

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications

Christian Messe

Table of Contents

Introduction

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

• Recap: Mixed Formulations

• Motivation: Why custom codebase?

Coding Considerations

Code Architecture & Development Status

Memory Management

• Meshing (example : thin shell with $h-\phi$)

Thoughts on Visualization

• Other Activities

• Summary & Outlook

Mixed Formulations a quick recap

• gaining significant interest over the last five years!

• goal:

- improve conditioning for system matrix
- reduce degrees of freedom
 - \rightarrow faster computation

• basic idea

- governing equations are domain specific
- domains are connected over interfaces conditions

challenges

- user-friendliness
- mesh generation and memory management
- iterating over non-linear material models
- matrices are difficult to solve (still ill conditioned, non symmetric, non-postive definite)

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Example: h-φ-a formulation

	Air / Vacuum	Conductor	Ferromagnetic Al
Governing Equation	$ abla imes oldsymbol{h} = oldsymbol{0}$ Ampére-Maxwell	$ abla imes oldsymbol{h} = oldsymbol{j}$ Ampére-Maxwell	$ abla imes oldsymbol{e} e = oldsymbol{\dot{b}}$ Faraday's Law
Degree of Freedom	$m{h}=- abla \phi$ Magnetic Scalar Potential	h Magnetic Field	$oldsymbol{b} = abla imes oldsymbol{a}$ Magnetic Vector Potential
Transport Law	none	$e= ho\cdot j$ Ohm's Law	$\pmb{h}=\pmb{v}\cdot\pmb{b}$ Magnetic Law
Comment	minimal number of dofs	need edge elements	simple material la implementation

Lagrange Elements

Nédélec Elements

Motivation

why build a custom codebase?

• application needs: have thin-shell model that

- uses the $h-\phi$ formulation
- supports thermal conduction and quenching
- supports current sharing between overlapping tapes
- supports convective cooling with LN2 and LHe

model development needs

- have full control over data structure
- have full knowledge of underlying algorithms

utilization of community software

- use open source data formats (gmsh, hdf5, exodus-ii)
- link to popular solver libraries such as PETSc, MKL, ...

in-house resource utilization

• work with STRUMPACK team to maximize solver performance <u>https://portal.nersc.gov/project/sparse/strumpack/</u>

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

[Source: 10.1088/0953-2048/28/6/065007]

BELFEM Code Architecture

general overview

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

philosophy

- consistent naming schemes \rightarrow easier to read for programmers
- highly modular structure \rightarrow easier to extend and maintain
- third party libraries are exclusively accessed through wrapper
 - \rightarrow can interchange when compiling
 - \rightarrow be able to test performance of various third party libraries

BELFEM Code Architecture

current development status

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Memory Management

Memory Management and Matrix Computation

Classic FEM: tensile test example

- one single governing equation
- degrees of freedom are associated with nodes
- simple algorithm for creating adjacency graph

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Matrix Sparsity Pattern only nonzero values are stored in memory

Memory Management and Matrix Computation

Classic FEM: tensile test example

- one single governing equation
- degrees of freedom are associated with nodes
- simple algorithm for creating adjacency graph

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Mixed Formulation:

- block and sideset specific government equations
- degrees of freedom are associated with nodes, edges or faces
- non-trivial algorithm for creating adjacency graph

Memory Management and Matrix Computation volume elements

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Air Element:

- uses ϕ -formulation
- has node degrees of freedom

$$\mathbf{K} = \mathbf{0}$$

 ϕ

$$\mathbf{M} = \int_{\boldsymbol{\Omega}} \mathbf{B}^{\mathbf{T}} \boldsymbol{\mu} \, \mathbf{B} \, \mathrm{d} V$$

Memory Management and Matrix Computation volume elements

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Conducting Element:

- uses h-formulation
- e.g. power law or lookup table for ρ , constant μ
- has edge and face degrees of freedom
- mesh must handle edge and face numbering
- edge direction matters

$$\mathbf{K} = \int_{\Omega} \mathbf{C}^{\mathbf{T}} \boldsymbol{\rho} \, \mathbf{C} \, \mathrm{d} V$$

$$\mathbf{M} = \int_{\Omega} \mathbf{E}^{\mathbf{T}} \boldsymbol{\mu} \, \mathbf{E} \, \mathrm{d} V$$

Memory Management and Matrix Computation interface elements between different domain types

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Conductor-Air Interface Element

- used for current boundary condition
- uses Langange multiplicator
- considers orientation of elements
- is non-symmetric!

$$\mathbf{K} = \mu_0 \int_{\partial \Omega} \begin{bmatrix} 0 & 0 & (\mathbf{n}^{\mathrm{T}} \mathbf{E}^{\mathrm{T}}) \\ -N^{\mathrm{T}} \mathbf{n}^{\mathrm{T}} \mathbf{E} & 0 & (\mathbf{n}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}) \\ \mathbf{n} \times \mathbf{E} & \mathbf{n} \times \mathbf{B} & 0 \end{bmatrix}$$

$$\mathbf{M} = \mathbf{0}$$

Memory Management and Matrix Computation element orientation matters!

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Memory Management and Matrix Computation domain cuts

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Domain Cut Element:

uses φ-formulation

())

- has Lagrange multiplicator λ as dof
- mesh must handle duplicate nodes

$$\mathbf{K} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix} \qquad f = \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix}$$

Memory Management and Matrix Computation mixed formulation summary

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Diversity of DoF-Types \rightarrow **non-trivial adjacency graph**

Φ

 ϕ

h-dofs are connected to edges and faces a-dofs are connected to nodes ϕ -dofs are connected to nodes λ -dofs are connected to edges <u>or</u> nodes

Things the code must consider:

- DoF numbering scheme must be unique over all processors
- element orientation matters
- domain cuts require special treatment (direction of cut)
- thin shells require special treatment (element clusters)

→ mesh needs additional information

Meshing [Example: Thin Shells with h-φ]

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

 $\phi \stackrel{!}{=} 0$

- for air: $h = -\nabla \phi$
- imposed integral current: I
- no background field

magnetic wall: weak bc $\boldsymbol{n}^{\mathrm{T}} \nabla \phi = 0$

goal: create data structure that contains TS-macroelements

see also: de Sousa Alves et al: 10.1088/1361-6668/ac3f9e 10.1109/TASC.2022.3143076

Meshing Example: thin-shell with h- ϕ formulation step 0: initial mesh

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Meshing Example: thin-shell with h-φ formulation step 1: cutting

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Scissor Object

- duplicates nodes
- reconnects elements with new nodes

• adds connector elements for λ -bc

- direction of cut is determined by blocks
 - blue: neutral, no cut here
 - red: negative
 - green: positive
- algorithm is unique if blocks do not share surface with block of same sign (red never touches another red, green never touches another green)

Meshing Example: thin-shell with h-φ formulation step 2: taping

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Mesh

Meshing Example: thin-shell with h-φ formulation step 3: create edges (and faces)

Thoughts on Visualization

L2-Projection of Current: Projecting the Curl from the h-field

Basic Idea Of L2 Projection: Solve this equation

The magnetic field **h** is represented on the edges, but we want the current **j**. ParaView can't display edge elements, we need to compute the curl of h and project it on the nodes.

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

$$\int_{\Omega} \delta \boldsymbol{j}^{\mathbf{T}} \left(\boldsymbol{j} - \nabla \times \boldsymbol{h} \right) \mathrm{d} \boldsymbol{V} = 0$$

we want to minimize the error in this bracket

Problem: The projection creates artefacts at the sharp corners

L2-Projection: general thoughts

This problem is very well known:

in Lagrangian elements, derivatives are not continuous over element edges!

Hooke's Law

$$\boldsymbol{\sigma} = \boldsymbol{\mathcal{C}} : \frac{1}{2} \left[(\nabla \cdot \boldsymbol{u})^{\mathrm{T}} + \nabla \cdot \boldsymbol{u} \right]$$

van Mises stress

$$\sigma_v = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \,\sigma_2 + 3 \,\tau_{12}^2}$$

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

L2-Projection of Current: Projecting the Curl from the h-field

Motivation

Modifying the equation

The magnetic field **h** is represented on the edges, but we want the current **j**. ParaView can't display edge elements, we need to compute the curl of h and project it on the nodes.

This Projection blurrs out the interface of the current. This only impacts the visualization.

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

$$\int_{\Omega} \delta \boldsymbol{j}^{\mathrm{T}} \left(\boldsymbol{j} + \boldsymbol{\alpha} \nabla \cdot \boldsymbol{j} - \nabla \times \boldsymbol{h} \right) \mathrm{d} V = 0$$

add the gradient and multiply it with a fudge factor. We sacrifice accuracy and obtain smoothness.

Standard Least Squares

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Modified Least Squares

Other Activities

Theory Manual work in progress

0 0 (**n** × E)^T

XE MXB

 $0 \quad 0 \quad (\mathbf{a} \times \mathbf{B})^{\mathrm{T}} \quad \mathrm{d} S \cdot \hat{\boldsymbol{\phi}} = 0. \quad (3.45)$

 $\delta \Pi \approx \left[\delta \tilde{h}^{T} \delta \hat{\phi}^{T} \delta \lambda^{T} \right] \int_{\Omega}$

2 Weak Forms	Page 23
2.6 Magnetic Field Conform Formulation (h-conform)	
The fundamental lemma, Eq. (2.3) is applied to to Faraday's law of induction, (2.25). The n density h is identified as degree of freedom. Hence, the test function is named δh	nagnetic field
$\int_{\Omega} \delta h^{T} (b_{\ell} + \operatorname{curl} \epsilon) dV = 0.$	(2.36)
For the second expression, the inverse form of Eq. (2.29) is used	
$\int_{\Omega} \delta h^{T} b_{\mathcal{A}} \mathrm{d} V = \int_{\Omega} \delta h^{T} \mu h_{\mathcal{A}} \mathrm{d} V + \int_{\Omega} \delta h^{T} \mu_{\mathcal{A}} h \mathrm{d} V.$	(2.37)
Stokes' theorem, Eq. (2.5), is applied to the second expression in Eq. (2.36)	

 $\int_{\Omega} \delta h^{\mathrm{T}} \operatorname{curl} e \, \mathrm{d} V = \int_{\Omega} (\operatorname{curl} \delta h)^{\mathrm{T}} e \, \mathrm{d} V + \int_{\Omega} \delta h^{\mathrm{T}} (n \times e) \, \mathrm{d} S$ (2.38)

The boundary integral in Eq. (2.38) is of special interest. If a coupling with the *b*-conform formulation is desired, the electric field e can be expressed by means of the voltage v (if it exists) and the vector potential e. On the other hand, expressing e by means of the current density j allows current coupling

$\int_{\partial\Omega} \delta h^{\mathrm{T}}(\mathbf{n} \times \boldsymbol{\epsilon}) \mathrm{d}S = \int_{\partial\Omega} \delta h^{\mathrm{T}}[(\operatorname{grad} v + \boldsymbol{a}_{\mu}) \times \mathbf{n}] \mathrm{d}S = \int_{\partial\Omega} \delta h$	^r [n × (ρ j)] dS (2.39)
a conformity with Eq. (2.35), assuming $v=0,$ the weak form for the \pmb{h} -xpressed as	conform formulation can be

 $\int \delta h^{\mathsf{T}} \mu h_{\mathcal{A}} \, \mathrm{d}V + \int \delta h^{\mathsf{T}} \mu_{\mathcal{A}} h \, \mathrm{d}V + \int \left(\operatorname{curl} \delta h\right)^{\mathsf{T}} \rho \operatorname{curl} h \, \mathrm{d}V - \int \delta h^{\mathsf{T}} \left(n \times a_{\mathcal{A}}\right) \, \mathrm{d}S = 0.$ (2.40)

A closer look at Eq. (2.40) reveals that the *h*-formulation might be better suited for discretizing a superconducting domain, while the expression μ_{J} can become very unhandy to compute if μ is not constant. In those cases, the *b*-conform formulation might be used to avoid computing this term.

3 Discretizations	Page 31	Discretizations Pa	we 34	References Page 4
Using these discretizations, the mass Matrix reads			B	References
$\mathbf{M} = \int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\mu} \mathbf{B} \mathrm{d} V$	(3.42)	$\mathbf{M} = \int_{\partial O} \mathbf{B}^{T} (N \times \mathbf{n}) dS \qquad (3)$	(3.52)	 Kuczmann, M. and Iványi, A., The Finite Element Method in Magnetics, Akadémia Kiadó, Budapest Hungary, 2008.
the stiffness matrix only exists for the case $\mu \neq \text{const.}$		$\mathbf{K} = \int_{\partial O} \mathbf{N}^{T} (\boldsymbol{B} \times \boldsymbol{n}) \mathrm{d}\boldsymbol{S} = -\mathbf{M}^{T}, \qquad (0)$	(3.53)	[2] Meinier, G., editor, The Hnite Element Method for Electromagnetic Modeling, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
$\mathbf{K} = \int_{\boldsymbol{\Omega}} \mathbf{B}^{\mathrm{T}} \boldsymbol{\mu}_{\mathcal{A}} \mathbf{B} \mathrm{d} \boldsymbol{V}.$	(3.43) w	th n pointing outwards from the ferromagnetic domain.		[3] Dular, J., Geuzaine, C., and Vanderheyden, B., "Finite-Element Formulations for Systems With High-Temperature Superconductors," <i>IEEE Transactions on Applied Superconductivity</i> , Vol. 30 No. 3, pp. 1–13, 2019. doi: 10.1109/nasc.2019.2935429.
3.2.3 h ≠ Domain Interface The interface element looks similar as for the <i>h</i> - <i>a</i> interface. An example is shown in Fig. 3.3.	3. th	2.5 h-a Domain Interface e h-a domain interface between the superconducting domain and the ferromagnetic domain is mean the new described in Sec. 3.1.4.	is the	[4] Zienkiewicz, O. C., Taylor, R. L., and Fox, D. D., The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann, Oxford, UK, 7th ed., 2013.
ş,	3,	2.6 Cuts		[5] Grupta, K. K. and Meek, J. L., Finite Element Multidisciplinary Analysis, AIAA Education Series American Institute of Aeronautics and Astronautics, Reston, Virginia, 2nd ed., 2003.
e e e e e e e e e e e e e e e e e e e		ae integral form Of Ampere's law states that in the quasi-magnetostatic case, the integral ove bitrary loop L in the domain Ω must be equal to the current I inside the loop.	er an	[6] Bronshtein, I. N., Semendyayew, K. A., Musiol, G., and Mühlig, H., Handbook of Mathematics chap. Newton's Method, Eq. (19.62), Springer-Verlag, Heidelberg, Germany, 6th ed., 2015.
$\hat{\phi}^{1}$ vacuum $\hat{\phi}^{1}$ \hat{h}^{1} λ super conductor	100	$\oint_L h dl = I . \tag{2}$	(3.54)	[7] Nedelec, J. C., "Mixed finite elements in R ³ ," Numerische Mathematik, Vol. 35, No. 3, pp. 315–341 1980, doi: 10.1007/bf01396415.
i i i i i i i i i i i i i i i i i i i		is is can not be guaranteed if the domain is not simply connected. ¹⁹ A remedy is found by appl fficient cuts in the domain to make the non-superconducting part simply connected, see Fig. 3.	lying .5.	[8] Schoof, L. A. and Yarberry, V. R., "EXODUS II: A Finite Element Data Model," Tech. Rep. SAND 92-2137, Sandia National Laboratories, 1994.
ġ2		airtearmm		 Nědělec, J. C., "A new family of mixed finite elements in R^{3,"} Numerische Mathematik, Vol. 50 No. 1, pp. 57-81, 1986, doi: 10.1007/bf01389668.
Figure 3.3: TRI3 Interface Element for h - ϕ coupling The normal and the tangential components of h along the domain interface must be coupled separately. ¹⁴ The components within the contact plane are coupled using a Lagrangian multiplyer. The functional				[10] Zaglmayr, S., High Order Finite Element Methods for Electromagnetic Field Computation, Ph.D thesis, Johannes Kepler Universität, Linz, Austria, 2006.
		$\Omega_{ee} = \frac{\Omega_{ee}}{\Omega_{ee}} + \frac{\Omega_{ee}}{\Omega_{ee$		[11] Brambilla, R., Grilli, F., Martini, L., Bocchi, M., and Angeli, G., "A Finite-Element Method Framework for Modeling Rotating Machines With Superconducting Windings," <i>IEEE Transactions</i> on Applied Superconductivity, Vol. 28, No. 5, pp. 1–11, 2018, doi: 10.1109/tasc.2018.2812884.
reads $\Pi = \int_{\partial\Omega} \lambda^{T} \mathbf{n} \times (\mathbf{h} - \mathbf{h}) \mathrm{d}S = 0.$	(3.44)	linop L		[12] Dular, J., Harutyunyan, M., Bortot, L., Schops, S., Vanderheyden, B., and Geuzaine C., "On the Stability of Mixed Finite-Element Formulations for High-Temperature Superconductors," <i>IEEE Transactions on Applied Superconductivity</i> , Vol. 31, No. 6, pp. 1–12
Using the interpolations $h \approx E \cdot \tilde{h}$ for the superconducting domain, and $h \approx -B \cdot \hat{\phi}$ for the conducting domain, we obtain the following coupling matrix	he non-	Figure 3.5: Making the domain simply connected, after Dular. ³		2021, doi: 10.1109/tasc.2021.3098724. [13] Meister, A., Numerik linearer Gleichungssysteme, Viewig & Sohn Verlag, Wiesbaden, 3rd ed., 2008

following condition must be fulfilled, see Fig. 3.6.

[13] Meister, A., Numerik linearer Gleichungssysteme, Viewig & Sohn Verlag, Wiesbaden, 3rd ed., 2008

[14] Arsenault, A., Sirois, F., and Grilli, F., "Implementation of the H-& Formulation in COMSOI tultiphysics for Simulating the Magnetization of Bulk Superconductors and Comparison With the H-Formulation," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 2, pp. 1-11, 2021-3, doi: 10.1109/tasc.2020.303399

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Along the cut, each node is associated with two but one degrees of freedom for the scalar potential ϕ

Following the notation of Dular, 14, 17 we use the notation ϕ_{-} and ϕ_{+} . At each node k along the cut, the

- detailed derivation of modern **h**-**a** and **h**-**φ** weak forms
- contains full description of element formulation
- explains algorithms such as edge- and face generation
- all equations in standardized finite-element notation (as in Zienkiewicz, Belytschko, Bathe, ...)
- textbook-like!

Other Activities

Berkeley Lab Scalable Solvers Group

• work with STRUMPACK development team on optimized solver interface

Commonwealth Fusion Systems & MIT PSFC

- development of material properties library
- be part of BELFEM
- also stand-alone, being linked by other codes such as SparseLizard

Politecnico di Torino, DNERG (starting this summer)

• TS current sharing models & benchmarking against COMSOL

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

Massachusetts Institute of Technology

Summary

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

- building finite-element framework tailored to HTS cable & magnet development needs
- \bullet support modern mixed formulations auch as h-a and h- φ
- support thin shells & multi-physics (work in progress)
- code designed to run in parallel on HPC node
- work on textbook-like theory manual
- work on a stand alone material database

during the next months:

during the next year:

A Special Purpose Finite-Element Framework for High Temperature Superconductor Applications | Berkeley Lab 8th International Workshop on Numerical Modeling of High Temperature Superconductors, 14th-16th June 2022, Nancy, France

• complete thin shell implementation for and $h-\phi$ • complete work on TS-quenching & current sharing model (2D) continue work on STRUMPACK interface

• work on geometry-preprocessor for 3D current sharing

• streamline workflow for real world applications

• work on convective cooling module

• publish code under BSD-3-like license

