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Abstract—In this paper, we conduct an extensive study on

the use of pre-trained convolutional neural networks (CNNs)

for omnidirectional image quality assessment (IQA). To cope

with the lack of available IQA databases, transfer learning from

seven pre-trained CNN models is investigated over retraining

on standard 2D databases. In addition, we explore the influence

of various image representations and training strategies on the

model’s performance. A comparison of the use of projected versus

radial content, and multichannel CNN versus patch-wise training

is also covered. The experimental results on two publicly available

databases are used to draw conclusions about which strategy best

fits the visual quality prediction and at which computational

cost. The analysis shows that retraining CNN models on 2D

IQA databases improves the prediction accuracy. The latter and

the required computational time are found to be significantly

affected by the training strategy. Cross-database evaluations

demonstrate that the nature and variety of the content impact

the generalization ability of the models. Finally, we show that

conclusions coming from other image processing communities

may not hold for IQA. The provided discussion shall provide

insights and recommendations when using pre-trained CNNs for

omnidirectional IQA.

Index Terms—Benchmark, Convolutional neural networks,

Omnidirectional images, Image quality assessment.

I. INTRODUCTION

I
N recent years, virtual reality (VR) applications have
known an impressive growth. It is used in many fields

including education, entertainment, health-care, etc. One of
the most used type of content for VR is omnidirectional
images (a.k.a. 360-degree). It provides users with a visual
experience of real-world scenes as well as synthesized ones.
By means of commercial head-mounted displays (HMDs),
users get an immersive experience, where they are able to
explore the displayed content by head rotations in three
degrees of freedom, i.e. pitch, yaw, and roll. This guarantees
an interaction with the virtual environment by exploiting gaze
and head movements. Since the viewing context for this type
of content varies from traditional 2D, the user experience
in terms of perception, expectation, immersiveness, possible
sickness can be entirely different. In order to understand and
improve the quality of experience (QoE) of such content, it
is important to develop adapted paradigms and algorithms for
images quality assessment (IQA).

IQA is an important topic in image processing and computer
vision. It refers to the process of measuring the weighted

This work is partially funded by the Nouvelle Aquitaine regional Coun-
cil under project SIMOREVA360 2018-1R50112 and CPER/FEDER e-
immersion.

combination of all visual attributes that reflect the perceived
quality of a given image. This is performed in a way that
should be consistent with human subjective opinion [1] consid-
ered as the ground truth obtained by means of psychophysical
experiments. Depending on the availability of pristine images,
IQA can be considered as full reference (FR) or no-reference
(NR). It could be qualified as reduced reference (RR) if only
partial information of the source image is used [2]. NR or
blind approaches are widely adopted as they correspond to
real-world scenarios where original images are most likely
unavailable. At present, IQA is widely studied for 2D/3D
content, and comprehensive reviews are provided in [3], [4].
However, for omnidirectional scenes, it is still in its infancy
and not fully investigated. As the omnidirectional content is
generally processed, encoded, and transmitted using a 2D
plane representation, a straightforward solution is to use the
large literature on 2D quality metrics directly on the 2D
representation. Still, these metrics do not account for the non-
uniform sampling density at pixel locations from the sphere
to plane projection [5]. Their performances are lacking in
terms of correlation with human quality judgment, as shown
in [6]. Besides, most of the available 360-degree images
are projected using the equirectangular (ERP) format. This
projection suffers from geometric distortion and therefore,
does not represent with fidelity the content viewed by the
users. Having accurate metrics dedicated to omnidirectional
images accounting for their characteristics either spherical- or
projections-based becomes of a major importance in order to
meet the challenges related to this type of content.

With omnidirectional images, a few IQA models have been
proposed by extending traditional 2D metrics such as PSNR
or MSE. For example, PSNR-based methods like Spherical
PSNR (S-PSNR) [5] which computes the PSNR on a spher-
ical surface instead of the 2D representation. The weighted
spherical PSNR (WS-PSNR) [7] uses the scaling factor from
a 2D plane to the sphere as a weighting factor for PSNR
computation. CPP-PSNR [8] computes PSNR on the craster
parabolic projection (CPP) after re-mapping pixels of the orig-
inal and distorted images from the spherical domain to CPP. As
these models do not account for perceptual aspects, they fail in
accurately predicting visual quality. One of the possible ways
to reach reliable and accurate solutions for omnidirectional
IQA, is the use of machine learning techniques.

Machine learning and more precisely deep learning is
widely used for various image processing tasks in general
and quality assessment in particular. Convolutional neural
network (CNN) is a class of deep neural networks applied to
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analyze and extract visual features from scenes. It is a trainable
architecture inspired by biology that can learn invariant char-
acteristics [9]. A CNN model can learn multi-level hierarchies
of features. A better representation of such features, allows
the development of more accurate IQA models [10]. This task
was traditionally performed manually, resulting in handcrafted
features, based on natural scene statistics and often distortion
type specific. They are derived using different algorithms
and represent details contained in visual contents, such as
edges and shapes. Differently from handcrafting such features,
CNNs learn how to extract and represent them automatically.
By means of fusing and regressing extracted features, visual
quality scores can be predicted for a given image [11], [12].

The absence of accurate and representative datasets and
associated mean opinion scores to help in the design of IQA
metrics and their validation is a significant issue when dealing
with IQA for omnidirectional images. The construction of
such databases require important efforts in terms of scenes
acquisition, device calibration, paradigm definition, subjective
testing and data analysis [6], [13], [14]. The use of well-known
pre-trained models such as ResNet-18/34/50 [15], Vgg-16 [16]
and DenseNet-121 [17] appears as good alternatives. This can
be performed by the mean of transfer-learning (TL) as they
have been trained for different tasks. In omnidirectional IQA
literature, each work adopted and fine-tuned a well-known pre-
trained model for a different task within the IQA framework.
The main reason behind is that, the used models are trained
on very large datasets, allowing them to reach a significant
learning level. Besides, TL could be considered as a solution
for the lack of data. However, at this stage several important
questions could be raised regarding the use of pre-trained
models on omnidirectional images, as well as exploiting the
rich state-of-the-art work dedicated to 2D content, such as:

• Prediction accuracy of pre-trained models for omnidirec-
tional images quality? And which model is performing
the best?

• Radial vs. projected content-based training?
• Performance of projected format: CMP versus ERP?
• Performance of Patch-based training schemes?
• Would 2D quality databases improve the performance of

CNN models?
In this paper, we intend to answer the above-mentioned

questions by conducting an empirical and extensive analy-
sis using different and widely used CNN models including
ResNet-18/34/50 [15], Vgg-16/19 [16], DenseNet-121 [17]
and Inception-V3 [18]. These models are compared under dif-
ferent configurations related to omnidirectional and spherical
characteristics. The novelty of this work lies in the fact of
providing answers to the above questions, for a very challeng-
ing type of content i.e. omnidirectional images, as one cannot
rely on conclusions drawn from standard 2D benchmarks [19],
[20], not taking into account the targeted characteristics.

II. RELATED WORK

In this section, we provide a literature review of works
featuring the use of different architectures of CNNs for IQA
in general and omnidirectional IQA in particular

A. 2D-IQA
CNN models achieved great performances in various image

processing tasks compared to conventional methods including
object detection, classification, and segmentation. Foreseeing
its remarkable performance, CNN-based approaches for IQA
are proposed for 2D images. In particular, the authors in [19]
benchmarked four well-known pre-trained CNN models i.e.
Vgg-16/19 [16], ResNet-50 [15] and AlexNet [21] by means
of transfer learning and fine-tuning. Vgg-16 outperformed the
other models on 2D IQA databases, and was adopted as a
baseline to their proposed architecture. Another comparison
of pre-trained models was performed in [20] on 2D IQA
databases, where eleven models (a mix of widely used and not
very common models) such as AlexNet, ResNet-50/101, Vgg-
16 and NASNet [22] were included. The NASNet model has
been retained by the authors and fine-tuned for IQA tasks as
it outperformed the selected pre-trained models. To the best of
our knowledge, these are the only two works investigating the
performances of pre-trained models for IQA. Besides, several
authors have adopted such models as backbones of their
approaches based on their popularity [23], [24], [25], while
others opted for a self-defined model with a training from
scratch [26], [27], [28]. However, available IQA databases
are of insufficient size compared to the widely used image
recognition databases [12]. Building large-scale perceptual
quality databases is a much more difficult and time-consuming
challenge than for other image processing tasks such as image
classification, for example.

B. Omnidirectional IQA
Impressive results have been achieved by the aforemen-

tioned works on 2D content. Still, the conclusions made
by the benchmarks in [19], [20] may not be applicable to
omnidirectional images. This could be explained by the very
specific nature of this type of content, introducing new features
not existing for 2D. For instance, the equator bias explained by
the attraction of the human gaze towards the equator [29] and
the geometric distortions due to the projection of the sphere on
a 2D plane. Furthermore, users with HMDs see just portions
of the omnidirectional image known as viewports, which are
represented by the actual displayed field of view (FoV) from
the spherical representation. Their head movement determines
the next viewport, making this exploration behavior unique to
omnidirectional and VR environments.

Omnidirectional-IQA models are rather limited. In addition
to the FR metrics mentioned previously, some learning-based
models have been proposed in [30], [31], [32], [33], [34].
In these work, well-known CNN architectures such as Vgg
[16] and ResNet [15] are used either as backbones or as part
of the whole architecture. For instance, the authors in [30],
use the ResNet architecture, where they propose a viewports-
based approach with a multichannel CNN. First, they transpose
the content from the equirectangular projection to the cube-
map (CMP) projection. Then, each face of the CMP is used
as a viewport, hence six viewports for each image. These
viewports are used as input to six parallel ResNet-34 [15]
sharing the same weights obtained based on the ImageNet
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[35] database. Finally, the output of the six channels is fed to
the image quality regressor, which concatenates the extracted
features and derives a quality score. Here, the authors compute
the quality on the projected format, which unfortunately does
not represent the actual viewed content. In addition, the most
important component in this model is the pre-trained ResNet
that was originally trained on ImageNet. The latter dataset
is composed of natural images with distortions occurring in
the camera pipeline only. This would not allow the proposed
model to predict visual quality for other distortions like
compression, for instance. Another viewport based approach is
proposed in [31]. Here, the authors take benefit from the spatial
mutual dependencies among the extracted viewports by using
a graph CNN. In addition, they use the Deep Bilinear CNN
proposed in [25] to compute the global quality with a down-
sampled ERP image as an input. Both outputs are combined
to predict the quality score. The same shortcoming holds here
as for the previous work. The selected regions are extracted
from a projected format (ERP), which do not correspond to
what a user would observe on the HMD. Kim et al. used the
positions of selected patches from the ERP along with their
content to estimate their weights [32]. A total of 32 patches is
obtained. The position features are fused with visual features,
extracted by the ResNet-50 model, to predict the quality score
of the selected patches. The overall quality score of all 32
patches is then pooled and fed to a perception quality guider.
This latter makes use of the reference image, putting de facto
this approach in the FR class of models. The use of ERP
images do not sound efficient as the content is geometrically
distorted. Besides, 32 patches require 32 instances of ResNet-
50 in parallel. This results in a much heavier model in terms
of complexity. In response to these limitations, a CNN-based
model is proposed in [33] to predict visual quality based on
the spherical content of selected viewports rather than the
projected one. Viewports are selected using visual scan-path
predictions. Furthermore, the just-noticeable difference map is
used to account for the perceptual characteristics of the human
visual system (HVS) along with features produced from scan-
paths in order to estimate the weight of each viewport. The
visual features are extracted using the DenseNet-121 model
[17]. Differently from the previous mentioned works, a patch-
based approach is adopted in [34]. Patches are of size 64⇥64
and extracted from the ERP with a focus on the equatorial
region. Each patch inherits the mean opinion score (MOS) of
its 360-degree image, which may be questionable as it is too
small to represent a 2K+ scene.

III. THE PROPOSED BENCHMARK: DESIGN AND
ARCHITECTURE

With the intent to provide a holistic study as well as
recommendations on the use of CNNs for omnidirectional IQA
and to answer the questions raised in Sec. I, we designed
a benchmark taking multiple considerations into account,
related to the use of: 1) Content based splitting criteria for
selecting training and validation sets, 2) Projected images as
ERPs and CMPs, 3) Radial content rather than projected one,
4) multichannel CNN architecture, 5) Patch-based learning

scheme, and 6) 2D benchmark IQA databases to train the
selected models.

A. Pre-trained CNN models
In this study, seven among the widely used models are ex-

ploited and compared. A brief description of their architecture
is provided below in addition to Table I giving their number of
parameters and output size. All used models are fine-tuned by
replacing the original top layers used for classification, by a
quality regressor block (see Fig. 1). The latter is composed of:
1) a global average pooling (GAP) used to reduce the spatial
dimensions of the extracted feature maps and to minimize
overfitting, 2) a fully connected (FC) layer used with a rectified
linear unit (ReLU) [36] activation function, 3) a dropout (DO)
layer, which is a very effective regularization method to reduce
overfitting and improve generalization error in deep neural
networks [37], and 4) a FC layer with a single node and
a linear activation function to deliver the quality score. The
weights of the quality regressor are initialized according to
[38]. During training, all layers of the pre-trained models are
freezed to rely on the weights from ImageNet [35], and only
the quality regressor block is trained for IQA.
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Fig. 1: Architecture of the CNN models: Top layers replaced
by a regression block composed of a global average pooling
(GAP) layer, a fully connected layer (FC), a dropout layer
(DO) and a final FC layer to output the predicted score.

In the following, we describe the used CNN models by
giving the most important characteristics, leaving the readers
to refer to the original cited works.
ResNet : residual networks are artificial neural networks in-
troduced in 2015 [15]. The ResNet utilizes skip connections
to jump over some layers. This helps training deeper networks
without falling into the problem of vanishing gradients. ResNet
employs residual learning to further deepen the CNN network,
which can be interpreted by a number of deeper bottleneck
architectures. Each bottleneck has three convolutional layers
with kernel dimensions of 1⇥1, 3⇥3 and, 1⇥1 respectively.
A shortcut connection is then added from the input of the
bottleneck to its output. Several versions of this model were
developed with the main difference lying in the number of
layers. We use ResNet-18/34/50 in this study.
VGG : it is a convolutional neural network architecture pro-
posed in [16]. This network is characterized by its simplicity
and use only 3⇥3 convolutional layers stacked on top of each
other in an increasing depth. It also includes 1⇥1 convolution
filters acting as a linear transformation of the input, followed
by ReLU [36] activation. The convolution stride is fixed to 1
pixel, so to preserve the spatial resolutions. Different versions
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of this network exists, but we only use widely used ones i.e.
Vgg-16/19 [19], [20], [25], [31].
DenseNet : it is a neural network composed of dense blocks
introduced in [17]. In each block, the layers are densely
connected, with L(L+ 1)/2 direct connections, where L
is the number of layers. Each layer in DenseNet receives
additional input from all preceding layers and concatenates
them with its own feature-maps before feeding them to the
subsequent layers. This allows the model to reuse low-level
features. The DenseNet-121 is considered in this study with
the configuration used in [39].
Inception : this network architecture introduced in [18] is
composed of convolutional blocks known as Inception mod-
ules. The latter contains 1⇥1, 3⇥3 and 5⇥5 convolutions as
well as a pooling layer. The introduction of such module aims
to allow for more efficient computation and deeper networks
through a dimensionality reduction as well as the use of
various convolutional filter sizes instead of using a single one.
Several versions of this network also exist. The Inception-V3
model introduced factorized and smaller convolutions, helping
to reduce the computational cost by decreasing the number of
parameters involved in the network. This version of Inception
is used in our comparative study.

TABLE I: Number of parameters (in million) in each selected
model without their top layers, and the dimension of the output
vector for feature representation (fv).

Model #Params (M)⇡ Size Output fv

ResNet-50 23 2048
ResNet-34 21 512
ResNet-18 11 512
Vgg-16 14 512
Vgg-19 20 512
DenseNet-121 7 1024
Inception-V3 21 2048

To effectively conduct transfer learning from another do-
main (i.e. image classification) using the abovementioned
pre-trained models, fine-tuning is required. The latter allows
removing the constraints on the label spaces of the source and
target domains, i.e. from object classes to MOSs. Following
the formulation suggested in [40], transfer learning can be
expressed as follows:

f⇤

s = argmin
fs2H

1

Ns

NsX

i=1

ls(fs(xs, i, qs, i)) + ↵R(Ds, fs), (1)

where (xs, i, qs, i) is the i-th tuple of the data sample and label
of the source domain, Ns represents the number of samples in
the source domain, R(.) is a regularization term controlled by
the weight ↵, and fs is a function that lies in a Hilbert space
H. fs is optimized by means of the loss function ls using the
data from the source domain Ds.

B. Omnidirectional IQA databases

To date, IQA of omnidirectional content is suffering
from the unavailability of large, reliable and comprehensive

databases. It is mostly due to the complexity and difficulty
of the construction task. Indeed, building an IQA database
requires subjective experiments to gather human opinions
represented as MOS, in addition to an appropriate environment
and test conditions. As a special case, for omnidirectional
subjective tests, observers view the images using HMDs.
These devices are far from offering a perfect representation
of the omnidirectional content. They may introduce some
defects like the screen door effect (SDE) with an impact
on the quality ratings. Neglecting such phenomena may re-
sult in an unreliable evaluation. Another common issue with
subjective scores in general is the non-linear nature of the
obtained scores requiring a non-linear regression using a five
parameter logistic function, as recommended in the ITU-R
recommendations [41], prior to the performance evaluation.
However, it is to be recalled that such a regression cannot
be performed if the native correlation is below 0.7. Other-
wise, the correlation value cannot be considered as reliable
because the quality of regression would be very low. To date,
five databases for omnidirectional IQA are proposed in the
literature including MVAQD [42], Kim. et al. [32], CVIQ
[13], OIQA [43] and Huang. et al. [14]. Unfortunately, only
CVIQ and OIQA are publicly available and used for IQA
models training. A previous comparative study in [6] showed a
very low correlation between IQA metrics and MOS provided
by Huang. et al. compared to CVIQ. This opens questions
regarding the reliability of existing databases. Questions are
still under investigation, especially regarding the use of HMDs
for subjective experiments. It is a very delicate context as there
are no recommendations nor guidelines on how to perform
such experiments for omnidirectional applications. A study on
this matter can be found in [44].

Our study is carried out using the CVIQ [13] and OIQA [43]
databases containing ERP images. Details about each database
are provided below, and samples are shown in Fig. 2. Table II
summarizes these details in terms of number of reference and
distorted images, distortion types, number of involved subjects,
rating scale and the used HMD. There are some similarities
across both databases in terms of number of participants, rating
scales, and HMD. Because most of the important conditions
are common, this will ease the analysis of the results.

CVIQ: it includes 16 pristine omnidirectional images and 528
impaired ones. Distortions used to create this database are
only compression related, i.e. JPEG compression (JPEG) with
quality factors ranging from 50 to 0 in addition to H.264/AVC
(AVC) and H.265/HEVC (HEVC) with quantization parameter
(QP) from 30 to 50. Eleven levels are used for each distortion.
The authors used a single stimulus paradigm with a rating scale
of 10 levels from the lowest to the highest quality to gather
the MOS. 20 subjects participated to the construction of this
database.
OIQA: it includes 320 distorted omnidirectional images ob-
tained from 16 reference ones using four distortion types
with five levels each, including JPEG compression (JPEG),
JPEG 2000 compression (JP2K), Gaussian blur (BLUR) and
Gaussian white noise (WN). Subjective scores are given in the
range of 1 (bad) to 10 (excellent). 20 subjects were involved
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Fig. 2: Samples from the used databases: (top) CVIQ and (bottom) OIQA.

TABLE II: Summary of the used state-of-the-art omnidirectional image databases.

Database Ref Images Distorted Images Distortion Types Resolution Subjects Rating scale HMD

CVIQ 16 528 JPEG / AVC / HEVC 4096⇥ 2048 20 10 HTC Vive
OIQA 16 320 JPEG / JPEG2k / GB / WGN 11332⇥ 5666 / 13322⇥ 6661 20 10 HTC Vive

in the test.

C. Content-based splitting strategy

Machine learning-based IQA tasks are typically learning a
predictive model from quality assessment databases. When
training data-driven models, one must ensure the accuracy,
representativity, and reliability of the databases. Data biases
are a major issue for learning-based IQA that is often over-
looked. The consequences of such an issue are significant. It
implies that, regardless of the used model, any computational
prediction would have the same biases as the training data.
Furthermore, the performance of a trained model is reported
only on the testing set in which the selection may induce
biases related to the content. A popular and straightforward
approach is to split the training and testing sets based on
pristine images. This means that the model is evaluated on
unseen content independently of the existing distortions in the
database. However, the obtained sets may lack diversity in
terms of spatial complexity and colourfulness and may induce
representativity biases, resulting in a test set that is not illustra-
tive of the used database. Biases are mostly present, whether
the data is split arbitrarily or based on more qualified criteria.
However, minimizing those biases guarantees a validation on
representative sets of the trained model.

For this benchmark, we first tackle the issue of content
induced bias. To minimize such a bias, we use spatial infor-
mation (SI) and colorfulness information (CFI) as criteria for
the splitting strategy to make sure that, the performance of
the models are reported on a limited-bias set of images. SI
is an indicator of edge energy and therefore used to account
for spatial complexity. The CFI is a perceptual indicator of
the variety and intensity of colors in images. SI and CFI are
computed according to the ITU-T P.910 recommendations [45]
and the metric described in [46], respectively. Fig. 3 shows
SI/CFI plots of pristine images on CVIQ and OIQA databases.
As it can be seen, the variability of SI is higher in OIQA than
in CVIQ, indicating that the latter database lacks diversity of
content in terms of spatial complexity in comparison to OIQA.
A similar conclusion holds in the case of CFI.
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Fig. 3: Spatial information (SI) / colorfulness information
(CFI) plot of pristine images in CVIQ and OIQA databases.

To select the training/testing sets, we used the Euclidean
distance. For a couple of pristine images I1 and I2 charac-
terized by (CFII1 , SII1) and (CFII2 , SII2) respectively, the
distance D (I1, I2) is expressed as follows:

D (I1, I2) =
p
(CFII1 � CFII2)

2 + (SII1 � SII2)
2 (2)

Based on the previous observation, we intend to demonstrate
the existence of data biases when testing the effectiveness of
a trained deep learning model on a given set from a database.
The selection of the testing set influences the prediction
correlation independently of the used database. Three splitting
strategy are compared in this work. The first one is a random
splitting by taking 20% on each iteration. The second one
splits the databases in such a way that the images in the
testing set are clustered in terms of SI/CFI (will be referred
to as SI/CFI (a)). The third strategy takes the images that are
the most spread-out in terms of SI/CFI (will be referred to as
SI/CFI (b)). For all strategies, we ensure a complete separation
of the training and testing sets, i.e., the distorted images linked
to the same pristine image are allocated to the same set.
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D. Projection-based training

Within this configuration, we first investigate the use of
ERP images as inputs to the selected models. It is rather
straightforward and aims at evaluating CNN models on high-
resolution ERP images. The input ERP are down-sampled into
a resolution of 1024⇥ 512. This implies an adaptation of the
model in order to match the shape of the input images. The
output feature maps are provided to the quality regression
block described in Sec. III-A. The use of ERPs as direct
input may be thought of as estimating global quality rather
than local to specific regions on the scene [31]. Despite the
geometric distortions occurring on this type of projection,
investigating the effect of using high resolution content with
CNN models seems appropriate. Also, the models will learn
from additionally distorted content (i.e. distortion from the
databases as well as the projection-induced ones). Providing
an analysis regarding the impact of the latter is within the
scope of this benchmark. We will refer to this configuration
as CERP .

In addition to the use of ERPs, we intend to provide
a performance analysis on the use of cube-map projection
(CMP). The CMP introduces less distortions compared to ERP.
However, it provides separate content in form of cube faces. In
fact, this projection requires a re-projection from ERP to CMP.
It uses the six faces of a cube as the projection shape. The
CMP is generated by first rendering the scene six times from
a viewpoint. So, from each ERP image I , six faces are ob-
tained {LeftI , F rontI , RightI , BackI , T opI , BottomI}. An
illustration of the re-projection is provided in Fig. 4.

ERP

Re-projection to
CMP

Left

Bottom

Top

Right Back

Front

Fig. 4: ERP to CMP re-projection resulting in six faces: left,
front, right, back, top and bottom.

One way to deal with the CMP as input to CNN
models is to build a multichannel CNN as introduced
in [30]. This way implies multiple CNNs in parallel
where each is fed with one of the six obtained faces
{Left, Front,Right, Back, Top,Bottom}. The output fea-
ture maps from these channels are concatenated, regressed
and used to derive a quality score. The optimization of the
model as well as the prediction is made on the six channels
simultaneously and not individually. The use of CMP under a
multichannel paradigm will be referred to as CCMP and the
adopted architecture is depicted in Fig. 6. A different way con-
sists of taking each face as a separate content which involves
a patch-based training scheme. Details on this approach are
provided in Sec. III-F.

E. Radial-based training
As mentioned previously, the viewing experience of om-

nidirectional images is quite different from traditional ones.
A user can only see the actual rendered FoV from the
spherical representation. The next rendered FoV (viewport)
is determined by his head movement around the x, y, and z
axes. A slight head rotation will change the rendered viewport.
The most important part of the actual viewed viewport is the
content surrounding its center. Therefore, we only consider
this latter to predict the quality on. To avoid any confusions,
we will not call it viewports as it only represents a portion of
it and, most of the time, this region is extracted as a square
shape as in [30], [31], [33]. Indeed, a viewport is not square
and using this term to describe square patches or regions could
be misleading. As a result, we will refer to it as region.

By focusing on possible regions to predict the quality of om-
nidirectional images, we seek an agreement with the viewing
experience of this kind of images. Also, in this case geometric
distortions, created by the previously described sphere to plane
projection, will be avoided. Another avoided type of distortion,
is content discontinuity, artificial borders and oversampling
created by the CMP projection [47]. This can lead to a loss
of the semantic content. One solution to avoid such unwanted
results, is the use of the radial content rather than the projected
one. It can be done by mapping the ERP content to the sphere
(i.e. from plane to 3D space). Then projecting back the viewed
content, which consists of important regions from possible
viewports, to 2D representation (see Fig. 5).

180°

0°

90°

18°

162°

60
 %

ERP

ERP to sphere
mapping

256

25
6

VPs extraction

Fig. 5: Viewport selection for the spherical content configura-
tion. Blue areas represent the selected viewports. In total, 24
regions surrounding the equatorial line (From 18� to 162�) are
extracted from the spherical content.

In addition to the used exploration behavior described
above, it is now admitted that the human gaze is biased towards
the equatorial line when viewing omnidirectional images [29].
Inspired by this and the fact that more than 30% of the content
is often not viewed [48], we generate viewports surrounding
the equatorial line representing more than 60% of the input
content. Each center of a possible viewport Ri from the
possible candidates k (up to k = 24) is extracted and projected
from the spherical representation to the 2D plane. Then, the
extracted contents are used as an input of a pre-trained model
(among the seven selected networks). Similarly to CCMP , this
configuration implies a multichannel paradigm. The number of
parallel channels depends on the number of extracted content.
Accordingly, the complexity at this stage is proportionally
increased. The output feature maps generated by the different
channels are concatenated before feeding them to the quality
regression block described in Sec. III-A. The training and
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prediction flow is depicted in Fig. 6. We will refer to this
as CRadial in the remaining of the paper.

For this configuration, we first train the models with eights
inputs before increasing their number by 8 until 24. This
involves expanding the architecture of the models by adding
more channels to fit the additional inputs. Such a strategy is
motivated by the intent to analyze the impact of increasing
inputs for a multichannel paradigm by finding the trade-off
between accuracy of the models and the induced complexity.
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Fig. 6: Architecture of the multichannel CNN. Ri with
i 2 {1, 2, .., n} stand for the extracted regions. Architecture
adopted for CCMP (n = 6) and CRadial (n 2 {8, 16, 24}).

F. Patch-based training
Differently from CCMP and CRadial, this configuration

adopts a patch-based learning scheme. This means all con-
sidered regions from the omnidirectional images are seen as
individual content, necessitating distinct labelling. Unfortu-
nately, ground truth label (MOS) for individual patches are
unavailable, since only the omnidirectional image-level ground
truth MOS is provided. This heavily increases the challenge of
IQA when adopting a patch-based training. A straightforward
solution is to assign the same MOS of the omnidirectional
image to the derived patches. This was first introduced in [12]
and adopted by other researchers in [27], [34].

Within this configuration, two different approaches to ex-
tract patches from omnidirectional images are used. First, the
regions extracted for CRadial are considered as individual
patches, 24 from each image. Second, the six faces from
CCMP where each face is taken as a separate patch. This
configuration involves the use of a single channel CNN rather
than a multichannel one. By using different approaches to
extract patches, we aim to provide a better understanding on
how the extraction method can influence the training and the
prediction accuracy of the selected models. The quality score
of the entire omnidirectional images is obtained by an average
pooling of patches scores belonging to the same image. We
will refer to this configuration as CPatches.

G. Training on 2D IQA databases
The lack of databases for IQA of omnidirectional images

hinders the promotion and development of CNN-based IQA
models. In fact, designing a deep neural network and training
it requires large-scale and representative databases. This is the

main reason for adopting fine-tuning pre-trained models. Yet,
pre-trained models have their limits, specially when used for
a different task that may require specific type of ground truth.
IQA is one of the most sensitive image processing tasks. The
state-of-the-art for 2D IQA is well-developed compared to the
omnidirectional one. Exploiting what exists may benefit to
omnidirectional IQA. One of the aspects that we can exploit
is 2D benchmark databases to train CNN models for IQA.
Hence, the models weights will be optimized according to this
specific task, from earlier layers to the top layers. A similar
approach was used in [31] where they trained ResNet-18 [15]
on the LIVE [49] database to further improve its accuracy.
Other databases can be exploited to compensate for the lack
of available data, such as the categorical image quality (CSIQ)
database [50] and Tampere Image Database (TID2013) [51].
Other databases may also be useful.

In this study, two strategies of training on 2D-IQA databases
are investigated. The first consists of training the selected
models separately on each database. Each model is then
trained from scratch using the ground truth provided by
LIVE, CSIQ, and TID2013. The obtained knowledge is then
transfered to omnidirectional-IQA by fine-tuning the obtained
weights on CVIQ and OIQA. This way, all models are trained
and fine-tuned for the same exact task. The second strategy
consists of combining 2D-IQA databases in a large training
dataset. This strategy is inspired by the work proposed in [52].
As combining IQA databases is rather difficult, requiring
additional subjective experiments to ascertain the homogeneity
of ratings according to the levels of degradation, the authors
proposed a smart approach by using image pairing based on
the Thurstone model. The ground truth labels are computed as
the probability P(x,y) of the quality of x being higher than y,
i.e. quality ranking task rather than visual quality prediction.
By doing so, a large scale training dataset can be obtained.
However, it requires a Siamese network with x and y as inputs
and P(x,y) as outputs. The reader should refer to the original
paper [52] for more details. After training the model on the
combined dataset, the weights are saved and used to perform
transfer learning on CVIQ/OIQA.

For training on 2D databases, we unfreeze the trainable
layers of the used models. The new weights are optimized
according to the regression of extracted features to visual
quality scores for the first strategy, and quality rankings for
the second one. The CPatches under CMP is used to perform
the fine-tuning. For LIVE and TID2013, we cropped the
regions surrounding the center with a resolution of 256⇥ 256
for all images, as they contain heterogeneous resolutions or
rectangular shapes. This way, we avoid altering the content due
to inappropriate resampling. Additionally, the input images are
not normalized, which enables the proposed method to also
cope with distortions introduced by luminance and contrast
changes [27]. For both training starategies, all models are
trained for 300 epochs and early stopping by monitoring the
validation loss. We will refer to this configuration as C2D in
the following.

For the end-to-end training and transfer learning of all
configurations, the error between predicted and target scores
is computed using the L2 loss function.
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TABLE III: Characteristics of the used 2D IQA databases.

Databases # of pristine images # of distorted images Distortion types Levels of distortions

LIVE [49] 29 779 JP2K, JPEG, WN, GB, FF. 5
CSIQ [50] 30 866 JP2K, JPEG, WN, GB, FF, Contrast. 6
TID2013 [51] 25 3000 JP2K, JPEG, WN, GB and others. 5

IV. RESULTS AND DISCUSSION

A. Experimental setup
The proposed benchmark is implemented using TensorFlow

[53]. The training of the considered configurations was per-
formed on a server equipped with an Intel Xeon Silver 4208
2.1GHz CPU, 192GB of RAM, and an Nvidia Telsa V100S
32GB GPU. We use the RMSProp [54] optimizer for training
the models. The learning rate is set to 0.001 with exponential
decay. All models are trained with a batch size of 8 according
to [55] for 25 epochs. We set the input dimension of all models
to (256, 256, 3) for the CCMP , CRadial, CPatches and C2D.
As for the CERP , we set it to (1024, 512, 3).

The databases are split using the well-known Pareto princi-
ple and the criterion discussed in Sec. III-C, 80% is dedicated
for training, and the remaining 20% for testing. For the sake of
a fair comparison, all configurations were trained/tested using
the same splitting scheme. Five-fold cross-validation is used
for a complete evaluation within the selected database.

B. Data biases evaluation
To analyze the performance of splitting strategies and

demonstrate the influence of content-induced biases, we com-
pared three schemes as discussed in Sec. III-C. We trained
the selected CNN models on ERP images for this assessment,
since both databases come with this format. The perfor-
mance results in terms of correlation accuracy (PLCC) and
monotonicity (SRCC) are summarized in Table IV for both
databases. The mean values of five-folds are given to provide
a complete and fair assessment.

As can be observed, each splitting scheme resulted in a
different performance, regardless of the database. This actively
demonstrates the existence of biases when splitting databases
for training and testing. Besides, it shows the impact of the
used strategy on the reported validation performances. Since
we are dealing with IQA which is a delicate task compared
to classification or object detection for instance, one should
consider the selection of a representative set of data for testing
the efficiency of CNN models. Content representativeness for
IQA may be expressed by a variety of attributes such as those
we used, i.e. spatial complexity and colorfulness.

From Table IV, the random splitting scheme resulted in the
best performance in terms of PLCC and SRCC for CVIQ.
However, the observation is different for OIQA where the
random splitting performance is outperformed by both SI/CFI
based splitting schemes for all models. A possible reason
could be related to the content composing each database,
i.e. diversity of the images in terms of visual content and
spatial complexity of the scenes. Based on this assumption
and the previously discussed observation about the distribution

TABLE IV: Performance evaluation of the splitting strategies
on CVIQ/OIQA databases. The best performing models are
highlighted in bold for rows and underlined for columns. (a)
and (b) stands for the SI/CFI-based schemes

CVIQ

RNet-50 RNet-34 RNet-18 Vgg-16 Vgg-19 DNet-121 Incep-V3

R
an

d PLCC 0.900 0.733 0.799 0.813 0.772 0.903 0.809
SRCC 0.831 0.672 0.729 0.734 0.667 0.832 0.740

(a
) PLCC 0.844 0.727 0.787 0.789 0.791 0.862 0.810

SRCC 0.770 0.639 0.728 0.734 0.696 0.782 0.707

(b
) PLCC 0.837 0.725 0.800 0.803 0.735 0.858 0.719

SRCC 0.774 0.634 0.705 0.691 0.639 0.767 0.622

OIQA
R

an
d PLCC 0.749 0.590 0.565 0.586 0.534 0.725 0.732

SRCC 0.710 0.512 0.505 0.568 0.505 0.686 0.696

(a
) PLCC 0.837 0.641 0.803 0.662 0.608 0.818 0.803

SRCC 0.826 0.624 0.771 0.610 0.592 0.783 0.775

(b
) PLCC 0.899 0.695 0.779 0.613 0.694 0.860 0.790

SRCC 0.877 0.666 0.762 0.576 0.665 0.829 0.764

of the characteristics regarding CVIQ images (see Fig. 3),
one can conclude that OIQA is more diverse than CVIQ.
For the SI/CFI based splitting strategies, the (b) resulted in
a more representative set since it selects diverse content and,
intuitively represents approximately the used database in terms
of content. In addition, it allows a more reliable evaluation of
the performance accuracy within databases.

As observed for CVIQ, the random splitting scheme resulted
in the best performance overall, except for ResNet-18 and
Vgg-19. We believe that it is strongly related to the nature and
diversity of the content. Additionally, between SI/CFI-based
strategies, a very slight difference can be observed for CVIQ
as they appear to be competing with each other. The opposite
is observed on OIQA, where a noticeable difference can be
reported in terms of correlation and monotonicity. On the
same database, the SI/CFI (b) resulted in a better performance
compared to the (a) strategy. Based on the above observations,
we adopt the SI/CFI (b) strategy to train/test the considered
configurations. By doing so, the performances will be reported
on the most representative sets of the selected databases.

C. Projection-based evaluation
1) CERP : To assess the performances of selected pre-

trained models on high-resolution ERP images, we provide
in Table IV (SI/CF based splitting (b)) the PLCC and SRCC
scores obtained for both databases. Knowing that no omnidi-
rectional peculiarities have been considered with this config-
uration, its performances are still satisfactory for almost all
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models. On average, the best performing model within this
strategy is ResNet-50 followed by DenseNet-121, while the
least performing one is Vgg-19. This is valid for both accuracy
(PLCC) and monotonicity (SRCC) of the predictions. In fact,
ResNet-50 obtained a PLCC (resp. SRCC) value of 0.844
(resp. 0.770) on CVIQ and 0.899 (resp. 0.877) on OIQA.
DenseNet-121 achieved 0.862 (resp. 0.782) on CVIQ and
0.860 (resp. 0.829) on OIQA. These two models outperformed
the other CNN models, regardless the used database. ResNet-
50 is more popular compared to DenseNet-121, especially
within the IQA community. DenseNet-121 model is under-
represented for IQA tasks, and most of the recent works
adopted either ResNet or Vgg [19], [25], [32] as backbones.
These choices are often made based on previous conclusions
derived from other image processing tasks.

Comparing the results on CVIQ and OIQA, one can notice
better correlations on OIQA, supporting the previous assump-
tion on the nature of content in this database. The diversity of
content helps models to better train and generalize. However,
with the CERP , only 422 images are used for fine-tuning on
CVIQ and 256 on OIQA. The more diverse the training data,
the more examples to train on are required. Therefore, one can
conclude that achieving a siginificant generalization ability on
diversified databases requires larger training sets.

TABLE V: Performance evaluation of cross-database valida-
tion under the CERP . Best performing models in bold.

Train/Test Dist. Metric RN-50 RN-34 RN-18 Vgg-16 Vgg-19 DN-121 Inc-V3

OIQA
/
CVIQ

Overall PLCC 0.820 0.403 0.410 0.309 0.485 0.750 0.687
SRCC 0.751 0.305 0.437 0.254 0.485 0.716 0.651

JPEG PLCC 0.903 0.339 0.360 0.436 0.556 0.813 0.761
SRCC 0.751 0.250 0.325 0.331 0.540 0.717 0.644

AVC PLCC 0.811 0.434 0.447 0.320 0.521 0.695 0.681
SRCC 0.769 0.396 0.423 0.314 0.497 0.672 0.653

HEVC PLCC 0.741 0.432 0.604 0.215 0.385 0.731 0.633
SRCC 0.700 0.401 0.588 0.200 0.374 0.713 0.618

CVIQ
/
OIQA

Overall PLCC 0.476 0.256 0.268 0.295 0.320 0.472 0.474
SRCC 0.433 0.279 0.256 0.304 0.302 0.386 0.431

JPEG PLCC 0.768 0.264 0.404 0.324 0.281 0.754 0.285
SRCC 0.762 0.326 0.351 0.345 0.178 0.732 0.278

We conducted a cross-database validation to provide a better
understanding of the use of ERP images with CNN models.
We first trained the models on OIQA before testing their
performance on CVIQ and vice versa. The performance results
are summarized in Table V in terms of PLCC and SRCC. We
provide results for both the overall databases and on individual
distortions. For training on CVIQ and testing on OIQA, we
only provide results on the JPEG distortion according to [30].

Despite the satisfactory results obtained by the selected
models on each database separately, one can observe very
low performances on the cross-database validation. This de-
picts the limitation of CERP when used with different CNN
architectures, except for ResNet-50 and DenseNet-121. The
latter models achieved good results in both cases. Training
on OIQA and testing on CVIQ gave better results compared
to the reverse case. One can observe a PLCC (resp. SRCC)

value of 0.820 (resp. 0.751) on the overall database obtained
by ResNet-50 when trained/tested on OIQA/CVIQ compared
to 0.476 (resp. 0.433) when trained/tested on CVIQ/OIQA. A
similar behavior is noticed with DenseNet-121 and the other
models. This could be explained by the heterogeneousness
of the distortions in OIQA, combining compression artifacts
with Gaussian blur and white noise. Testing the performances
of fine-tuned CNN models, primarily trained for classification
on unseen distortions, resulted in poor performances. Among
the models, the performances of ResNet-50 show a significant
difference compared to ResNet-18/34 and Vgg-16-19. A pos-
sible explanation could be in the fine-tuning strategy [56]. It is
known that the hyperparameters are key factors in achieving
the best performance. These parameters are usually tuned
according to the model, its architecture and depth, and the
training datasets. However, as the focus of the study is rather
benchmarking omnidirectional related configurations, the used
hyperparameters are fixed for all models.

When comparing the performance on individual distortions,
it can be seen that training on OIQA yields better results.
Even though JPEG is present in both databases, training
on OIQA resulted in significantly higher PLCC and SRCC
scores. This finding holds for all seven models. A possible
explanation is that the levels of JPEG distortion applied in both
databases are different (five in OIQA and eleven in CVIQ).
Still, the same class of artifacts should not result in such a
significant difference. Perhaps compressing with eleven levels
is not the best option because it results in less discernible
differences between some stimulus (impaired images). When
tested on CVIQ, Resnet-50 and DenseNet-121 also performed
well regarding AVC and HEVC. These distortions are not
available in OIQA, demonstrating the efficacy of these models
in generalizing to comparable distortions.

2) CCMP : With the intent to provide a comparison of pre-
trained models’ performances when used on CMP projection
format and assess the influence of this type of projection, we
provide in Table VI results in terms of PLCC and SRCC.
Overall, the prediction performances are more correlated on
CVIQ compared to OIQA. This is because CVIQ contains
only compression artifacts, while OIQA contains various ones.
The diversity of distortions may lead to a less generalized
correlation across the entire database. This observation is
applicable irrespective of the architecture of the model.

TABLE VI: Performance evaluation in terms of PLCC and
SRCC of pre-trained models using CCMP . Best performances
are highlighted in bold for each database.

Database Metric RNet-50 RNet-34 RNet-18 Vgg-16 Vgg-19 DNet-121 Inc-V3

CVIQ PLCC 0.835 0.751 0.786 0.743 0.776 0.825 0.739
SRCC 0.814 0.657 0.760 0.726 0.714 0.730 0.653

OIQA PLCC 0.775 0.562 0.583 0.493 0.493 0.673 0.607
SRCC 0.722 0.532 0.561 0.498 0.498 0.596 0.548

From Table VI, it can be noticed that ResNet-50 outper-
forms the other models in terms of prediction accuracy and
monotonicity on both databases. DenseNet-121 ranked second,
but as it has fewer parameters compared to ResNet-50 (see
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Table I). Its performance can be considered as a trade-off
between accuracy and complexity. One can also observe that
Vgg-16 and Vgg-19 performed the worst among the seven
models on OIQA. It is also the case of Inception-V3 on CVIQ.

TABLE VII: Performance evaluation of cross database valida-
tion under the CCMP . Best performing models in bold.

Train/Test Dist. Metric RN-50 RN-34 RN-18 Vgg-16 Vgg-19 DN-121 Inc-V3

OIQA
/
CVIQ

All
PLCC 0.804 0.429 0.598 0.400 0.106 0.697 0.374
SRCC 0.738 0.308 0.566 0.389 0.080 0.625 0.394

JPEG
PLCC 0.914 0.525 0.649 0.381 0.206 0.867 0.617
SRCC 0.819 0.318 0.469 0.283 0.208 0.752 0.472

AVC
PLCC 0.743 0.464 0.680 0.552 0.188 0.598 0.349
SRCC 0.705 0.371 0.641 0.539 0.127 0.551 0.407

HEVC
PLCC 0.703 0.382 0.690 0.442 0.314 0.506 0.385
SRCC 0.647 0.247 0.673 0.448 0.256 0.498 0.376

CVIQ
/
OIQA

All
PLCC 0.304 0.252 0.308 0.211 0.172 0.487 0.227
SRCC 0.287 0.261 0.306 0.149 0.158 0.431 0.228

JPEG
PLCC 0.506 0.227 0.405 0.409 0.254 0.687 0.484
SRCC 0.470 0.233 0.346 0.407 0.250 0.649 0.388

A cross-database assessment was performed using CVIQ
and OIQA to demonstrate the generalization ability of selected
pre-trained models under the CMP configuration. Firstly, we
trained the models on OIQA and tested them on CVIQ. The
performance results on the overall database as well as per
distortion types are provided in Table VII. As it can be
seen, the performances on the overall database are below 0.7,
except for ResNet-50 and DenseNet-121 when tested on JPEG,
achieving second-best performance. Is it worth mentioning
that, none of the models were dedicated to quality assessment
as they were trained on ImageNet. Only the regression block is
trained for the IQA task. Besides, the only common distortion
between OIQA and CVIQ is JPEG. This is reflected in the
same table, where an improvement of PLCC and SRCC for
JPEG could be observed compared to the overall performance.
The correlation performances shifted from 0.80 to 0.91 for
ResNet-50, and from 0.69 to 0.86 for DenseNet-121. The
performances of the other models improved as well, but
remains below the 0.7 threshold. Regarding AVC and HEVC
distortions, the performances dropped compared to JPEG and
even to the overall scores, yet still acceptable.

Then, we trained on CVIQ and tested on OIQA. The correla-
tion results are summarized in the lower part of Table VII. One
can observe low performances compared to previous results.
The training on CVIQ seems to lead to less generalize models.
The overall performances are very low as the models are
trying to predict on unlearned distortions (i.e. WGN and GB).
Besides, the performances on JPEG are low too compared
to those obtained when trained on OIQA. Despite the low
performances, the contrast to training on OIQA regarding
the best-performing model can be noticed. The DenseNet-121
outperformed the other models, even ResNet-50.

D. Radial-based evaluation
In this section, we discuss the performance evaluation of

the radial content-based configuration CRadial. Table. VIII

gathers the scores for CVIQ and OIQA. The previous ob-
servation regarding the best-performing models is still valid
for this configuration. Overall, ResNet-50 and DenseNet-121
performed the best, with DenseNet-121 ranking first on CVIQ
and ResNet-50 on OIQA.

Overall, one can notice that the performances obtained on
CVIQ are mostly better compared to OIQA. A minimum
PLCC (resp. SRCC) value of 0.72 (resp. 0.69) is obtained
on CVIQ, while 0.39 (resp. 0.36) on OIQA. The reason might
be the distortions contained in OIQA. With this configuration,
additional distortions due to projection can be avoided. There-
fore, the reported results are more representative as they were
obtained based on the actual viewed content.

The fact of increasing the number of inputs improved the
performances of the selected models. One can notice that,
in average, the performance increases with increased inputs
for all models, and declines with R = 24 for Resnet-34 and
Inception-V3. This behavior does not apply to ResNet-18, as
we notice (the best score with R = 8) and then a decrease with
additional inputs. This actively demonstrates an overfitting
behavior. A similar behavior is shown by Vgg-16. Increasing
the number of inputs leads to a higher number of channels
where CNN models become more prone to overfitting. It is
worth mentioning that the variation of the number of regions
results in a variation of the quality prediction accuracy as well
as the prediction monotonicity.

E. Patch-based evaluation

To compare the performance of the multichannel paradigm
versus the patch-wise training scheme, we trained the selected
models using the output of the CMP as patches in addition to
the regions generated for CRadial (see Sec. III-F). Table IX
summarizes the obtained results.

In average, the radial-based method performed better. A
PLCC (resp. SRCC) value of 0.821 (resp. 0.760) on CVIQ
and 0.778 (resp. 0.756) on OIQA compared to 0.800 (resp.
0.751) and 0.708 (resp. 0.668) with CMP on CVIQ and OIQA
respectively. A PLCC difference of approximately 2.6% on
CVIQ and 9.4% on OIQA is observed when using patches
obtained on the sphere. This illustrates the usefulness of using
radial content against the projected one. Another possible
reason is the number of extracted patches, providing the
models with more training examples. Looking into individual
performances, DenseNet-121 ranked the best for radial patches
and ResNet-50 for CMP patches. Despite the heterogeneity
of the distortions on OIQA compared to CVIQ, training
the DenseNet-121 using a patch-wise lead to a better accu-
racy. Another noteworthy observation is related to the Vgg-
16/19 performances. They achieve comparable performance
to ResNet-50 for radial configuration on CVIQ. Knowing
that the pre-trained version of Vgg-16/19 scored among the
worst in the previous configurations, their performances under
CPatches prove to be satisfactory.

An in-depth analysis shows a significant difference in terms
of performances among different models. This could be re-
lated to the pre-trained version of the models. Performing
transfer learning with various amount of training examples
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TABLE VIII: Performance evaluation of pre-trained models with the CRadial on CVIQ/OIQA databases in terms of
PLCC/SRCC. Best performing model is highlighted in bold for CVIQ and underlined for OIQA.

# inputs Metric ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3

CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA

R = 8 PLCC 0.788 0.795 0.720 0.606 0.829 0.688 0.801 0.387 0.801 0.567 0.841 0.772 0.757 0.704
SRCC 0.713 0.758 0.698 0.559 0.794 0.661 0.707 0.361 0.707 0.517 0.747 0.727 0.740 0.644

R = 16 PLCC 0.807 0.842 0.770 0.544 0.751 0.725 0.772 0.482 0.809 0.482 0.857 0.822 0.793 0.791
SRCC 0.747 0.816 0.689 0.530 0.722 0.705 0.700 0.508 0.716 0.508 0.769 0.780 0.755 0.752

R = 24 PLCC 0.830 0.851 0.726 0.663 0.764 0.769 0.802 0.394 0.821 0.608 0.859 0.890 0.775 0.749
SRCC 0.781 0.809 0.687 0.629 0.740 0.740 0.747 0.389 0.743 0.623 0.782 0.876 0.722 0.723

TABLE IX: Performance evaluation of pre-trained models with the CPatches on CVIQ/OIQA database in terms of PLCC,
SRCC. Best performances are highlighted in bold for rows and underlined for columns.

Input type Metric ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3 Average

CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA

Radial PLCC 0.861 0.836 0.604 0.671 0.792 0.787 0.861 0.816 0.859 0.771 0.907 0.925 0.864 0.641 0.821 0.778
SRCC 0.820 0.810 0.533 0.626 0.716 0.774 0.816 0.787 0.791 0.734 0.851 0.917 0.792 0.640 0.760 0.756

CMP PLCC 0.857 0.867 0.756 0.678 0.827 0.755 0.795 0.557 0.785 0.552 0.807 0.845 0.772 0.701 0.800 0.708
SRCC 0.833 0.848 0.725 0.667 0.783 0.713 0.711 0.465 0.709 0.518 0.768 0.818 0.726 0.645 0.751 0.668

is affecting the deeper and shallower models in different
ways. For instance, deeper models such as DensNet-121 and
Vgg-16/19 achieved good performances with radial compared
to CMP. Whereas, with ResNet-18/34/50 the reverse can
be observed. The models are fine-tuned using augmented
databases of varying sizes. The radial configuration generates
10128 patches on CVIQ (resp. 6144 on OIQA) while the
CMP configuration generates 2532 (resp. 1536 patches). Four
times less the amount of training data is generated with CMP
compared to the radial starategy with an impact on the model’s
achievable performances. This configuration and the training
strategy appear to influence different backbones in different
ways.

We performed a cross-database validation with the patch-
wise configuration to verify the generalization ability of the
selected models when trained using a patch-wise scheme.
The performance results are gathered in Table X. The same
observation regarding the best performing model still valid,
ResNet-50 and DenseNet-121 achieved the best performance
overall and per-distortion. Good results are obtained on the
JPEG distortion with a PLCC (resp. SRCC) values of 0.94
(resp. 0.86) using radial patches, and 0.92 (resp. 0.83) using
CMP patches by ResNet-50 when trained on OIQA and
tested on CVIQ. Parallelly, satisfying results are obtained
on AVC and HEVC distortions. Vgg-16/19 and Inception-
V3 achieved satisfactory results with radial when trained on
OIQA. PLCC/SRCC values above 0.90/0.80 on JPEG are ob-
tained. One can also observe that the models trained on OIQA
demonstrate a stronger generalization ability when tested on
CVIQ compared to the opposite. This supports the previous
observation concerning the richness of OIQA versus CVIQ
in terms of content and distortions. Besides, the radial-based
method resulted in the best performance compared to CMP
regardless of the used database. This depicts the importance
of using radial rather than projected content on the one hand.
On the other hand, generating more examples for the models

to train on, improved the accuracy, demonstrating the impact
of having a large amount of data.

F. Training on 2D IQA databases evaluation

With the intent to evaluate whether the use of 2D IQA
databases improves the performance of CNN models compared
to performing transfer learning, we trained all selected models
on LIVE, CSIQ, TID2013, and combined databases (All). As
it is known, deep neural networks require large-scale databases
in order to achieve better accuracy as well as avoiding over-
fitting. To analyze the learning behavior, we provide in Fig.
7 the contrast (val loss � loss/val loss + loss) between
training and validation losses for the five folds (F-1 to F-5).
A contrast equal to 0 depicts an equal loss between training
and validation, whereas a contrast equal or close to 1 suggests
an important gap between both losses, with val loss being
higher and the opposite if equal or close to �1. We can see
that training on LIVE is leading to a better generalization to the
prediction of MOS, but with a non-smooth behavior. Training
on the combined datasets (All) led to the best behavior of
the training losses, as the contrast is stable and close to 0.
This is a generalization to predict the probability ranking,
as discussed in Sec. III-G, suggesting a robust performance
during training. Training on TID2013 has a higher contrast,
meaning that the models have difficulty to generalize. The gap
between training and validation losses is much higher than
those of LIVE and CSIQ. This is also demonstrated by the
provided curves (see Fig. 7). A possible reason is that TID2013
contains many diverse distortions, a total of 24 types, and it
may need more examples to learn from in order to demonstrate
a better generalization ability. From the provided curve, we
can notice that the progress of training/validation loss is more
stable on TID2013, despite the previous observation. This led
to a quicker convergence for all models. Indeed, training on
TID2013 required fewer epochs when compared to training on
CSIQ, LIVE, and the combined datasets. Among the models,
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TABLE X: Performance evaluation of pre-trained models with the CPatches on CVIQ/OIQA database in terms of PLCC,
SRCC. Best performances are highlighted in bold for rows and underlined for columns.

Training / Testing Distortion Metric
ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3

Radial CMP Radial CMP Radial CMP Radial CMP Radial CMP Radial CMP Radial CMP

Train: OIQA &
Test: CVIQ

Overall PLCC 0.886 0.843 0.705 0.593 0.637 0.607 0.789 0.710 0.767 0.665 0.859 0.841 0.764 0.684
SRCC 0.846 0.790 0.672 0.552 0.560 0.547 0.734 0.682 0.711 0.652 0.810 0.791 0.721 0.631

JPEG PLCC 0.948 0.928 0.834 0.709 0.735 0.755 0.929 0.854 0.905 0.786 0.945 0.929 0.901 0.846
SRCC 0.865 0.835 0.721 0.567 0.569 0.535 0.816 0.761 0.795 0.719 0.845 0.817 0.819 0.737

AVC PLCC 0.846 0.782 0.722 0.656 0.620 0.678 0.726 0.715 0.645 0.657 0.800 0.775 0.676 0.625
SRCC 0.842 0.768 0.705 0.622 0.599 0.616 0.704 0.691 0.642 0.645 0.780 0.754 0.651 0.586

HEVC PLCC 0.814 0.721 0.645 0.570 0.546 0.640 0.632 0.599 0.649 0.648 0.749 0.733 0.648 0.524
SRCC 0.804 0.716 0.636 0.521 0.522 0.575 0.627 0.579 0.646 0.659 0.730 0.728 0.625 0.509

Train: CVIQ &
Test: OIQA

Overall PLCC 0.558 0.441 0.336 0.453 0.469 0.455 0.318 0.330 0.436 0.309 0.570 0.598 0.469 0.497
SRCC 0.534 0.430 0.309 0.453 0.468 0.439 0.287 0.320 0.370 0.270 0.523 0.564 0.438 0.419

JPEG PLCC 0.858 0.631 0.484 0.363 0.720 0.492 0.637 0.587 0.709 0.631 0.855 0.825 0.759 0.700
SRCC 0.790 0.554 0.414 0.297 0.679 0.423 0.579 0.533 0.664 0.554 0.801 0.723 0.724 0.607

TABLE XI: Performance evaluation of C2D in terms of PLCC, SRCC. The best performing models are highlighted in bold

for rows and underlined for columns. ’All’ stands for combined datasets.

2D database Metric ResNet-50 ResNet-34 ResNet-18 Vgg-16 Vgg-19 DenseNet-121 Inception-V3

CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA CVIQ OIQA

LIVE PLCC 0.915 0.884 0.910 0.920 0.898 0.923 0.877 0.610 0.861 0.805 0.948 0.837 0.897 0.905
SRCC 0.852 0.873 0.847 0.907 0.836 0.912 0.804 0.587 0.791 0.782 0.918 0.827 0.832 0.893

CSIQ PLCC 0.912 0.876 0.934 0.923 0.903 0.919 0.873 0.832 0.892 0.847 0.943 0.931 0.908 0.911
SRCC 0.849 0.865 0.887 0.914 0.839 0.910 0.810 0.813 0.823 0.833 0.906 0.921 0.886 0.898

TID2013 PLCC 0.909 0.879 0.918 0.905 0.898 0.894 0.849 0.816 0.813 0.721 0.906 0.880 0.923 0.853
SRCC 0.847 0.863 0.859 0.889 0.829 0.878 0.768 0.799 0.737 0.704 0.842 0.858 0.875 0.833

ALL PLCC 0.938 0.882 0.728 0.381 0.821 0.342 0.889 0.804 0.886 0.692 0.869 0.908 0.751 0.696
SRCC 0.895 0.862 0.669 0.371 0.774 0.322 0.832 0.773 0.841 0.679 0.838 0.917 0.735 0.834
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Fig. 7: Contrast (val loss � loss/val loss + loss) between training and validation losses for all models trained on 2D-IQA
databases (0 ! equal loss between training and validation losses). ’All’ stands for combined datasets.

ResNet-34 converges quicker on each database, followed by
Vgg-16.

In addition to the training behavior shown above, we provide
the performance accuracy of the weights obtained from train-
ing on 2D databases, i.e. LIVE, CSIQ, and TID2013 individu-
ally and combined together. Table XI gathers the performance
results on CVIQ/OIQA in terms of PLCC/SRCC. On average,
the performances are quite satisfactory on both databases. A
maximum PLCC (resp. SRCC) value of 0.948 (resp. 0.921) is
achieved by DenseNet-121. Overall, the latter scored the best
among the selected models when trained on each database
separately and ResNet-50 when trained on the combined
datasets. Training the models on 2D IQA databases appears to
improve their performances in both correlation accuracy and
monotonicity. The achieved efficiency is competitive except
for Vgg-16 on OIQA when trained on LIVE. Despite the small
size of IQA databases, the obtained performances actively
demonstrate the usefulness of training CNN models on them.

Acquiring knowledge about quality after being pre-trained to
predict it is increasing the performances.

Among the selected 2D databases, training on TID2013
results in a poor performance compared to LIVE and CSIQ.
It could be explained by the lack of generalization due to the
limited number of instances per distortion. Indeed, insufficient
amount of data may lead to overfitting, especially when
training from scratch. When trained on LIVE and TID2013,
ResNet-50 is outperformed by its smaller variants, ResNet-
18/34. The difference is greater on OIQA than on CVIQ,
which solely contains compression artifacts. It is known that
deeper models require large databases in order to reach a
generalization ability and sufficient accuracy, especially on
databases with diverse content.

Regarding pre-training on the combined datasets, some
improvement can be observed when compared to the use
of imageNet weights reported in Table IX. For example,
ResNet-50 performances in terms of PLCC/SRCC shifted from
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0.857/0.833 on CVIQ to 0.938/0.895, representing 9%/7.2%
of improvement. On the same database, similar improvements
can be seen with other models such as Vgg-16/19, as well as
slight improvements with DenseNet-121, Inception-V3, and
ResNet-18. Analyzing the performance on OIQA, ResNet-
18/34 performed poorly, with accuracy and monotonicity
scores below 0.5. As demonstrated by the lower performances,
fine-tuning on databases with diverse content and degradation
is less efficient for different models with varying depths. This
indicates less generalization compared to training on individual
databases.

G. Computational complexity

With the aim to compare the computational complexity
of the selected models under different configurations, we
measure the required prediction time per input image. Since
the inference analysis is independent from the training, we
used a different hardware configuration. A computer equipped
with an Intel® Core™ i9-9880H @ 2.30GHz, 32GB of RAM,
and an Nvidia Quadro T2000 MAX-Q 4GB GPU is selected
to measure the computational complexity. Fig. 8 represents the
average of the computational time required over ten images.
Overall, DenseNet-121 requires the longest time, followed by
Vgg-16/19. Considering this, one can conclude that DenseNet-
121 and the Vgg-based models are heavier in terms of com-
putational complexity, followed by Inception-V3, and finally
ResNets. The training time is definitely not proportional to
the complexity of the used model in terms of number of
parameters (see Table I). DenseNets concatenations require
high GPU memory and therefore more training time [57],
while ResNet models implement skip-connections, allowing
to jump over some layers and reducing the computational
time [15], [58]. Despite the number of parameters of ResNet-
50, the latter spent less time than VGG-16/19. DenseNet-121
has fewer parameters among the selected models, and yet it
requires more time than ResNets.

Among the configurations, the multichannel appears to
demand more computational time, except with Vgg-16/19.
The computational time required by Vggs is highly impacted
by the input shape. As it can be seen, Vgg-16/19 required
the longest time when used with ERP images, suggesting
that the architecture of the model plays a major role in the
computational complexity.

In addition to the computational time, we measured the
number of floating-point operations (FLOPs) with regard to
the input shape. The latter determines the number of FLOPs
providing insight on the computations required by the model.
A large FLOPs number implies a higher complexity, sug-
gesting a longer calculation time. The FLOPs are reported
in Table XII. One can observe that having an input shape
of 1024*512*3 resulted in larger FLOPs. However, according
to the computational time associated with each configuration,
the first observation that emerges is that the FLOPs is not
proportional with the required computational time. This could
be explained by the fact that other operations are involved,
especially memory-based ones, as discussed previously regard-
ing DeseNet-121. In addition, some architectures implement
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Fig. 8: Computational complexity in terms of required predic-
tion time per image.The average over ten samples is provided.

TABLE XII: The number of FLOPs (in billion) with regard to
the input shapes.

Input shape 256*256*3 1024*512*3 256*256*3*6

ResNet-50 5.04 40.35 30.27
ResNet-34 4.80 38.42 28.82
ResNet-18 2.39 19.09 14.32
Vgg-16 20.1 160.5 120.3
Vgg-19 25.5 203.9 152.9
DenseNet-121 3.70 29.61 22.21
Inception-V3 3.97 36.23 23.14

skip-connections such as ResNets, allowing a more optimized
utilization of the computational resources. Vgg-16/19 have
the largest FLOPs independently of the used configuration. In
contrast to the other models, both Vggs required significantly
higher computational time. This confimrs that the computa-
tional time is strongly affected by the architecture.

H. Overall performance evaluation
The training and validation of a CNN model are often

made on randomly selected sets. The adopted splitting scheme
may result in biased sets. Limiting these biases helps to
improve the reliability of the models as well as the reported
performance. With this idea in mind, we first conducted a
comparison of three splitting strategies (see Sec. III-C). The
results demonstrated the existence of content-induced biases,
as the performances were different for each splitting strategy.
In addition, it showed the difference in terms of content di-
versity in the available omnidirectional IQA databases. CVIQ
appears to contain less diversity compared to OIQA. In our
case, in order to provide accurate and reliable results, we
adopted for all configurations, the splitting scheme that uses
scene complexity and colorfulness as splitting criteria.

Predicting visual quality on projected content (i.e. ERP
and CMP images) for omnidirectional IQA is straightforward
and does not require an additional pre-processing step for
extracting viewports or patches. However, the achieved perfor-
mances are quite poor, except for ResNet-50 and DenseNet-
121. This observation is confirmed when conducting cross-
database validation, in which the performances decreased sub-
stantially. The limitations of using projected content, as well
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as the limitations of CVIQ in offering enhanced generalization
ability, were demonstrated. When we trained the models on
OIQA and tested on CVIQ, the results were better than
when the reverse was performed. Because OIQA comprises
a variety of distortions, it benefited the models in achieving
higher correlation accuracy and monotonicity when compared
to CVIQ, which solely incorporates compression artifacts.

The use of radial-content (i.e. spherical content) helps to
mimic the exploration behavior of users, predicts visual quality
on the actual viewed content, and avoids geometric distortions
due to projection. This approach results in a set of regions for
quality predictions. The challenge is to determine the number
of these regions as well as their locations. Regarding the latter,
it is preferable to focus on the equator, as demonstrated in
[29]. We utilized 8, 16, and 24 extracted regions to investigate
the influence of their number on the performance of the
selected models. An improvement was observed with the
increase of number of inputs, showing the importance of
feeding CNN models with more content to learn from. An
overall improvement was also observed regarding all models
compared to the use of projected content. Except for Vgg-
16/19 on OIQA where a low performance is observed. The
performance of DenseNet-121 (resp. ResNet-50) stood out
from the rest of the models on CVIQ (resp. OIQA).

Training a CNN model on selected regions from an om-
nidirectional image either implies the use of a multichannel
CNN or a patch-wise training. The multichannel CNN learns
from multiple inputs that are linked to a single ground truth
(i.e. MOS), while patch-wise learning involves labeling each
extracted patch independently. The multichannel strategy is
investigated with the CMP- and Radial content-based configu-
ration. For the patch-wise, two techniques were evaluated, the
use of radial content and faces from the cube-map projection
as patches. Overall, the superiority of using the radial content
was observed. With this configuration, the DenseNet-121
and ResNet-50 still outperform the other models. The cross-
database evaluation supports the idea of using radial content
as well as generating larger training sets. Good performances
were obtained when we trained the models on OIQA and
tested on CVIQ, especially for JPEG distortion. Despite the
difference in the used levels of JPEG, five on OIQA and eleven
on CVIQ, PLCC/SRCC values above 0.90/0.80 were achieved.

Except for training on 2D databases, ResNet-50 and
DenseNet-121 performed the best across all tested configu-
rations. This actively demonstrates the effectiveness of these
models for IQA tasks when used with the ImageNet weights.
When trained on 2D databases, ResNet-18/34 and Inception-
V3 achieved competitive performances noticeably better com-
pared to those obtained with their original weights. This
shows that deeper models need large databases, while less
deep ones may achieve high accuracy with fewer data. In
addition, actual 2D IQA databases are limited in comparison to
ImageNet. Building IQA databases is time-consuming, which
is why transfer learning is usually adopted; tiny databases
would not allow CNN models to reach a substantial degree
of accuracy. However, when we trained the selected models
on LIVE, CSIQ, and TID2013 databases, we could observe an
improvement over the pre-trained versions. Overall, the best

performances were achieved when trained on LIVE and CSIQ.
These databases share four distortion types with OIQA. In
terms of loss contrast and training convergence, we discovered
that the broader the database (i.e. various distortion type), the
faster the model trains and less contrast it obtains (see Fig.
7). This may be due to fewer examples to learn from when
an important number of distortion is used. When we trained
on the combined datasets, some improvement were observed,
especially with CVIQ, while less generalization is achieved
when fine-tuned on diverse database (OIQA).

I. Summary
The main takeaways of this benchmark are:
• When training CNNs models for IQA, a complete separa-

tion of the training and testing sets should be performed.
Otherwise, the validation would be biased as the model
will have already seen the content. In addition, to avoid
the representativeness-bias a content-oriented splitting
strategy should be considered.

• IQA datasets for training CNN models may suffer from
diversity, either in terms of content or distortions. Conse-
quently, the generalization ability and robustness of the
model may be highly affected.

• The use of projected contents limits the achievable perfor-
mances, especially the generalization ability. The fact that
this content present geometric distortions and less fidelity
with the viewed content resulted in limited performances.
In this case, the use of radial content could be more
effective.

• Patch-based training is as efficient as multichannel mod-
els featuring several CNNs in parallel. With proper
patches sampling and training strategy, the patch-based
training should be considered since it drastically reduces
the complexity. By doing so, the inference time is im-
proved while maintaining promising accuracy.

• The design of multichannel models should properly con-
sider the number of channels. The latter may influence
the prediction performances in addition to being highly
complex, leading to training difficulties.

• According to the experimental results, there is no linear
relationship between the accuracy nor the monotonicity
of the model and its complexity.

• Pre-training on 2D-IQA is helpful for increasing back-
bone performance over ImageNet weights. However,
when databases are combined, some models perform
poorly in terms of generalization, failing to account for
the difference between pre-training and fine-tuning tasks.

V. CONCLUSION

In this paper, we explored the usage of well-known CNN
models for IQA of omnidirectional images. The reason for
this choice is that these models were trained on large-scale
databases, and transfer learning techniques may benefit IQA.
We conducted an empirical and analytical evaluation by
covering different CNN architectures, image representations,
and training strategies to provide recommendations on the
use of CNNs for omnidirectional IQA. Seven pre-trained
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CNN models were fine-tuned and compared based on vari-
ous configurations, including the use of projected and radial
content, multichannel paradigm and patch-wise training, and
retraining on well-known 2D IQA databases. The obtained
results showed the superiority of retraining CNN models on
IQA databases over the use of ImageNet pre-trained versions.
The use of radial content led to better performance and gen-
eralization ability compared to projected content, especially
with the patch-wise training. Among the selected models,
ResNet-50 and DenseNet-121 performed the best. We believe
that this work sheds light on the usage of pre-trained CNN
models for IQA and paves the way for further research. One
critical factor is the scarcity of large-scale, accurate, and
reliable omnidirectional databases. It can be viewed as the
foundation of any quality assessment validation scenario, and
such databases are in urgent need in order to promote the
development of IQA models for such content.
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