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Calculation of the mathematical expectancy of Cauchy's law
and extension to other improper integrals

Abstract: It is well known that the calculation of the mathematical expectancy of Cauchy's
law in probability generates an indeterminate form. We show here that this indeterminacy can
be lifted and the calculation leads to a fixed value. Moreover, we show that other improper
integrals with an indeterminate result can be computed.

The normalized Cauchy's law probability density defined for a continuous random variable on
P Is:
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Its mathematical expectancy is given by the integral:
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For the first integral we set: X’ = - x s0 dx’ = - dx and the lower bound becomes + o
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As the primitive exists, we get:

S HCIREI

+ 0

At this stage, we can identify x* by x and:

E[X]:i{ln(l)—lim In(L+)+ lim |n(1+x2)—|n(1)}
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In this form, the calculation brings back the indeterminate value - oo + co. But the fact of
having cut the integral into two parts makes it possible to use the property of the natural
logarithm, so:
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The argument of the logarithm is then a fraction which authorizes the analytical calculation.
So, dividing numerator and denominator by x* we get:
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It is then immediate to establish that the general form of Cauchy's law:
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Corollary: other improper integrals with an indeterminate result can thus be calculated if,
through one or more appropriate changes of variable, a division into two equivalent parts and
by showing the natural logarithm, they allow a grouping of two terms authorizing an
analytical calculation as defined above.

> with a > 0 has its mathematical expectancy: Xo

Thus, without being exhaustive, the following functions are then integrable because they can
be reduced to the Cauchy function with the indicated changes of variable.
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dx=0 change of variable: t = sin(x), then y= tg(t)
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There are certainly other improper integrals whose indeterminacy is then removed.




