

8th International Workshop on Numerical Modelling of High Temperature Superconductors 14th–16th June 2022. Nancy, France.

Coupled FEM-Circuit analysis for interconnected High Temperature Superconducting machines and components

W. Durante-Gómez¹, **F. Trillaud²**, F. González-Montañez³, G. Hajiri⁴, K. Berger⁴, R. Dorget^{4,5}, J. de la Cruz-Soto⁶

 ¹Posgrado en Ingeniería Eléctrica, UNAM, CDMX 04510, México, <u>wilder.durante@gmail.com</u>
 ²Instituto de Ingeniería, UNAM, CDMX 04510, México, <u>ftrillaudp@ii.unam.mx</u>
 ³Departamento de Energía, Universidad Autónoma Metropolitana, CDMX 02200, México, <u>f.g.mx@ieee.org</u>
 ⁴GREEN, Université de Lorraine, F-54000 Nancy, France, <u>kevin.berger@univ-lorraine.fr</u>, <u>ghazi.hajiri@univ-lorraine.fr</u> and <u>remi.dorget@univ-lorraine.fr</u>
 ⁵Electrical and Electronic Systems Research Group, Safran Tech, F-78114 Magny-Les-Hameaux, France
 ⁶Instituto Nacional de Electricidad y Energías Limpias, Cuernavaca 62490, México, <u>javier.delacruz@ineel.mx</u>

Motivation

Development of models:

- Existing advanced formulations of Maxwell equations: H-A and T-A mixed with homogeneous technique
 ⇒ practical for machine models [1]
- Modeling of SC components interacting with simple external circuit / components
- \circ Next step: from component to system \Rightarrow FEM Circuit coupling [2]

□ <u>Supporting</u>:

 Development light and compact power components for transportation based on High Temperature Superconductor (HTS) components [3]

□ <u>Responding to</u>:

Growing interest in the aircraft industries (two axes): 1) liquid hydrogen fuel, 2) more electric aircraft (MEA) ⇒ Hydrogen as coolant for SC components [4]

[1]: Y. Yang, et al, *IEEE Trans on App. Sup.*, 2020, doi: 10.1109/TASC.2020.3005503.
[2]:Z. Wang et al., *IEEE Trans. on App. Sup.*, 2017, doi: 10.1109/TASC.2017.2653807.
[3]: K. S. Haran et al, Supercond. Sci. Technol. 30 (2017) 123002 (41pp)

[4]: Airbus website, ACEND project, March 2021:

https://www.airbus.com/en/newsroom/press-releases/2021-03-airbus-to-boost-cold-technology-test ing-as-part-of-its

Fig. 1: Hybrid hydrogen aircraft from airbus (<u>https://www.airbus.com/en/i</u> nnovation/zero-emission/hy drogen/zeroe)

DC power chain

Fig. 2: Power chain from turbine to load: G for generator, C for cable and M for motor.

[5]: M. Boll et al, Supercond. Sci. Technol. 33 (2020) 044014 (14pp)

HTS Modelling 2022

FEM-Circuit model

Cosimulation: transient FEM - electrical circuit model using COMSOL Multiphysics and Simulink

- □ Case study (Fig. 4): superconducting (SC) generators, rectifier, filter, SC cable, inverter, filter and SC motors (1 out of 4, we used 1 power converter for this case study)
- □ Machine model for generator and motor: SC ironless rotor conventional stator [6]
- \Box Machines and cable modeled with homogeneous T-A, with Kim's relation $J_c(\mathbf{B})$

Fig. 4: Diagram of the coupled FEM-Circuit using COMSOL and Simulink.

[6]: M. Corduan et al, IEEE Trans on App. Sup., 2020, doi: 10.1109/TASC.2019.2963396.

HTS Modelling 2022

HTS rotating machines (HTSG and HTSM)

Hybrid machines cooled by liquid hydrogen at 25 K:

 \circ Ironless rotor: REBCO racetrack coils (I_c of tape at peak perpendicular field)

• Stator: basic COMSOL model (magnetic core to lock the flux)

Tabla I: Characteristics of SC machines

Parameters	Generator	Motor
Maximum power	10 MW	2.5 MW
Rotor mechanical speed	10,000 rpm	4,500 rpm
Torque	10 kNm	5.31 kNm
Electrical frequency, $f_{\rm e}$	833.33 Hz	525 Hz
Current density in stator	15 A/m^2	6.7 A/m^2
Number of pairs of pole	5	7
Number of slots	12	
Stator winding resistance	1.22 mΩ	1.31 mΩ
Rotor operating temperature (hydrogen coolant)	25 K	
Number of HTS tapes per coil on the rotor	160	180
Transport current for each HTS tape / $I_{c}[7]$	500 A / 1224 A	530 A / 1224 A

Similar geometry on purpose

Fig. 5: Geometric model of generator.

[7]: Robinson Research Institute, "Critical current characterisation of Fujikura FYSC 2G HTS superconducting wire",

https://figshare.com/articles/dataset/Critical current characterisation of Fujikura 2G HTS superconducting wire/3759321?backTo=/ collections/A high temperature superconducting HTS wire critical current database/2861821

Fig. 6: Geometric model of motor.

HTS Modelling 2022

Cosimulation: COMSOL - Simulink

- □ Cosimulation tool: Simulink LiveLink[™] module, sequentially coupling COMSOL Multiphysics[®] with Simulink[®]
- □ Setting up the cosimulation:

COMSOL side

- 1. Create a COMSOL model
- 2. Generation of a cosimulation file in FMU format
- 3. Build a Simulink circuit including a "COMSOL Cosimulation" block
- 4. Run Simulink

Simulink side

Case studies: steady state case for now

□ Step-by-step approach

□ The original case study was split in 4 sub-cases:

- 1. SC Generator DC circuit
- 2. DC circuit SC motor
- 3. SC Generator DC circuit SC motor
- 4. SC Generator Circuit SC cable

□ Rotor current ramped up from 0 to rated current

□ Characteristics of the circuit components:

- \circ Generator resistances, $R_{sq} = 1.22 \text{ m}\Omega$
- Motor resistances, $R_{\rm sm} = 1.31 \text{ m}\Omega$
- RLC filter (rectifier):
 - $r = 0.08 \ \Omega, L = 0.05 \ \text{mH}, C = 100 \ \mu\text{F}$
- 3-phase LC filter (inverter):
 - $L = 0.5 \text{ mH}, C = 0.132 \,\mu\text{F}$

Fig. 8: Four sub-case studies: 1) SC Generator - DC circuit, 2) DC circuit - SC motor, 3) SC Generator - DC circuit - SC motor, and 4) SC Generator- DC circuit- SC cable

Case 1: SC generator - DC circuit

□ Infinite DC bus modeled by a constant ideal voltage source at 3 kV \Box Rectifier: power diodes; $r_{on} = 0.107 \text{ m}\Omega$, $1/r_{off} = 10 \text{ nS y } V_f = 0.8 \text{ V}$.

Fig. 13: Power supplied to the DC bus

Cosimulation FEM-Electric Circuit (for 4 electrical cycles)

Cosimulation time	6 h 30 min 24 s	
Time step in FEM	$1/100/f_{\rm e} = 1.2 \text{ E-5 s}$	
Communication step	$2/100/f_{\rm e} = 2.4 \text{ E-5 s}$	
Stop time	4.8 E-3 s	

Case 2: DC circuit - SC motor

 \Box AC voltage source, maximum voltage 2 kV, f_{a} = 833.33 Hz, phase of 120°

□ Inverter: Pulse Width Modulation (PWM)

Fig. 14: Circuit: DC Circuit - SC motor.

Fig. 15: Motor input voltages

Fig. 16: Inverter input currents

Tabla III. Co-simulation time parameters DC circuit - SC Motor

Co-simulation FEM-Electric Circuit		
Co-simulation time	9 h 45 min 5 s	
Time step in FEM	$1/100/f_{\rm e} = 1.905 \text{ E-5 s}$	
Communication step	$2/100/f_{\rm e} = 3.81 \text{ E-5 s}$	
Stop time	0.01 s	

HTS Modelling 2022

Case 3: SC Generator - Circuit - SC Motor

Fig. 18: Circuit: SC Generator - DC Circuit - SC motor.

2

3

t (s)

Fig. 22: Motor input voltages

5

Fig. 23: Electromagnetic torque comparison

Development of coupled FEM–Circuit analysis of interconnected High Temperature Superconducting machines and components

 $\times 10^{-3}$

Case 4: SC generator - Circuit - SC cable

HTS Modelling 2022

Temperature Superconducting machines and components

Conclusions and perspectives

- A coupled FEM-Circuit is being developed to simulate the transient electromagnetic behavior of SC components for a MEA power chain
- □ The final step is the coupling of the SC machines and the SC cable to complete the power chain
- □ The goal is to provide a roadmap to study power systems considering HTS devices for performance analysis and design optimization still benefiting from the FEM capabilities

Upcoming:

- Initial conditions for machine models, need for a pre-estimation of machine parameters under load
- Transient studies
- \circ Global reduction of computation time
- □ Future work:
 - MgB₂ stator for SC machines for full SC machines thinking of power electronics at cryogenics temperature [8]

[8]: H. Gui et al., IEEE Trans on P. Elect., 2020, doi: 10.1109/TPEL.2019.2944781.

Thank you for your attention!

Case 3: Coupling process

□ Coupling HTSG 10 MW and HTSM 2.5 MW.

Division of the electrical circuit into two subcircuits.

\Box Equivalent resistance (R_{Ea}) calculate:

$$R_{eq} = \frac{V_{dc}}{I_{dc}} \cdot \left(\frac{1}{4}\right)$$

 \Box R_{Eq} represents the load of the 4 motors in parallel.

 \Box I_{dc} and V_{dc} are DC measurements from the inverter side.

 $\Box I_{dc} \Rightarrow \text{filtering process}$

Fig. 30: Conceptual diagram of coupling HTS machines (HTSG and HTSM)- DC circuit in Simulink

Case 3: Simulink model

HTS Modelling 2022

Case 3: SC Generator - Circuit - SC Motor

COMSOL- time step,

Fig. 31: Process of steps the cosimulation of the FEM models (generator and motor) with electrical circuit.