breaking of the rotation symmetry around the interatomic axis and appearance of

new couplings

In the previous section, we qualitatively reproduced the main features of the interaction

potential in the presence of an optical nanofibre, thanks to a simplified model restricted

to the dominating π − π-type coupling. Quantitative discrepancies with the full

treatment, however, exist that we related to the existence of other couplings. More

precisely, there exist π − π-, π − σ±-, σ± − σ±-, and σ± − σ∓-type couplings. We

recall that the dipole of a σ± transition writes d± = d±√
2
(ex ± iey), the dipole of a π

transition is d0 = d0ez, and the partial contribution to the van der Waals potential of

the |n〉A |n〉B → |k〉A |l〉B coupling, denoted by Ukl, is proportional to
∣

∣dA
nk ·T · dB

nl

∣

∣

2
.

In the considered configuration, the free-space propagator takes the following

diagonal form in the basis [ei ⊗ ej ]i,j=x,y,z

T0 (rA, rB) =
1

4π (∆z)3







−1 0 0

0 −1 0

0 0 2






(10)

The rotation symmetry around the interatomic axis of T0 implies : i)
[

T
]

xz
=
[

T
]

yz
= 0

hence
∣

∣d0 ·T0 (rA, rB) · d±
∣

∣ = 0, and the π − σ-type couplings do not contribute to the

potential U
(0)
AB ; ii)

[

T
]

xx
=
[

T
]

yy
and

[

T
]

yx
= 0 hence

∣

∣d± ·T0 (rA, rB) · d±
∣

∣ = 0, and

σ± − σ±-type couplings do not contribute to the potential U
(0)
AB.

The presence of a dielectric medium, fibre or half-space, breaks this symmetry and

some couplings, which were forbidden in free-space become allowed. In the considered

so-called lateral configuration, it can be proved that T1 takes the following generic form

T1 =







Txx 0 Txz

0 Tyy 0

−Txz 0 Tzz






(11)

for both the fibre and half-space, with Txx 6= Tyy and Txz 6= 0, in general. We then check

that
∣

∣d0 ·T1 (rA, rB) · d±
∣

∣ =
∣

∣d± ·T1 (rA, rB) · d±
∣

∣ 6= 0.

The partial contributions to the potential, UAB, of the π− π, π− σ±, σ± − σ± and

σ± − σ∓ couplings, respectively denoted by U
(π−π)
AB , U

(π−σ±)
AB , U

(σ±−σ±)
AB and U

(σ±−σ∓)
AB
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Figure 7. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣30S1/2

〉

in the neighbourhood of a nanofibre : partial contributions

of the couplings “allowed” and “forbidden” in free-space. We fix ∆φ = 0,

RA = RB = R and choose the quantisation axis along (Oz). We represent the ratios
(

U
(π−σ)
AB +U

(σ±−σ±)
AB /U(0)

AB

)

(green curve),

(

U
(π−π)
AB +U

(σ±−σ∓)
AB /U(0)

AB

)

(red curve), and UAB

U
(0)
AB

(blue curve) as functions of ∆z for R = 300nm, where U
(0)
AB designates the van der

Waals potential between A and B in free-space, U
(γ)
AB the partial contribution of a

coupling of type γ = π − π, π − σ±, σ± − σ±, σ± − σ∓ to the total van der Waals

potential, UAB, in the neighbourhood of the fibre.

can be calculated through i) a perturbative approach by restricting the couplings to the

relevant states |k〉A |l〉B, or ii) direct diagonalisation of the effective Hamiltonianen by

setting to zero the terms dA
nk · T · dB

ml which correspond to unwanted transitions. In

figure 7 are plotted the ratios U
(π−π)
AB +U

(σ±−σ±)
AB /U (0)

AB (green curve) and U
(π−σ)
AB +U

(σ∓−σ±)
AB /U (0)

AB

(red curve) as functions of the distance ∆z and for R = 300nm. These two ratios

characterize the respective weights of the contributions to the potential near the fibre

due to couplings which are allowed and forbidden in free-space. When atoms are very

close, i.e. when ∆z → 0, the direct exchange of photons between atoms dominates and

hence the weight of couplings forbidden in free-space is strongly decreased. The new

contributions allowed by the fibre at larger distances reinforce the enhancement of the

potential : these new couplings are responsible for the discrepancies between the results

obtained via the full calculation of the potential UAB (figure 3) and our simplified model

involving a single π − π coupling (figure 6). We note, however, that this discrepancy

remains moderate. This effect shall be more dramatic with atoms prepared in a P state,

as we shall see in Sec. 4.
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Figure 8. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣nS1/2

〉

in the neighbourhood of a nanofibre : influence of the principal

quantum number, n. We fix ∆φ = 0, RA = RB = R and choose the quantisation

axis along (Oz). We represent as functions of the lateral distance ∆z the ratio

(UAB/U(0)
AB) of the van der Waals potentials between two atoms prepared in the state

∣

∣nS1/2

〉

, for n = 30, 35, 40, 45, and located i) at the distance R = 250nm from

the axis of a nanofibre of radius a = 200nm (numerator UAB) and ii) in free-space
(

denominator U
(0)
AB

)

.

n 30 35 40 45

C
(0)
6 (GHz. (µm)6) -0.026 -0.185 -0.98 -4.23

RVdW(µm) 0.5 0.6 0.9 1.5

Table 1. Numerical values of C
(0)
6 coefficients and van der Waals radii, RvdW, which

characterize the interaction in free-space between two atoms prepared in the same state

|nS1/2〉, for n = 30, 35, 40, 45.

3.4. Dependence on the principal quantum number, n

Using the simplified model restricted to a single π − π coupling presented in Sec.

3.2, we showed that the ratio (UAB/U (0)
AB) depends neither on the dipoles nor on the

principal quantum number, n. In the validity range of this model, the curves in figure

3 are therefore universal, in the sense that they remain unchanged as n varies. To

check this property we plotted in figure 8 the ratio (UAB/U (0)
AB) of the potentials when

atoms are prepared in the same state
∣

∣nS1/2

〉

for n = 30, 35, 40, 45, and i) located

at the distance R = 250nm from the nanofibre (numerator UAB) and ii) in free-space
(

denominator U
(0)
AB

)

as a function of the distance ∆z. Table 1 gives the numerical values

of C
(0)
6 coefficients and van der Waals radius, RvdW, which characterize the interaction

in free-space between two atoms prepared in the same state |nS1/2〉.
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Figure 9. Interaction between two 87Rb atoms, (A,B), prepared in the state
∣

∣30S1/2

〉

in the neighbourhood of a nanofibre : influence of ∆φ. We consider

RA = RB = R and choose the quantisation axis along (Oz). We represent as functions

of the lateral distance ∆z, the ratio (UAB/U(0)
AB) of van der Waals potentials between

the two atoms located i) at the distance R = 250nm (left curve), 350nm (right curve)

from the axis of a nanofibre of radius a = 200nm (numerator UAB) and ii) in free-space
(

denominator U
(0)
AB

)

for different values of ∆φ = 0, π
2 , π. The full red line corresponds

to equality of both potentials.

The invariance of the ratio (UAB/U (0)
AB) with respect to n is indeed observed for

∆z & 2RvdW, i.e. in the range where perturbation theory is valid and where U
(0)
AB scales

as 1/∆z6. For ∆z . 2RvdW, the curves for different n’s no longer coincide, though their

shapes are much alike. Moreover, as already noted in Sec. 3.1, for ∆z & 2RvdW, the ratio

(UAB/U (0)
AB) varies slowly – especially for large ∆z’s – and may therefore be considered

locally constant. For any n, one has locally (UAB/U (0)
AB) ≈ α, i.e. UAB ≈ −C6(nS1/2)

∆z6
with

C6

(

nS1/2

)

≈ αC
(0)
6

(

nS1/2

)

. Introducing the nanofibre hence multiplies the C6 coefficient

by the factor α – and therefore the blockade radius rblockade ∝ (C6)
1
6 by the factor

α
1
6 . figure 8 moreover shows that this factor does not depend on the principal quantum

number – it, however, depends on the distance of atoms to the fibre.

3.5. Dependence on ∆φ

Until now, we focussed on the so-called lateral configuration defined by ∆φ = 0 and

RA = RB = R. In this section, we briefly investigate how UAB varies with ∆z for

∆φ 6= 0, keeping RA = RB = R and choosing the quantisation axis along (Oz). The half-

space approximation is, a priori, no longer applicable for this new type of configuration

nor is the simplified model restricted to a single π− π coupling because the interatomic

axis does not coincide with the quantisation axis.

In figure 9 we represented the ratio (UAB/U (0)
AB) of the potentials when atoms
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are i) in the neighbourhood of a nanofibre (numerator UAB), and ii) in free-space
(

denominator U
(0)
AB

)

, as a function of the lateral distance ∆z. The fibre radius is

a = 200nm, the two atoms are located at the same distance from the fibre axis, i.e.

R = 250nm (left plot) and R = 350nm (right plot) and ∆φ = 0, π
2
, π . At short

distance, ∆z . 10×R, the behaviour of (UAB/U (0)
AB) strongly varies from one configuration

to another. The physical situation is indeed very different, e.g., between ∆φ = 0 and

∆φ = π : i) in the former case, when ∆z → 0, rAB → 0‖ and the direct free-space

interaction dominates, hence (UAB/U (0)
AB) → 1 ; ii) in the latter case, even for ∆z = 0,

rAB 6= 0 and the field reflected onto the fibre always plays an important role. At large

distance, i.e. for ∆z ≫ R, even though rAB ≈ ∆z and the quantisation and interatomic

axes almost coincide for all ∆φ’s, the contribution of the reflected field to the potential

strongly differs from one configuration to the other – in general, however, the presence

of the nanofibre seems to enhance of the potential. Until now, we were not able to

design a simple model allowing us to account for the features we observed : we can

make the guess that different values of ∆φ favor the coupling of different transitions to

different modes of the reflected field. Numerical integration issues, however, prevented

us from pushing calculations to large values of ∆z : even though the curves seem to

tend towards an asymptote, we neither were able to confirm this guess with certainty,

nor could we determine the hypothetical limiting value.

4. Interaction between two atoms in the state |nP3/2,Mj =
3
2
〉

As seen above, the presence of a nanofibre breaks the rotation symmetry of the tensor

T around the interatomic axis, which is arbitrarily fixed along the quantisation axis. It

also activates σ± − σ±-type couplings which are forbidden in free-space. For S states,

studied in the previous section, these new couplings do not modify the nature of the

interaction between atoms. It is quite different when atoms are prepared in a P state

as we shall see below. To be more specific, in the following, we consider that atoms are

both prepared in the state |nP3/2,Mj =
3
2
〉.

We shall first investigate the dependence of the interaction potential on the

interatomic distance ∆z in the “lateral” configuration ∆φ = 0 and RA = RB = R,

(Sec. 4.1). We will show that the new couplings induced by the presence of the fibre i)

strongly dominate the couplings allowed in free-space, ii) strongly enhance the potential,

and iii) under certain conditions can also make the potential attractive. We shall finally

consider other geometric configurations and study the dependence of the potentials with

the angle ∆φ (Sec. 4.2).

4.1. Dependence on the lateral distance ∆z

In figure 10, we plotted as functions of ∆z the potentials i) in free-space, U
(0)
AB, and

ii) at the distance R = 250nm of a fibre of radius a = 200 nm, UAB. In free-space,

‖ The distance between the two atoms is given by rAB =
√

∆z2 + 4R2 sin2 ∆φ
2 .
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Figure 10. Interaction between two 87Rb atoms (A,B), prepared in the

state
∣

∣30P3/2,Mj =
3
2

〉

in the neighbourhood of a nanofibre. We fix ∆φ = 0,

RA = RB = R and choose the quantisation axis along (Oz). We plot as functions of the

lateral distance ∆z the van der Waals interaction potentials between two atoms located

i) at a distance R = 250nm of an optical nanofibre of radius a = 200nm, UAB (red

curves), and ii) in free-space, U
(0)
AB (blue curves). Results presented here were obtained

either i) through direct diagonalisation of the Hamiltonian equation (1) including the

quadrupolar component (full-line curves), or ii) via second-order perturbation theory

relative to the same Hamiltonian (dashed-line curves). The insert shows a zoom of the

main plot on the range 0.9µm ≤ ∆z ≤ 1.6µm.

the potential U
(0)
AB is repulsive, with the van der Waals radius RvdW ≈ 0.25µm and

coefficient C6

(

|30P3/2, mj =
3
2
〉
)

≈ −2.6MHz · (µm)6 for ∆z ≫ RvdW. Similarly to the

states |30S1/2〉, the quadrupolar contribution is non negligible for ∆z < 0.6µm, though

not dominant. By contrast, contrary to the case of S states, the potential is here always

enhanced by the presence of the nanofibre, and this increase is about one order of

magnitude for ∆z > 0.4 µm. Moreover, here, the second-order perturbation theory is

only valid for ∆z ≥ 5RVdW.

To interpret this behaviour in the same spirit as in Sec. 3.3, we plotted, in figure

11, the ratio (UAB/U (0)
AB) as a function of ∆z (blue curve) as well as the respective

contributions to this ratio of the couplings allowed in free-space, i.e. σ± − σ∓ and

π − π (red curve), and of the new couplings induced by the fibre, i.e. σ± − σ±

and π − σ (green curve). It appears that, contrary to the case of S states, the

new couplings strongly dominate. More precisely, following the same kind of analysis

as in Sec. 3.2 (cf figure 5), one identifies, in each situation, the main coupling

|nA〉 |nB〉 → |kA〉 |lB〉, with¶|kA〉 |lB〉 = |30S1/2,Mj = 1
2
〉 ↔ |29D5/2,Mj = 5

2
〉 in free-

¶ The condensed notation |k〉A ↔ |l〉B designates the two states {|a〉 |b〉 , |b〉 |a〉} whose energy relative
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Figure 11. Interaction between two 87Rb atoms, (A,B), prepared in

the state
∣

∣30P3/2,Mj =
3
2

〉

in the neighbourhood of a nanofibre : partial

contributions of the couplings allowed and forbidden in the free-space. We

fix ∆φ = 0, RA = RB = R and choose the quantisation axis along (Oz). We plotted
(

U
(π−σ)
AB +U

(σ±−σ±)
AB /U(0)

AB

)

(green curve),

(

U
(π−π)
AB +U

(σ±−σ∓)
AB /U(0)

AB

)

(red curve), and UAB

U
(0)
AB

(blue curve) as functions of ∆z for R = 300nm, where U
(0)
AB is the van der Waals

interaction potential between A and B in free-space, U
(γ)
AB is the partial contribution

of a coupling of type γ = π − π, π − σ±, σ± − σ±, σ± − σ∓ to the total van der Waals

potential, UAB, in the vicinity of the fibre.

space and |kA〉 |lB〉 = |30S1/2,Mj =
1
2
〉 ↔ |31S1/2,Mj =

1
2
〉 in the neighbourhood of the

fibre. The σ+−σ+-type coupling, forbidden in free-space but allowed in the presence of

the fibre, strongly dominates due to the existence of a so-called (quasi) Förster resonance.

To further investigate this point, we plotted, in figure 12, as functions of

the principal quantum number, n, i) the detunings ∆1 (n) and ∆2 (n) of the

transitions (1)
∣

∣nP3/2

〉 ∣

∣nP3/2

〉

→
∣

∣nS1/2

〉 ∣

∣(n− 1)D5/2

〉

and (2)
∣

∣nP3/2

〉 ∣

∣nP3/2

〉

→
∣

∣nS1/2

〉 ∣

∣(n + 1)S1/2

〉

(figure 12, left panel), and ii) the ratio ∆1(n)/∆2(n) (figure 12,

right panel). Coupling (1) dominates the potential in free-space, U
(0)
AB, while coupling

(2) dominates the potential in the presence of the fibre, UAB. We therefore have

U
(0)
AB ≈ 1

~ǫ20

|dA
1 ·T0·dB

1 |2
∆1(n)

and UAB ≈ 1
~ǫ20

|dA
2 ·T1·dB

2 |2
∆2(n)

, where d
K=A,B
j=1,2 is the dipole operator

of atom K involved in the process (j). We observe that, for n = 30, ∆2 ≪ ∆1 – to

be more explicit ∆2 ≈ ∆1

35
. Assuming that

∣

∣dA
1 ·T0 · dB

1

∣

∣

2
and

∣

∣dA
2 ·T1 · dB

2

∣

∣

2
have the

same order of magnitude, coupling (2) therefore highly dominates coupling (1) in the

presence of the nanofibre, and the total potential is greatly enhanced due to the presence

of the fibre. Moreover, the ratio ∆1(n)/∆2(n) – and therefore the enhancement of the total

potential in the presence of the fibre – first increases with n up to n = 38, at which a

so-called Förster (quasi-)resonance is observed, i.e. ∆2 ≈ 0. For n > 38, ∆2 (n) becomes

to the initial state is ∆kl ≡ ωA
nk + ωB

ml.
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Figure 12. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣nP3/2,Mj =
3
2

〉

in the neighbourhood of an optical nanofibre : existence

of a (quasi) Förster resonance. We fix ∆φ = 0, RA = RB = R and choose

the quantisation axis along (Oz). We plotted as functions of the principal quantum

number, n, i) the detunings ∆1 (n) and ∆2 (n) of the couplings (1) and (2) (cf main

text) which dominate the interaction potential in free-space and in the neighbourhood

of the fibre, respectively, (left panel), and ii) the ratio ∆1/∆2 (right panel).

negative. The total potential in the presence of the nanofibre, UAB ≈ 1
~ǫ20

|dA
2 ·T1·dB

2 |2
∆2

, is

repulsive for n < 38 and becomes attractive for n > 38. By contrast, ∆1 (n) remains

positive and the potential in free-space, U
(0)
AB ≈ 1

~ǫ20

|dA
1 ·T0·dB

1 |2
∆1(n)

, remains repulsive on the

considered range. For n > 38, the presence of the nanofibre hence modifies the nature

of the van der Waals force which suddenly becomes attractive.

This conclusion is confirmed and complemented by the results displayed in figure

13. The potential UAB is plotted as a function of ∆z when atoms are prepared in

the states
∣

∣35P3/2,MJ = 3
2

〉

(full-line curve) and
∣

∣45P3/2,MJ = 3
2

〉

(dashed-line curve),

and located at the same distance RA = RB = R = 250nm from the nanofibre. In

free-space, both potentials are of repulsive nature, approximately scaling as C6/∆z6 with

C6

(∣

∣35P3/2,Mj =
3
2

〉)

≈ 17 MHz. (µm)6 and C6

(∣

∣45P3/2,Mj =
3
2

〉)

≈ 500 MHz. (µm)6

on the considered range of distances. For atoms prepared in the state
∣

∣35P3/2,MJ = 3
2

〉

,

∆2 > 0 and the presence of the nanofibre enhances the potential UAB with respect to

free-space (by a factor ≈ 50 for ∆z > 1µm) without changing its nature. By contrast, in

the state
∣

∣45P3/2,MJ = 3
2

〉

, ∆2 < 0, and the presence of the nanofibre therefore modifies

the nature of the potential which becomes attractive for ∆z > 0.6µm. When atoms get

closer, the effect of the fibre gets weaker and the direct exchange of photons between

atoms dominates : the total potential hence becomes repulsive again and one observes

the formation of a well whose minimum is located around ∆z ≈ 0.6µm.
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Figure 13. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣nP3/2,Mj =
3
2

〉

in the neighbourhood of a nanofibre : modification of

the nature of the potential close to a Förster (quasi-)resonance. We fix

∆φ = 0, RA = RB = R and choose the quantisation axis along (Oz). We plotted as

functions of the lateral distance ∆z the van der Waals interaction potentials between

the atoms located i) at a distance R = 250nm from an optical nanofibre of radius

a = 200nm, UAB (red curves), and ii) in free-space, U
(0)
AB (blue curves) in the case i)

n = 35 (full-line curves) and ii) n = 45 (dashed-line curves). The results presented

here were obtained through direct diagonalisation of the Hamiltonian equation (1).

4.2. Dependence on the angle ∆φ

In the previous section, the observed enhancement of the interaction between two atoms

in the presence of an optical nanofibre was explained by the appearance of a new and

strongly dominating coupling, forbidden in free-space but activated by the symmetry

breaking induced by the fibre. These results were obtained in the lateral configuration,

i.e. for ∆φ = 0 et RA = RB = R (I), and when the fibre, interatomic and quantisation

axes coincide with (Oz) (II). Out of this configuration, previous conclusions, a priori,

no longer hold. In particular, the couplings which were forbidden in free-space under

assumptions (I) and (II) may become allowed and we therefore expect the relative

enhancement of the potential due to the introduction of the fibre less marked.

To be more explicit, we plotted as functions of ∆φ the potentials when atoms

are located i) in free-space, U
(0)
AB, and ii) in the neighbourhood of a nanofibre, UAB,

separated by a distance ∆z = 1µm and both prepared in the states |35P3/2,Mj = 3
2
〉

(figure 14) and |45P3/2,Mj =
3
2
〉 (figure 15), for three values of the distance to the fibre

axis (Oz) RA = RB = R = (250, 300, 350)nm. The quantisation axis is chosen along

(Oz) for all values of ∆φ.

The system is symmetric with respect to the plane which contains atom A and

(Oz) axis, therefore UAB (π −∆φ) = UAB (∆φ), as can be seen in figures (14, 15). The

potential is also obviously 2π-periodic with ∆φ, i.e. UAB (∆φ+ 2π) = UAB (∆φ). We
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Figure 14. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣35P3/2,Mj =
3
2

〉

in the neighbourhood of a nanofibre : influence of

∆φ. We fix RA = RB = R and choose the quantisation axis along (Oz). We plotted

as functions of ∆φ, the van der Waals interaction potentials between the two atoms

located i) in free-space, U
(0)
AB (dashed-line curves), and ii) in the neighbourhood of a

nanofibre of radius a = 200nm, UAB (full-line curves). We fix ∆z = 1µm and consider

three values for the distance of the atoms to the fibre axis, R = 250, 300, 350nm.
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Figure 15. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣45P3/2,Mj =
3
2

〉

in the neighbourhood of a nanofibre : influence of ∆φ.

We fix RA = RB = R and choose the quantisation axis along (Oz). We plotted as

functions of ∆φ the van der Waals potentials between the atoms located i) in free-

space, U
(0)
AB (dashed-line curves), and ii) in the neighbourhood of a nanofibre of radius

a = 200nm, UAB (full-line curves). We fix ∆z = 1µm and consider three values for

the distance of the atoms to the fibre axis, R = 250, 300, 350nm.
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also underline that the potential in free-space, U
(0)
AB, implicitly depends on R through the

interatomic distance rAB =
√

∆z2 + 4R2 sin2 ∆φ
2
, and the inclination of the interatomic

axis on the quantisation axis+.

For n = 35, the potential UAB exhibits stronger variations than U
(0)
AB which always

remains between 2.5 and 6 GHz. For 0 ≤ ∆φ ≤ π
4
, the interaction potential is strongly

enhanced by the presence of the nanofibre, i.e. UAB/U (0)
AB≫1. This enhancement disappears

in the range π
2
≤ ∆φ ≤ 3π

2
where UAB becomes comparable with U

(0)
AB. The same features

are observed for n = 45. The (negative) potential UAB decreases in magnitude when ∆φ

increases from 0 to π. Around ∆φ = π, UAB and U
(0)
AB have the same order of magnitude

and sign. In particular, these plots show that the sign change of the potential induced

by the presence of the nanofibre, previously observed for ∆φ = 0, actually extends to

the range 0 ≤ ∆φ ≤ π
2
.

5. Rotation of the quantisation axis

The van der Waals interaction between two atoms in free-space is, a priori, anisotropic.

According to equation (3), the potential U
(0)
AB indeed depends on the relative direction

of the interatomic and quantisation axes. To be more explicit, denoting by uAB ≡
rB−rA

|rB−rA| and eq the respective unit vectors of these axes and Θ the angle they form
(

eq · uAB = cosΘ
)

, one has C
(0)
6 = C

(0)
6 (Θ). This anisotropy was demonstrated

experimentally and its influence on the Rydberg blockade investigated [26].

The presence of an optical nanofibre brings a new priviledged direction, i.e. the fibre

axis, which is conventionally taken as (Oz) axis. Until now, we fixed the quantisation

axis used to define atomic states along (Oz), i.e. we assumed the atomic dipoles pointed

along the same direction Oz, and studied how changing the direction of the interatomic

axis modifies the interaction potential (Secs. 3.5, 4.2). By contrast, in this section, we

shall assume the interatomic axis along (Oz), fix ∆φ = 0 and RA = RB = R, and shall

consider that quantisation axis is along an arbitrary unit vector eq defined by the angles

(Θ,Φ) (see figure 16). Note that the rotation symmetry around the interatomic axis

which exists in free-space is no longer checked near the nanofibre. The C6 coefficient, a

priori, depends not only on the angle Θ but also on Φ.

We first study how the rotation of the quantisation axis modifies the interaction

potential when atoms are prepared in the state
∣

∣30P3/2,Mj =
3
2

〉

(Sec. 5.1). We

qualitatively reproduce the results obtained via a simplified model, restricted to a single

σ+ − σ+-type coupling, which allows us to relate the modification of the potential to

the fibre-induced symmetry breaking (Sec. 5.2).
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Figure 16. Two 87Rb atoms, (A,B), in the neighbourhood of a silica

optical nanofibre : quantisation axis of arbitrary direction. We use the

same Cartesian frame as in figure 1 and we fix ∆φ = 0 and RA = RB = R,

so that the interatomic axis is parallel to the fibre axis taken as (Oz) axis. The

quantisation axis has the unit vector eq defined by its spherical coordinates (Θ,Φ),

i.e. eq = sinΘ cosΦ ex + sinΘ sinΦ ey + cosΘ ez.
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Figure 17. Interaction between two 87Rb atoms, (A,B), prepared in the

state
∣

∣30P3/2,Mj =
3
2

〉

in the neighbourhood of a nanofibre : influence of the

rotation of the quantisation axis. We fix ∆φ = 0 and RA = RB = R. We plotted

the van der Waals potentials between the atoms i) in free-space, U
(0)
AB (full-line curves),

and ii) in the neighbourhood of a nanofibre of radius a = 200nm, UAB (dashed-line

curves), as functions of i) Θ for Φ = 0, i.e. for the quantisation axis rotating in the

plane (Oxz) (left panel), and ii) Φ for Θ = π
2 , i.e. for the quantisation axis rotating

in the plane (Oxy) (right panel). We fix ∆z = 1µm and consider two values for the

distance of the atoms from the (Oz) axis, R = 250, 350nm.



Interaction of two Rydberg atoms in the vicinity of an optical nanofibre 24

5.1. State
∣

∣30P3/2,Mj =
3
2

〉

In figure 17 we plotted the potentials in free-space, U
(0)
AB, and in the neighbourhood of a

nanofibre, UAB, when atoms are prepared in the state |30P3/2,Mj =
3
2
〉, as functions of

Θ for Φ = 0 (left panel) and of Φ for Θ = π
2
(right panel). The radius of the nanofibre

is a = 200 nm, the interatomic lateral distance is ∆z = 1µm, ∆φ = 0 and we consider

two values for the distance of atoms to the (Oz) axis, RA = RB = R = 250, 350nm.

As a function of Θ, the free-space potential U
(0)
AB

(

|30P3/2,Mj =
3
2
〉
)

, is maximal

(resp. minimal) in Θ = π
2
(resp. Θ = (0, π)), i.e. when dipoles point orthogonally to

(resp. are along) the interatomic axis. As expected, U
(0)
AB

(

|30P3/2,Mj =
3
2
〉
)

does not

depend on Φ.

In the presence of the nanofibre, the potential, UAB, behaves in a quite different

manner.

A. When the quantisation axis rotates in the plane (Oxz), i.e. when Θ varies and

Φ = 0 (left panel) : i) if R is weak enough (250nm), the absolute minimum reached in

free-space for eq = ez becomes the absolute maximum ; if R increases, this maximum

remains, though local. ii) The potential maximum in free-space, reached in Θ = π
2
, i.e.

when eq = ex, remains a local maximum in the presence of the nanofibre, though much

weaker ; iii) potential minima in the presence of the fibre are reached in Θ = π
4
, 3π

4
, by

contrast with free-space where these minima are achieved in Θ = 0, π.

B. When the quantisation axis rotates in the plane (Oxy) around the interatomic

axis (Oz), i.e. when Φ varies and Θ = π
2
(right panel), the potential minimum is reached

in Φ = 0, i.e. when eq = ex, while the (absolute) maximum is reached in Φ = π
2
, i.e.

when eq = ey. This second plot shows that the nanofibre-induced symmetry breaking

causes the potential to depend on the angle Φ.

To qualitatively account for these results, we develop below a simplified model

restricted to a single coupling, in the same spirit as in Sec. 3.2.

5.2. Simplified model restricted to a σ+ − σ+ coupling

The potential UAB is found to be highly dominated by the following σ+ − σ+-

type coupling,
∣

∣30P3/2,Mj =
3
2

〉 ∣

∣30P3/2,Mj =
3
2

〉

→
∣

∣30S1/2,Mj =
1
2

〉 ∣

∣31S1/2,Mj =
1
2

〉

,

already identified in the previous section. It is also true for the potential in free-space,

U
(0)
AB, except around eq = ez. In the rest of this section, we shall restrict ourselves to

this single coupling.

We assume the quantisation axis is defined by the angles (Θ,Φ) (figure 16), and

the dipoles dσ+

A and dσ+

B take the following form






dx
dy
dz







σ+

=
dσ

+

√
2







− cosΘ cosΦ− i sin Φ

− cosΘ sinΦ + i cosΦ

sinΘ







+ Denoting by Θ the angle made by the interatomic and quantisation axes, one has cosΘ =
(∆z

R )
√

(∆z
R )2+sin2 ∆φ

.
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A1 A2 Θmin (°)

R = 250nm 0.52 0.08 63

R = 350nm 0.16 0.35 39

Table 2. Function
(

sin2 Θ− η1
)2

: maxima A1 and A2 reached in Θ = 0 and Θ = π
2 ,

zero Θmin. These values are calculated from the Green’s function of the fibre for

∆z = 1µm and RA = RB = R = 250, 350nm .

The non-retarded Green’s functions, T0 (rA, rB) and T1 (rA, rB), Eqs. (10,11), lead to

dσ+

A ·T0 · dσ+

B =
dσ

+

A dσ
+

B

2

3

4π

1

(∆z)3
sin2Θ

dσ+

A ·T1 · dσ+

B =
dσ

+

A dσ
+

B

2

[

Tm sin2Θ

+∆T
(

1 + cos2Θ
)

cos 2Φ− i∆T cosΘ sin 2Φ
]

where we set ∆T ≡ 1
2

(

[

T1

]

xx
−
[

T1

]

yy

)

, Tm ≡
[

T1

]

zz
− 1

2

(

[

T1

]

xx
+
[

T1

]

yy

)

and

T1 ≡
∑

ij=x,y,z

[

T1

]

ij
ei ⊗ ej. Note that i) ∆T characterizes the nanofibre-induced

symmetry breaking and ii) ∆T and Tm do not depend on the quantisation axis direction

but only on the fibre geometric characteristics and the positions of the atoms.

We first deduce that U
(0)
AB ∝

∣

∣

∣
dσ+

A ·T0 · dσ+

B

∣

∣

∣

2

∝ sin4Θ which agrees with the results

displayed in figure 17. In particular, in free-space, the potential does not depend on Φ,

vanishes when Θ = 0, and reaches its maximum in Θ = π
2
.

Moreover, we get

∣

∣

∣
dσ+

A ·
(

T1 +T0

)

· dσ+

B

∣

∣

∣

2

=

(

dσ
+

A dσ
+

B

)2

4
(12)

×
{

(T0 + Tm −∆T )2
(

sin2Θ− η1
)2

for Φ = 0

(T0 + Tm)
2 (1− η2 cos 2Φ)

2 for Θ = π
2

where we set T0 ≡ 3
4π

1
(∆z)3

, η1 ≡ − 2∆T
T0+Tm−∆T

and η2 ≡ − ∆T
T0+Tm

. We shall see that this

formula enables us to account for the features of the potential in the neighbourhood

of the nanofibre, UAB ∝
∣

∣

∣
dσ+

A ·
(

T1 +T0

)

· dσ+

B

∣

∣

∣

2

. We underline that in the lateral

configuration, i.e. for ∆φ = 0 and RA = RB = R, ∆T is always negative for ∆z large

enough, i.e. ∆z > 270nm (resp. 500nm) for R = 250nm (resp. 350nm).

Dependence on Θ for Φ = 0

For Φ = 0, the potential UAB, as a function of Θ, varies as
(

sin2Θ− η1
)2

which has two

local maxima in Θ = 0, π
2
, respectively A1 = η21 and A2 = (1− η1)

2, and two zeroes in

Θmin = arcsin
(√

η1
)

et Θ = π −Θmin.

The values (A1, A2,Θmin) given in Table 5.2 were obtained for a system of two atoms

separated by ∆z = 1µm and located at the distance RA = RB = R = (250, 350) nm

from the fibre axis. These values allow us to account for the behaviour of the potential
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UAB represented in figure 17 (left panel). For R = 350nm, A1 < A2, and, as expected

from equation (12), the local maximum in Θ = 0 is less marked than the maximum in

Θ = π
2
. By contrast, for R = 250nm, A1 > A2, and the opposite behaviour is observed.

We also recover the position of the minimum : for R = 250nm (resp. 350nm), it is

reached in Θmin >
π
4
(resp. < π

4
).

We underline that the departure between the potentials in the neighbourhood of

the nanofibre and in free-space is governed by the term η1. For η1 → 0, one has A1 → 0,

A2 → 1 and Θmin → 0. For η1 > 0.5, the maximum in Θ = 0 becomes the absolute

maximum and the maximum in π
2
becomes local. Finally, for η1 → 1, the profile is

inversed, A1 → 4, A2 → 0, and the potential zero is achieved in Θmin = π
2
.

Dependence on Φ for Θ = π
2

For Θ = π
2
, the potential UAB, as a function of Φ, varies as (1 + η2 cos 2Φ)

2. For

∆T < 0, this function has a minimum in Φ = 0 and a maximum in Φ = π
2
, which indeed

corresponds to the behaviour observed for UAB in figure 17 (right panel). We underline

that the departure between the potentials in the neighbourhood of the nanofibre and in

free-space – in the latter case, U
(0)
AB does not depend on Φ – is governed by the term η2.

General case

As seen above, coefficients (η1, η2) characterize the discrepancy between the interaction

potentials in free-space and in the neighbourhood of the nanofibre. For weak η1,

potential UAB as a function of Θ approximately varies as sin4Θ. For weak η2, UAB

does not depend on Φ.

In the general case, i.e. for arbitrary Θ and Φ, these two coefficients simultaneously

come into play.

To complement our discussion, we plotted in figure 18 coefficients η1 and η2
as functions of ∆z for R = 250nm (full-line curves) and R = 350nm (dashed-line

curves). For each value of R, there exists a certain distance ∆zmax around which

the discrepancy between U
(0)
AB and UAB is the most marked. From the plot, one gets

∆zmax ≈ 0.7µm (resp. 1.2µm) for R = 250nm (resp. 350nm). When atoms are

too close, i.e. ∆z < ∆zmax, this discrepancy gets weaker. In the same way, when

∆z → +∞, η1 and η2 slowly decrease, seemingly towards a limiting value – though we

were not yet able to prove it – which is higher for lower values of R.

6. Conclusion

In this article, we theoretically investigated the van der Waals interaction of two Rydberg

rubidium atoms 87Rb in the presence of a silica optical nanofibre. In the case of S states,

when interatomic and fibre axes are parallel, the repulsive potential is enhanced (resp.

decreased) at long (resp. short) interatomic distances with respect to free-space, and

blockade radius is enhanced. The ratio between the potentials in free-space and in the
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Figure 18. Coefficients (η1, η2) which characterize the discrepancy between

the interaction potentials in free-space and in the neighbourhood of a

nanofibre : dependence on the interatomic lateral distance, ∆z, and the

distance of the atoms to the fibre axis, R. We fix ∆φ = 0 and RA = RB = R.

We plotted the coefficients η1 = − 2∆T
T0+Tm−∆T (red curves) and η2 = − ∆T

T0+Tm
(blue

curves) as functions of the interatomic lateral distance ∆z for two values of the distance

R = 350nm (full-line curves) and 250nm (dashed-line curves).

presence of the nanofibre moreover does not depend on n at large distance. Restricting

ourselves to dominating couplings we could account for the main features observed and

relate them to the activation of new couplings – forbidden in free-space – due to the

fibre-induced breaking of the rotation symmetry around the interatomic axis. In the

case of P Rydberg states, we showed the interaction potential is always increased by the

presence of the nanofibre. New couplings induced by the nanofibre-assisted-symmetry-

breaking now dominate due to the existence of a Förster quasi-resonance. They may

even make the potential attractive on some distance range, therefore leading to the

formation of a well close to the nanofibre. This observation may pertain even when

interatomic and fibre axes are not parallel. We finally showed that the presence of the

fibre causes new anisotropic features in the interaction between two P Rydberg rubidium

atoms. In particular, the rotation symmetry around the interatomic axis is broken, and

the dependence on the angle between interatomic and quantisation axes is reshaped by

the presence of the fibre.

We believe the work presented in this article is merely a glimpse into the richness

of Rydberg-atom interactions near an optical nanofibre. It calls for a thorough and

systematic investigation of the great wealth of possible configurations, including, for

instance, the interaction between atoms in different states, or with arbitrary interatomic

and quantisation axes. Besides its fundamental interest, such a study potentially
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holds applicative promises for quantum technologies. For instance the identification

of interacting versus non-interacting – and therefore blockading versus non-blockading

– configurations may pave the way to quantum devices, such as Bragg mirrors or gates,

with highly interesting functionalized properties.
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