3D Modelling of the Currents Induced in a Superconducting Linear Halbach Array

Michel Houbart¹

Jean-François Fagnard¹, Julien Dular¹, Anthony Dennis², Devendra Kumar Namburi³, John Durrell², Christophe Geuzaine¹, Benoît Vanderheyden¹ and Philippe Vanderbemden¹

¹ Montefiore Research Unit, University of Liege, Belgium
 ² Bulk Superconductivity Group, University of Cambridge, United Kingdom
 ³ Quantum Sensors Group, University of Glasgow, United Kingdom

- Gradient of the magnetic flux density \rightarrow Magnetic force.
- Typical method achieving significant gradient: Halbach array of permanent magnets.

• The gradient using permanent magnets is intrinsically limited by the saturation magnetization of ferromagnetic materials.

Aim of this work

- Gradient of the magnetic flux density → Magnetic force.
- Typical method achieving significant gradient: Halbach array of permanent magnets.

• The gradient using permanent magnets is intrinsically limited by the saturation magnetization of ferromagnetic materials.

Aim of this work

- Gradient of the magnetic flux density → Magnetic force.
- Typical method achieving significant gradient: Halbach array of permanent magnets.

• The gradient using permanent magnets is intrinsically limited by the saturation magnetization of ferromagnetic materials.

Aim of this work

- Gradient of the magnetic flux density
 → Magnetic force.
- Typical method achieving significant gradient: Halbach array of permanent magnets.

• The gradient using permanent magnets is intrinsically limited by the saturation magnetization of ferromagnetic materials.

Aim of this work

Experimental conditions

- Assembly of 3 magnetized superconductors in a Halbach configuration.
- Approach speed: $\sim 1 \text{ mm/s};$ Temperature: 77 K.
- $\bullet\,$ Measurement of the trapped field ~ 1 mm from the samples surfaces.

Trapped field: \sim 0.47 T

Trapped field: \sim 0.2 T

Experimental conditions

- Assembly of 3 magnetized superconductors in a Halbach configuration.
- Approach speed: $\sim 1 \text{ mm/s};$ Temperature: 77 K.
- ullet Measurement of the trapped field ~ 1 mm from the samples surfaces.

Trapped field: \sim 0.47 T

Trapped field: \sim 0.2 T

Experimental conditions

- Assembly of 3 magnetized superconductors in a Halbach configuration.
- \bullet Approach speed: ~ 1 mm/s; Temperature: 77 K.
- $\bullet\,$ Measurement of the trapped field ~ 1 mm from the samples surfaces.

Trapped field: \sim 0.47 T

Trapped field: \sim 0.2 T

Analytical model calculating $\vec{B}(x, y, z)$ of a single bulk superconductor

Assumptions

- The critical current density is field-independent and isotropic.
- The sample is fully penetrated $\Rightarrow ||\vec{J}|| = J_c$ everywhere.
- The current flows in square loops strictly parallel to the surface of the superconductor and perpendicular to the magnetization direction.

Analytical model calculating $\vec{B}(x, y, z)$ of a single bulk superconductor

Assumptions

- The critical current density is field-independent and isotropic.
- The sample is fully penetrated $\Rightarrow ||\vec{J}|| = J_c$ everywhere.
- The current flows in square loops strictly parallel to the surface of the superconductor and perpendicular to the magnetization direction.

Analytical model calculating $\vec{B}(x, y, z)$ of a superconducting Halbach array made of bulk superconductors

Assumption

• The current density distribution in each superconductor is not altered during the assembly of the configuration.

Overestimation of the central trapped field

Analytical model calculating $\vec{B}(x, y, z)$ of a superconducting Halbach array made of bulk superconductors

Assumption

• The current density distribution in each superconductor is not altered during the assembly of the configuration.

Overestimation of the central trapped field

Finite element model for bulk superconductors

• Magnetodynamic formulation:

 $\begin{cases} \vec{H}\text{-} \text{formulation for the superconducting zones,} \\ \vec{A}\text{-} \text{formulation for the air,} \\ \text{Surface coupling terms at the interface.} \end{cases}$

• Power law:

$$\vec{E} = \frac{E_c}{J_c} \left(\frac{||\vec{J}||}{J_c}\right)^{n-1} \vec{J}$$

 $\begin{cases} E_c = 10^{-4} \text{ Vm}^{-1} \\ J_c = 2.6 \cdot 10^8 \text{ Am}^{-2} \\ n = 20 \end{cases}$

• Simulations:

a) Individual zero-field-cooled magnetization of each superconductor,

b) Assembly of the array using the end of a) as initial condition.

Finite element model for bulk superconductors

• Magnetodynamic formulation:

 $\begin{cases} \vec{H}\text{-} formulation for the superconducting zones,} \\ \vec{A}\text{-} formulation for the air,} \\ Surface coupling terms at the interface.} \end{cases}$

Power law:

$$\vec{E} = \frac{E_c}{J_c} \left(\frac{||\vec{J}||}{J_c}\right)^{n-1} \vec{J}$$

$$\begin{cases} E_c = 10^{-4} \text{ Vm}^{-1} \\ J_c = 2.6 \cdot 10^8 \text{ Am}^{-2} \\ n = 20 \end{cases}$$

• Simulations:

a) Individual zero-field-cooled magnetization of each superconductor,

b) Assembly of the array using the end of a) as initial condition.

Finite element model for bulk superconductors

• Magnetodynamic formulation:

 $\begin{cases} \vec{H}\text{-formulation for the superconducting zones,} \\ \vec{A}\text{-formulation for the air,} \\ \text{Surface coupling terms at the interface.} \end{cases}$

Power law:

$$\vec{E} = \frac{E_c}{J_c} \left(\frac{||\vec{J}||}{J_c}\right)^{n-1} \vec{J}$$

$$\begin{cases} E_c = 10^{-4} \text{ Vm}^{-1} \\ J_c = 2.6 \cdot 10^8 \text{ Am}^{-2} \\ n = 20 \end{cases}$$

• Simulations:

- a) Individual zero-field-cooled magnetization of each superconductor,
- b) Assembly of the array using the end of a) as initial condition.

Updated analytical model of a Halbach array made of Bulk superconductors

Assumption

• The current density distribution in the central superconductor is altered as described by the finite element simulation.

After adjusting the model: e = 0.8 mm

Modification of the current density distribution

Halbach array of Bulk superconductors

Before Assembly

After Assembly

e Halbach array of stacked tapes

Before Assembly

After Assembly

Modification of the current density distribution

Halbach array of Bulk superconductors

Before Assembly

After Assembly

Halbach array of stacked tapes

Before Assembly

After Assembly

Analytical model calculating $\vec{B}(x, y, z)$ of a single stack of superconducting tapes

Assumptions

- The critical current density is field-independent and isotropic.
- The sample is fully penetrated $\Rightarrow ||\vec{J}|| = J_c$ everywhere.
- The current flows in square loops strictly parallel to the surface of the superconductor and perpendicular to the magnetization direction.

Analytical model calculating $\vec{B}(x, y, z)$ of a single stack of superconducting tapes

Assumptions

- The critical current density is field-independent and isotropic.
- The sample is fully penetrated $\Rightarrow ||\vec{J}|| = J_c$ everywhere.
- The current flows in square loops strictly parallel to the surface of the superconductor and perpendicular to the magnetization direction.

Analytical model calculating $\vec{B}(x, y, z)$ of a superconducting Halbach array made of stack tapes

Assumption

• The current density distribution in each superconductor is not altered during the assembly of the configuration.

Overestimation of the central trapped field

Analytical model calculating $\vec{B}(x, y, z)$ of a superconducting Halbach array made of stack tapes

Assumption

• The current density distribution in each superconductor is not altered during the assembly of the configuration.

Overestimation of the central trapped field

Finite element model for stack of superconducting tapes

• Magnetodynamic formulation:

 $\begin{cases} \vec{H}\text{-formulation for the superconducting zones,} \\ \vec{A}\text{-formulation for the air,} \\ \text{Surface coupling terms at the interface.} \end{cases}$

Modified power law:

$$\vec{E} = \left[\frac{E_c}{J_c} \left(\frac{||\vec{J}||}{J_c}\right)^{n-1} + \operatorname{diag}(\rho_1, \rho_2, \rho_3)\right] \vec{J} \qquad \begin{cases} E_c = 10^{-4} \, \mathrm{Vm}^{-1} \\ J_c = 1.7 \cdot 10^8 \, \mathrm{Am}^{-2} \\ n = 20 \end{cases}$$

Simulations:

Finite element model for stack of superconducting tapes

• Magnetodynamic formulation:

 $\begin{cases} \vec{H}\text{-formulation for the superconducting zones,} \\ \vec{A}\text{-formulation for the air,} \\ \text{Surface coupling terms at the interface.} \end{cases}$

Modified power law:

$$\vec{E} = \left[\frac{E_c}{J_c} \left(\frac{||\vec{J}||}{J_c}\right)^{n-1} + \text{diag}(\rho_1, \rho_2, \rho_3)\right] \vec{J} \qquad \begin{cases} E_c = 10^{-4} \text{ Vm}^{-1} \\ J_c = 1.7 \cdot 10^8 \text{ Am}^{-2} \\ n = 20 \end{cases}$$

 $\rho_i = \begin{cases} 10^{-8} & \Omega \text{m in the direction perpendicular to the tapes,} \\ 0 & \text{otherwise.} \end{cases}$

Simulations:

Finite element model for stack of superconducting tapes

• Magnetodynamic formulation:

 $\begin{cases} \vec{H}\text{-formulation for the superconducting zones,} \\ \vec{A}\text{-formulation for the air,} \\ \text{Surface coupling terms at the interface.} \end{cases}$

Modified power law:

$$\vec{E} = \left[\frac{E_c}{J_c} \left(\frac{||\vec{J}||}{J_c}\right)^{n-1} + \text{diag}(\rho_1, \rho_2, \rho_3)\right] \vec{J} \qquad \begin{cases} E_c = 10^{-4} \text{ Vm}^{-1} \\ J_c = 1.7 \cdot 10^8 \text{ Am}^{-2} \\ n = 20 \end{cases}$$

 $\rho_i = \begin{cases}
10^{-8} & \Omega \text{m in the direction perpendicular to the tapes,} \\
0 & \text{otherwise.}
\end{cases}$

Simulations:

- a) Individual zero-field-cooled magnetization of each superconductor,
- b) Assembly of the array using the end of a) as initial condition.

Updated analytical model of a Halbach array made of stack tapes

Assumption

• The current density distribution in the central superconductor is altered as described by the finite element simulation.

After adjusting the model: e = 1.1 mm

Summary and conclusions

- A Halbach array made of 3 superconductors was successfully assembled.
- Both bulk YBCO superconductors and stacked 2G YBCO tapes were investigated.
- A finite-element model based on a coupled formulation and an analytical model based on the Biot-Savart law were developed and successfully captured the main features observed experimentally.
- The performances of the assembly are currently limited by a partial demagnetization of the central sample.
- Preventing the current redistribution would lead to a central field 10% higher.

Acknowledgments

Fonds de la recherche scientifique (FRS-FNRS) Belgium

University of Liege, Belgium

Jean-François Fagnard Julien Dular Christophe Geuzaine Benoît Vanderheyden Philippe Vanderbemden

University of Cambridge

Anthony Dennis John Durrell

University of Glasgow

Devendra Kumar Namburi