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Abstract

We investigate the cold posterior effect through the lens of PAC-Bayes generalization bounds. We
argue that in the non-asymptotic setting, when the number of training samples is (relatively) small,
discussions of the cold posterior effect should take into account that approximate Bayesian inference
does not readily provide guarantees of performance on out-of-sample data. Instead, out-of-sample error
is better described through a generalization bound. In this context, we explore the connections of the
ELBO objective from variational inference and the PAC-Bayes objectives. We note that, while the ELBO
and PAC-Bayes objectives are similar, the latter objectives naturally contain a temperature parameter
λ which is not restricted to be λ = 1. For both regression and classification tasks, in the case of
isotropic Laplace approximations to the posterior, we show how this PAC-Bayesian interpretation of the
temperature parameter captures important aspects of the cold posterior effect.

1 Introduction

(a) Regression tasks (b) Classification tasks (c) Laplace, different temperatures λ

Figure 1: PAC-Bayes bounds correlate with the test negative log-likelihood (NLL) and the test 0-1 Loss for
different values of the temperature λ (quantities on both axes are normalized). (a) Regression tasks on UCI
Abalone, UCI Diamonds, and KC House datasets (prior variance σ2

π = 0.005, 2-layer MLP). (b) Classification
tasks on CIFAR-10, CIFAR-100, and SVHN datasets (σ2

π = 0.1, ResNet22) and FMNIST dataset (σ2
π = 0.1,

ConvNet). (c) Graphical representation of the Laplace approximation for different temperatures: for hot
temperatures λ ≪ 1, the posterior variance becomes equal to the prior variance; for λ = 1 the posterior
variance is regularized according to the curvature h; for cold temperatures λ ≫ 1, the posterior becomes a
Dirac delta on the MAP estimate.

In their influential paper, Wenzel et al. (2020) highlighted the observation that Bayesian neural networks
typically exhibit better test time predictive performance if the posterior distribution is “sharpened” through
tempering. Their work has been influential primary because it serves as a well documented example of the

1



potential drawbacks of the Bayesian approach to deep learning. While other subfields of deep learning have
seen rapid adoption, and have had impact on real world problems, Bayesian deep learning has, to date, seen
relatively limited practical use (Izmailov et al., 2021; Lotfi et al., 2022; Dusenberry et al., 2020; Wenzel et al.,
2020). The “cold posterior effect”, as the authors of Wenzel et al. (2020) named their observation, highlights
an essential mismatch between Bayesian theory and practice. As the number of training samples increases,
Bayesian theory tells states that the posterior distribution should be concentrating more and more on the
true model parameters, in a frequentist sense. At any time, the posterior is our best guess at the true model
parameters, without having to resort to heuristics. Since the original paper, a number of works (Noci et al.,
2021; Zeno et al., 2020; Adlam et al., 2020; Nabarro et al., 2022; Fortuin et al., 2021; Aitchison, 2020) have
attempted to explain the cold posterior effect, identify its origins, propose remedies and defend Bayesian
deep learning in the process.

The experimental setups where the cold posterior effect arises have, however, been hard to pinpoint
precisely. Noci et al. (2021) conducted detailed experiments testing various hypotheses. The cold posterior
effect was shown to arise from augmenting the data during optimization (data augmentation hypothesis),
from selecting only the “easiest” data samples when constructing the dataset (data curation hypothesis), and
from selecting a “bad” prior (prior misspecification hypothesis). Nabarro et al. (2022) propose a principled
log-likelihood that incorporates data augmentation, however they show that the cold-posterior persists.
Bachmann et al. (2022) also propose a mechanism by which data-augmentation leads to mispecification and
how the tempered posterior alleviates it. They prove their results for simplified settings, and acknowledge
that there might be other potential sources of the cold-posterior effect. Data curation was first proposed as
an explanation in Aitchison (2020), however the author shows that data curation can only explain a part
of the cold posterior effect. Misspecified priors have also been explored as a possible cause in several other
works (Zeno et al., 2020; Adlam et al., 2020; Fortuin et al., 2021). Again the results have been mixed. In
smaller models, data dependent priors seem to decrease the cold posterior effect while in larger models the
effect increases (Fortuin et al., 2021).

We posit that discussions of the cold posterior effect should take into account that in the non-asymptotic
setting (where the number of training data points is relatively small), Bayesian inference does not readily
provide a guarantee for performance on out-of-sample data. Existing theorems describe posterior contrac-
tion (Ghosal et al., 2000; Blackwell & Dubins, 1962), however in practical settings, for a finite number
of training steps and for finite training data, it is often difficult to precisely characterise how much the
posterior concentrates. Furthermore, theorems on posterior contraction are somewhat unsatisfying in the
supervised classification setting, in which the cold posterior effect is usually discussed. Ideally, one would
want a theoretical analysis that links the posterior distribution to the test error directly.

Here, we investigate PAC-Bayes generalization bounds (McAllester, 1999; Catoni, 2007; Alquier et al.,
2016; Dziugaite & Roy, 2017) as the model that governs performance on out-of-sample data. PAC-Bayes
bounds describe the performance on out-of-sample data, through an application of the convex duality re-
lation between measurable functions and probability measures. The convex duality relationship naturally
gives rise to the log-Laplace transform of a special random variable (Catoni, 2007). Importantly the log-
Laplace transform has a temperature parameter λ which is not constrained to be λ = 1. We investigate the
relationship of this temperature parameter to cold posteriors.

In summary, our contributions are the following:

• Through detailed experiments, for regression and classification tasks, and for the Laplace approximation
to the posterior, we show that PAC-Bayes bounds correlate with out-of-sample performance for different
values of the temperature parameter λ. This might indicate that the temperature in the cold-posterior
literature coincides with the temperature of the log-Laplace transform.

• We find that the coldest temperature (such that the posterior is a Dirac delta centered on a MAP
estimate of the weights) is empirically always optimal in terms of test accuracy. However, the same
does not hold true for the negative log-likelihood. This highlights that the evaluation metric choice
plays an important role when discussing the cold-posterior effect. Separately, our results raise important
questions about the Laplace approximation for Bayesian inference in deep learning.

• We derive a PAC-Bayes bound for the case of the widely used generalized Gauss–Newton Laplace
approximations to the posterior. Our bound implies that different factors such as the curvature at the
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minimum and the prior interact in a complex way and might result in different optimal temperatures
λ. This might explain why it is difficult to pinpoint an exact cause for the cold-posterior effect.

2 Cold posterior effect: misspecified and non-asymptotic setting

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n input-output pairs.
Observations (X,Y ) are assumed to be sampled randomly from a distribution D. Thus, we denote (X,Y ) ∼
Dn the i.i.d observation of n elements. We consider loss functions ℓ : F × X × Y → R, where F is
a set of predictors f : X → Y. We also denote the risk Lℓ

D(f) = E(x,y)∼Dℓ(f,x, y) and the empirical

risk L̂ℓ
X,Y (f) = (1/n)

∑
i ℓ(f,xi, yi). We consider two probability measures, the prior π ∈ M(F) and the

posterior ρ̂ ∈ M(F). Here, M(F) denotes the set of all probability measures on F . We encounter cases
where we make predictions using the posterior predictive distribution Ef∼ρ̂[p(y|x, f)]. We will use two
loss functions, the non-differentiable zero-one loss ℓ01(f,x, y) = I(argmaxj f(x)j ̸= y), and the negative
log-likelihood, which is a commonly used differentiable surrogate ℓnll(f,x, y) = − log(p(y|x, f)), where we
assume that the outputs of f are normalized to form a probability distribution. Given the above, the
Evidence Lower Bound (ELBO) has the following form

−Ef∼ρ̂L̂ℓnll
X,Y (f)−

1

λn
KL(ρ̂∥π), (1)

where λ = 1. Note that our temperature parameter λ is the inverse of the one typically used in cold posterior
papers. In this form λ has a clearer interpretation as the temperature of a log-Laplace transform. Overall
our setup is one of the cases discussed in Wenzel et al. (2020), p3 Section 2.3. While they use MCMC to
conduct their experiments, we opt for the ELBO for analytical tractability. Wenzel et al. (2020) also temper
by λ both the likelihood and the prior in the MCMC inference setting. As discussed in Aitchison (2020) and
Wenzel et al. (2020) the relevant setting for the ELBO is the one we consider (Eq. 1), where only the KL is
tempered. One then typically models the posterior and prior distributions over weights using a parametric
distribution (commonly a Gaussian) and optimizes the ELBO, using the reparametrization trick, to find the
posterior distribution (Blundell et al., 2015; Khan et al., 2018; Mishkin et al., 2018; Ashukha et al., 2019;
Wenzel et al., 2020). The cold posterior is the following observation:

Even though the ELBO has the form (1) with λ = 1, practitioners have found that much larger
values λ ≫ 1 typically result in better test time performance, for example a lower test misclassi-
fication rate and lower test negative log-likelihood.

The starting point of our discussion will be thus to define the quantity that we care about in the context
of Bayesian deep neural networks and cold posterior analyses. Concretely, in the setting of supervised
prediction, what we often try to minimize is

KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]) = Ex,y∼D

[
ln

pD(y|x)
Ef∼ρ̂[p(y|x, f)]

]
, (2)

the conditional relative entropy (Cover, 1999) between the true conditional distribution pD(y|x) and the
posterior predictive distribution Ef∼ρ̂[p(y|x, f)]. For example, this is implicitly the quantity that we mini-
mize when optimizing classifiers using the cross-entropy loss (Masegosa, 2020; Morningstar et al., 2022). It
is also on this and similar predictive metrics that the cold posterior appears. In the following we will outline
the relationship between the ELBO, PAC-Bayes and (2).

2.1 ELBO

We assume a training sample (X,Y ) ∼ Dn as before, denote p(w|X,Y ) the true posterior probability over
predictors f parameterized by w (typically weights for neural networks), and π and ρ̂ respectively the prior
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and variational posterior distributions as before. The ELBO results from the following calculations

KL(ρ̂(w)∥p(w|X,Y )) =

∫
ρ̂(w) ln

ρ̂(w)

p(w|X,Y )
dw =

∫
ρ̂(w) ln

ρ̂(w)p(Y |X)

π(w)p(Y |X,w)
dw

=

∫
ρ̂(w)

[
− ln p(Y |X,w) + ln

ρ̂(w)

π(w)
+ ln p(Y |X)

]
dw

= −n

(
−Ef∼ρ̂L̂ℓnll

X,Y (f)−
1

n
KL(ρ̂∥π)

)
︸ ︷︷ ︸

ELBO

+ ln p(Y |X).

Thus, maximizing the ELBO can be seen as minimizing the KL divergence between the true posterior and
the variational posterior over the weights KL(ρ̂(w)∥p(w|X,Y )). The true posterior distribution p(w|X,Y )
gives more probability mass to predictors which are more likely given the training data, however these
predictors do not necessarily minimize KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]), the evaluation metric of choice (2)
for supervised prediction. In the well-specified regime (where the true predictor f∗ is f∗ ∈ F) and when
n → ∞, the Blackwell–Dubins consistency theorem (Blackwell & Dubins, 1962) implies that the posterior
quickly concentrates on the true set of parameters. In such cases, a more detailed analysis, such as a PAC-
Bayesian one, is unnecessary as the posterior is akin to a Dirac delta mass at the true parameters. However
neural networks do not operate in this regime. The existence of multiple minima hints that neural networks
are misspecified, and the number of samples is small relative to the number of parameters.

Operating in the regime where f∗ /∈ F and where n is (comparatively) small makes it important to derive
a more precise certificate of generalization through a generalization bound, which directly bounds the true
risk. In the following we focus on analyzing a PAC-Bayes bound in order to obtain insights into when the
cold posterior effect occurs.

2.2 PAC-Bayes

We first look at the following bound, that we name “Alquier” bound and denote by BAlquier.

Theorem 1 (BAlquier, Alquier et al., 2016). Given a distribution D over X × Y, a hypothesis set F , a loss
function ℓ : F×X ×Y → R, a prior distribution π over F , real numbers δ ∈ (0, 1] and λ > 0, with probability
at least 1− δ over the choice (X,Y ) ∼ Dn, we have for all ρ̂ on F

Ef∼ρ̂Lℓ
D(f) ≤ Ef∼ρ̂L̂ℓ

X,Y (f) +
1

λn

[
KL(ρ̂∥π) + ln

1

δ
+Ψℓ,π,D(λ, n)

]
where Ψℓ,π,D(λ, n) = lnEf∼πEX′,Y ′∼Dn exp

[
λn
(
Lℓ
D(f)− L̂ℓ

X′,Y ′(f)
)]

.

There are three different terms in the above bound. The empirical risk term Ef∼ρ̂L̂ℓ
X,Y (f) is the empirical

mean of the loss of the classifier over all training samples. The KL term 1/(λn)KL(ρ̂∥π) is the complexity of
the model, which in this case is measured as the KL-divergence between the posterior and prior distributions.
The Moment term 1/(λn)Ψℓ,π,D(λ, n), this is the log-Laplace transform for a reversal of the temperature, we
will keep the name “Moment” in the following. Using a PAC-Bayes bound together with Jensen’s inequality,
one can bound (2) directly as follows

KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]) = Ex,y∼D

[
ln

pD(y|x)
Ef∼ρ̂[p(y|x, f)]

]
= Ex,y∼D[− lnEf∼ρ̂[p(y|x, f)]] +Ex,y∼D[ln pD(y|x)]
≤ Ex,y∼D[Ef∼ρ̂[− ln p(y|x, f)]] +Ex,y∼D[ln pD(y|x)]

≤ Ef∼ρ̂L̂ℓnll

X,Y (f) +
1

λn

[
KL(ρ̂∥π) + ln

1

δ
+Ψℓnll,π,D(λ, n)

]
︸ ︷︷ ︸

PAC-Bayes

+Ex,y∼D[ln pD(y|x)].

The last line holds under the conditions of Theorem 1 and in particular with probability at least 1− δ over
the choice (X,Y ) ∼ Dn. Notice here the presence of the temperature parameter λ ≥ 0, which need not be
λ = 1.
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In particular it is easy to see that maximizing the ELBO is equivalent to minimizing a PAC-Bayes
bound for λ = 1, which might not necessarily be optimal for a finite sample size. More specif-
ically even for exact inference, where Ew∼ρ̂[p(y|x,w)]|ρ̂=p(w|X,Y ) = p(y|x, X, Y ), the Bayesian
posterior predictive distribution does not necessarily minimize KL(pD(y|x)∥Ef∼ρ̂[p(y|x, f)]).

2.3 Classification tasks

For classification tasks, we are typically mainly interested in achieving low expected zero-one riskEf∼ρ̂Lℓ01
D (f).

The ELBO objective is not directly related to this risk, however in the PAC-Bayesian literature there exist
bounds specifically adapted to it. In the following we will use one of the tightest and most commonly used
bounds, the “Catoni” bound, denoted BCatoni.

Theorem 2 (BCatoni, Catoni, 2007). Given a distribution D over X × Y, a hypothesis set F , the 0-1 loss
function ℓ01 : F ×X ×Y → [0, 1], a prior distribution π over F , a real number δ ∈ (0, 1], and a real number
λ > 0, with probability at least 1− δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂Lℓ01
D (f) ≤ Φ−1

λ

(
Ef∼ρ̂L̂ℓ01

X,Y (f) +
1

λn

[
KL(ρ̂||π) + ln

1

δ

])
, (3)

where Φ−1
λ (x) = 1−e−λx

1−e−λ .

Similarly to the Alquier bound, the empirical risk term is the empirical mean of the loss of the classifier
over all training samples. The KL term is the complexity of the model, which in this case is measured as
the KL-divergence between the posterior and prior distributions. The Moment term has been absorbed in

this case in the function Φ−1
λ (x) = 1−e−λx

1−e−λ .

2.4 Safe-Bayes and other relevant work

Germain et al. (2016) were the first to find connections between PAC-Bayes and Bayesian inference. However
they only investigate the case where λ = 1. After identifying two sources of misspecification, Grünwald
& Langford (2007) proposed a solution, through an approach which they named Safe-Bayes (Grünwald,
2012; Grünwald & Van Ommen, 2017). Safe-Bayes corresponds to finding a temperature parameter λ for
a generalized (tempered) posterior distribution with λ possibly different than 1. The optimal value of λ
is found by taking a sequential view of Bayesian inference, and for a Cèsaro averaged posterior, which is
an average of the posteriors at different optimization steps, and which doesn’t coincide with the standard
posterior. The analysis of Grünwald (2012); Grünwald & Van Ommen (2017) is also restricted to the case
where λ < 1. By contrast we provide an analytical expression of the bound on true risk, given λ, and also
numerically investigate the case of λ > 1. Our analysis thus provides intuition regarding which parameters
(for example the curvature) might result in cold posteriors. Catoni (2007) discusses the optimal value of the
temperature λ for PAC-Bayes bounds, for fixed priors and posteriors. By contrast we investigate the case
where the posterior is optimized for different λ and which is the relevant one for the cold-posterior literature.

3 Experiments on regression and classification tasks

The ELBO (1) is minimized at the probability density ρ⋆(f) given by: ρ⋆(f) := π(f)e−λnL̂ℓnll
X,Y (f)/Ef∼π

[
e−λnL̂ℓnll

X,Y (f)
]

(Catoni, 2007). We will use the Laplace approximation to the posterior in our experiments. This is equiva-
lent to approximating λnL̂ℓnll

X,Y (f) using a second order Taylor expansion around a minimum wρ̂, such that

λnL̂ℓnll

X,Y (fw) ≈ λnL̂ℓnll

X,Y (fwρ̂
) + λn(w − wρ̂)

⊤ 1
2∇∇L̂ℓnll

X,Y (fw)|w=wρ̂
(w − wρ̂). Assuming a Gaussian prior

π = N (0, σ2
πI), the Laplace approximation to the posterior ρ̂ is again a Gaussian

ρ̂ = N

(
wρ̂,

(
λH+

1

σ2
π

I

)−1
)
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Figure 2: BAlquier PAC-Bayes bound and test NLL mean, as well as 10 MAP trials (we
denote λ = 1 by ). For varying λ for the regression tasks on the UCI Abalone, UCI Diamonds and
KC House datasets. BAlquier bound closely tracks the test NLL. There is a rapid improvement as λ ↑ followed
by a slowdown in improvements. Coldest posteriors λ ≫ 1 are always best.

where H is the network Hessian H = n∇∇L̂ℓnll
X,Y (fw)|w=wρ̂

. This Hessian is generally infeasible to compute
in practice for modern deep neural networks, such that many approaches employ the generalized Gauss–
Newton (GGN) approximation HGGN :=

∑n
i=1 Jw(xi)

⊤Λ(yi; fi)Jw(xi), where Jw(x) is the network per-
sample Jacobian [Jw(x)]c = ∇wfc(x;wρ̂), and Λ(y; f) = −∇2

ff log p(y; f) is the per-input noise matrix
(Kunstner et al., 2019). We will use two simplified versions of the GGN

• An isotropic approximation with variance σ2
ρ̂(λ) such that 1

σ2
ρ̂(λ)

= λh
d + 1

σ2
π
, where h =

∑
i,j,k g(i, k)(∇wfk(xi;wρ̂)j)

2

is the trace of the Gauss–Newton approximation to the Hessian, with g(i, k) = [Λ(yi; f)]kk.

• The Kronecker-Factorized Approximate Curvature (KFAC) (Martens & Grosse, 2015) approximation,
which retains only a block diagonal part of the GGN.

When making predictions, we use the posterior predictive distribution Ew∼ρ̂[p(y|x, fw)] of the full neural
network model, meaning that samples from ρ̂ are inputted to the full neural network. Since the 0-1 loss is
not differentiable, the posterior estimated with the cross entropy loss will be used for classification problems.

We have tested extensively both in regression and classification tasks, scaling from simplified settings
to realistic models and datasets. The regression tasks are with the Abalone and Diamonds datasets from
the UCI repository (Dua & Graff, 2017), as well as with the popular “House Sales in King County, USA”
(KC House) dataset from the Kaggle competition website (harlfoxem, 2014). For the classification task we
used the CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011) and FashionMnist
(Xiao et al., 2017) datasets.

In all experiments, we split the dataset into three sets. These three are the typical prediction tasks sets:
training set Ztrain, testing set Ztest, and validation set Zvalidation. For the regression setting, our experimental
setup requires an extra set: a large sample set called “true” set Ztrue, that is used to approximate the
complete data distribution, and is used so as to estimate the Moment term. We use Monte Carlo sampling
to estimate the Moment term (f ∼ π and X ′, Y ′ ∼ D), and the Empirical Risk term (f ∼ ρ̂). For the
isotropic Laplace approximation, and a Gaussian isotropic prior, the KL divergence has a simple analytical

expression KL(ρ̂||π) = 1
2

(
d
σ2
ρ̂(λ)

σ2
π

+ 1
σ2
π
∥wρ̂ −wπ∥2 − d− d lnσ2

ρ̂(λ) + d lnσ2
π

)
. PAC-Bayes bounds require

correct control of the prior mean as the ℓ2 distance between prior and posterior means in the KL term is
often the dominant term in the bound. To control this distance, we follow a variation of the approach in
Dziugaite et al. (2021) to constructing our classifiers. We first use Ztrain to find a prior mean wπ. We then
set the posterior mean equal to the prior mean wρ̂ = wπ but evaluate the r.h.s of the bounds on Zvalidation.
Note that in this way ∥wρ̂ − wπ∥22 = 0, while the bound is still valid since the prior is independent from
the evaluation set X,Y = Zvalidation. For the Abalone, Diamonds and KC House experiments, we use fully
connected networks with 2 hidden layers with 100 dimensions, followed by the ReLU activation function, and
a final Softmax activation. For the CIFAR-10, CIFAR-100, and SVHN datasets, we use a WideResNet22
(Zagoruyko & Komodakis, 2016), with Fixup initialization (Zhang et al., 2019). For the FashionMnist
dataset, we use a convolutional architecture with three convolutional layers, followed by two fully connected
non-linear layers. More details on the experimental setup can be found in the Appendix.
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Figure 3: Test 0-1 Loss mean, as well as 10 MAP trials , along with the generalization
certificate (we denote λ = 1 by ): BCatoni PAC-Bayes bound (top), standard Isotropic Laplace
posterior (middle) and standard KFAC (bottom). The BCatoni PAC-Bayes bound closely tracks the test 0-1
Loss. For the standard Isotropic and KFAC posteriors the test and validation 0-1 Loss behave similar to the
Catoni case, with a rapid improvement as λ ↑ followed by a plateau. Coldest posteriors λ ≫ 1 are always
best.

3.1 Regression experiments

We find ten MAP estimates for the neural network weights of the Abalone, Diamonds and KC House datasets
by training on Ztrain using Stochastic Gradient Descent (SGD) with stepsize η = 10−3 for ten epochs. We
then fit an Isotropic Laplace approximation to each MAP estimate using Zvalidation. For different values of
λ we then estimate the Alquier bound (Theorem 1) using X,Y = Zvalidation, as well as the test NLL of the
posterior predictive on Ztest. We take a grid over prior variances σ2

π, and we present results for σ2
π = 0.005

although the behaviour is similar for the other prior values.
We plot the results for all datasets in Figure 2. Somewhat surprisingly, the test NLL always decreases

with colder posteriors up to the point where the classifier is essentially deterministic. The BAlquier bound
correlates tightly with this behaviour. We plot this correlation in Figure 1(a). These results are somewhat
surprising, in that we would expect there to be a minimum in the curves, such that some posterior variance
σρ̂ ≥ 0 gives better test results than the MAP estimate. We might think that these results are due to the
poor (Isotropic) approximation to the posterior, however as will we see in the next section this behaviour
carries over to other approximations to the posterior.
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3.2 Classification experiments

We find ten MAP estimates for the neural network weights of the CIFAR-10, CIFAR-100, SVHN and
FMNIST datasets by training on Ztrain using SGD. We then fit an Isotropic Laplace approximation to
each MAP estimate using X,Y = Zvalidation. For different values of λ we then estimate the Catoni bound
(Theorem 2) using Zvalidation. We also estimate the test 0-1 Loss, negative log-likelihood (NLL) and the
Expected Calibration Error (ECE) (Naeini et al., 2015) of the posterior predictive on Ztest. We use the prior
variance σ2

π = 0.1, as optimizing the marginal likelihood leads to σ2
π ≈ 0 which is not relevant for BNNs.

We also test two standard setups of increasing difficulty. First, the standard “Isotropic” case where we fit
the Laplace on Ztrain. Second, the KFAC case where we fit the Laplace on Ztrain and also choose the prior
through the marginal likelihood. In both of these last two cases, we estimate the evaluation metrics on the
validation set Zvalidation as from the literature we know that any PAC-Bayes bound will be vacuous (larger
than 1) as we do not control ∥wρ̂ −wπ∥22.

We plot the results for all datasets in Figure 3. The Catoni bound correlates tightly with test 0-1 Loss for
all datasets and we plot this correlation in Figure 1(b). Again, in terms of test 0-1 Loss, the MAP estimate
(obtained where λ ≫ 1 and the posterior is “coldest”) is optimal. This bevaviour is replicated both in the
“Isotropic” and “KFAC” cases. In the Laplace approximation literature for deep neural networks, there
are various similar results hidden in plain sight and to the best of our knowledge never directly addressed
(Antorán et al., 2022; Daxberger et al., 2021; Ritter et al., 2018).

The crucial point here is the choice of the evaluation metric. We plot in Figure 4 the Isotropic and KFAC
cases for the NLL. Even without data augmentation and even when we optimize the prior variance using the
marginal likelihood, we find that all three cases of temperatures (cold posterior, warm posterior, as well as
posterior with λ = 1) can be optimal, for varying datasets. Unfortunately we cannot estimate the Alquier
bound for this case, as we do not have access to a Ztrue set, so as to compute the Moment term. However,
we see again that the test behaviour is dominated by a sharp improvement as we decrease the posterior
variance (λ ↑) followed by a plateau. An optimal λ strictly less than +∞ (when it exists) results in only
a relatively modest variation of the overall trend. Thus, we believe that our bounds would be informative
even in a hypothetical scenario where they would not be able to capture these optimal λ < +∞. We discuss
the ECE results in the Appendix.

4 Effect of temperature parameter λ on PAC-Bayes bound

In light of our empirical results, it would be interesting to derive an analytical form that elucidates the
important variables that affect the bound. However, PAC-Bayes objectives are difficult to analyze theoret-
ically for the non-convex case. Thus in the following we make a number of simplifying assumptions. The
Laplace approximation with the Generalized Gauss-Newton approximation to the Hessian corresponds to a
linearization of the neural network around the MAP estimate wρ̂ ∈ Rd (Immer et al., 2021)

flin(x;w) = f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w −wρ̂). (4)

When analyzing minima of the loss landscape linearization is reasonable even without assuming infinite
width Zancato et al. (2020); Maddox et al. (2021). For appropriate modelling choices, we aim at deriving a
bound for this linearized model.

We adopt the linear form (4) together with the Gaussian likelihood with σ = 1, yielding ℓnll(w,x, y) =
1
2 ln(2π) +

1
2 (y − f(x;wρ̂)−∇wf(x;wρ̂)

⊤(w −wρ̂))
2. We also make the following modeling choices

• Prior over weights: w ∼ N (wπ, σ
2
πI).

• Gradients as Gaussian mixture: ∇wf(x;wρ̂) ∼
∑k

i=1 ϕiN (µi, σ
2
xiI); note that this assumption should

be plausible for trained neural networks, in that previous works have shown that per sample gradients
with respect to the weights, at wρ̂, are clusterable (Zancato et al., 2020). We consider that a Gaussian
Mixture model for these clusters is reasonable.

• Labeling function: y = f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w∗ −wρ̂) + ϵ, where ϵ ∼ N (0, σ2

ϵ ).
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Figure 4: Test NLL mean, as well as 10 MAP trials , along with the validation NLL (we
denote λ = 1 by ) for the Standard Isotropic Laplace posterior (top) and standard KFAC (bottom).
The test and validation NLL show warm posteriors (FMNIST and SVHN KFAC), cold posteriors (CIFAR-
10) and posteriors with λ = 1 (SVHN Isotropic). The general trend remains a rapid improvement as λ ↑
followed by a plateau, however the coldest posteriors λ ≫ 1 are not always optimal contrary to the 0-1 Loss
case.

Thus y|x ∼ N (f(x;wρ̂) + ∇wf(x;wρ̂)
⊤(w∗ − wρ̂), σ

2
ϵ ). The assumption that w∗ is close to wρ̂ is quite

strong, and we furthermore argued in the previous sections that no single w is truly “correct”. However
we note that for fine-tuning tasks linearized neural networks work remarkably well (Maddox et al., 2021;
Deshpande et al., 2021). It is therefore at least somewhat reasonable to assume the above oracle labelling
function, in that for deep learning architectures good w that fit many datasets can be found close to wρ̂

in practical settings. We also assume that we have a deterministic estimate of the posterior weights wρ̂

which we keep fixed, and we model the posterior as ρ̂ = N (wρ̂, σ
2
ρ̂(λ)I), similarly to our experimental section.

Therefore estimating the posterior corresponds to estimating the variance σ2
ρ̂(λ).

Proposition 1 (Bapproximate). With the above modeling choices, and given a distribution D over X × Y,
real numbers δ ∈ (0, 1] and λ ∈ (0, 1

c ) with c = 2nσ2
xσ

2
π, with probability at least 1 − δ over the choice

(X,Y ) ∼ Dn, we have

Ew∼ρ̂Lℓnll

D (w)

≤ ∥y − f(X;wρ̂)∥22
2n

+

(
λh

d
+

1

σ2
π

)−1
h

2n
+

1

2
ln(2π)︸ ︷︷ ︸

Empirical Risk

+
σ2
x(σ

2
πd+ ∥w∗∥22)

1− 2λnσ2
xσ

2
π

+ σ2
ϵ︸ ︷︷ ︸

Moment

+

1

λn

[
1

2

(
d

σ2
π

1
λh
d + 1

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥22 − d− d ln
1

λh
d + 1

σ2
π

+ d lnσ2
π

)
+ ln

1

δ

]
︸ ︷︷ ︸

KL

where h =
∑

i

∑
j(∇wf(xi;wρ̂)j)

2 is the curvature parameter, and σ2
x =

∑k
j=1 ϕjσ

2
xj is the posterior gradient

variance.

We now make a number of observations regarding Proposition 1. Here, h is the trace of the Hessian
under the Gauss–Newton approximation (without a scaling factor n). Under the PAC-Bayesian modeling of

9



the risk, cold posteriors are the result of a complex interaction between various parameters resulting from
1) our model such as the prior variance σ2

π and prior mean wπ 2) our data σ2
x and w∗ (the curvature of the

minimum h and the MAP estimate wρ̂ depend on the deep neural network architecture, the optimization
procedure and the data). A number of works have tried to identify the causes of the cold posterior effect
(Noci et al., 2021; Fortuin et al., 2021), with often contradictory results, typically identifying sufficient but
necessary conditions. Given the complex interactions in Proposition 1, our result might shed light on why
pinpointing the exact cause is difficult in practice.

5 Discussion

A number of interesting questions are raised by our results. How can we link our results to the MCMC setting?
Which metrics are relevant for the cold-posterior effect? For which metrics and for which approximations to
the curvature is the Laplace approximation relevant for modern deep learning? We intend to answer these
in future work.
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