

Analytical modelling of air-cored partially HTS motor with permanent magnet rotor

Zhishu Qiu¹, Min Zhang¹, Alexandre Colle²

University of Strathclyde, Glasgow, UK
 Airbus UpNext Airbus ExO Zero Emissions Blagnac, France

This work is funded by Airbus UpNext under the project of Advanced Superconducting & Cryogenic Experimental powertrain Demonstrator (ASCEND)

Contents

- 1. Background
- 2. Structure of air-cored radial flux PM-HTS (permanent magnet rotor and HTS stator) motor
- 3. Motor equivalent circuit and analytical modelling method
- 4. 450kW motor modelling results and analysis
- 5. Conclusions

1. Background

Regulation of aviation emissions (e.g. flight path 2050 by the European aviation industry)

Hybrid/full electric aircraft propulsion systems

image source: Rolls-Royce

Hybrid electric propulsion system: Low (zero) emissions and low noise; Decouple power generation and propulsion.

Partially HTS machine

This study:

Permanent magnet rotor

Achieve B~1T with relatively small amount of magnet materials comparing to conventional magnetic field coil.

• HTS armature winding

Achieve high electrical loading, thus higher efficiency

Other choice:

• HTS field winding (rotor)

Achieve magnetic loading up to 14T

Normal copper armature winding

2. Air-cored radial flux PM-HTS (permanent magnet rotor and HTS stator) motor

• Structure

cross-section schematic of motor

Simplified linear one pole section

Rs stator outer radius Rg mean airgap radius Rr rotor inner radius • Equivalent circuit

Stator single phase equivalent circuit

V phase voltage

- $\rm R_{ac}$ armature winding ac resistance
- X_L armature reactance

E induced emf

- Input: machine output power, input phase voltage etc.
- Function magnetic field
 Function inductance
 Function resistance
 Output

Airgap magnetic field distribution

$$\ln \text{general } B_{r}(r,\theta) = \sum_{n=1,3,5,\dots}^{\infty} \frac{\mu_{0}M_{n}}{\mu_{r}} \frac{np}{(np)^{2}-1} \cdot \\ \left\{ \frac{(np-1)+2\left(\frac{R_{r}}{R_{m}}\right)^{np+1} - (np+1)\left(\frac{R_{r}}{R_{m}}\right)^{2np}}{\left[\frac{\mu_{r}+1}{\mu_{r}}\left[1-\left(\frac{R_{r}}{R_{s}}\right)^{2np}\right] - \frac{\mu_{r}-1}{\mu_{r}}\left[\left(\frac{R_{m}}{R_{s}}\right)^{2np} - \left(\frac{R_{r}}{R_{m}}\right)^{2np}\right]} \right\} \cdot \left[\left(\frac{r}{R_{s}}\right)^{np-1} \left(\frac{R_{m}}{R_{s}}\right)^{np+1} + \\ \left(\frac{R_{m}}{r}\right)^{np+1} \right] \cos np\theta$$

Where p is the pole pair number, residual magnetization vector,

$$M_n = 2(B_r/\mu_0) \frac{\sin \frac{n\pi \alpha_p}{2}}{\frac{n\pi \alpha_p}{2}}$$
 and α_p is the magnet pole-arc to pole-

Zhu, Z.Q.; Howe, D.; Bolte, E.; Ackermann, B. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field. IEEE Trans. Magn. 1993, 29, 124–135.

Induced emf

$$e(t) = BLv = -N\frac{d\varphi}{dt}$$
Assume airgap flux, $\varphi_g = \varphi \sin 2\pi f t$

$$E_{ph} = N_{ph} 2\pi f \varphi \cos 2\pi f t$$

$$E_{ph}, rms = \frac{N_{ph} 2\pi f \varphi}{\sqrt{2}} = \sqrt{2}\pi N_{ph} f \varphi$$

Where N_{ph} is the armature coil turns per phase

Inductance

Calculate through induced emf:

3. Motor analytical modelling method

$$\operatorname{emf} = N \frac{d\varphi}{dt} = L \frac{di}{dt}$$

Where N is the winding turn/phase and L is the inductance per phase

According to [1], there is a factor that can transfer inductance per phase to three phase inductance

- Equivalent resistance
- Rac and Rdc relationship

Low frequency range case $R_{ac} \approx R_{dc}$

High frequency range, should consider skin effect, not common for machines

For copper windings,

$$R_{dc} = \rho \frac{l}{A_{cu}}$$

For HTS tapes at low frequency range, we consider calculating equivalent ac resistance from ac losses

$$P_{loss} = I^2 R_{ac}$$

• 450 kW motor specifications

Parameter	symbol		unit	
output power	Р	450	kW	
Input phase voltage	Vph	170	Vrms	
rated speed	ns	5000	rpm	
Input frequency	f	500	Hz	
Airgap magnetic loading	Bg	0.6	Т	
Winding type				
distribution	distributed			
No.coils per phase	12			

2D geometry, treat HTS tapes as 1d lines 4mm superOx tapes

• Rotor field distribution and induced emf

Analytical modelling validation of rotor radial flux density

Inductance

Check through COMSOL FEM model

Calculate through magnetic energy $E_{p,m} = \frac{1}{2}LI^2$

Inductance	Analytical	FEM	Unit
1 phase	49.5	50.08	uH
3 phase	66.9	-	uH

• COMSOL model and AC loss calculation using T-A formulation

T formulation (superconducting domain)

 $\boldsymbol{J} = \boldsymbol{\nabla} \times \boldsymbol{T}$ $\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$ Time=0 s Surface: mf.normB (Global: AC loss (W/m) E-J power law m AC loss AC loss (W/m) 0.11500 $\boldsymbol{E} = E_0 \left(\frac{|\boldsymbol{J}|}{J_c(B,T)}\right)^n \frac{\boldsymbol{J}}{J_c(B,T)}$ 0.05 3 1000 0 500 -0.05 A-formulation(whole domain) -0.1 $B = \nabla \times A$ 0 0 $\nabla \times \nabla \times A = \mu \mathbf{J}$ Time (s) 0 m

Final result for phase equivalent circuit @35K V 170Vrms I 1000Arms $R_{ac} 274.2 m\Omega$ X₁ 49.5uH E 155.6V

5. Summary and future plan

Summary

- An analytical technique for finding machine equivalent circuit variables of air-cored radial flux partially HTS motor is developed.
- Equivalent AC resistance for HTS windings at low frequency range is calculated with the help of FE modelling in COMSOL

Future plan

This study only considers the steady state mode, transient fault conditions such as short circuits are worth analyzing in the future.