Thermal Thin Shell Approximation for 3D Finite Element Quench Simulations of Insulated HTS Coils

TECHNISCHE UNIVERSITÄT DARMSTADT

8th International Workshop on Numerical Modelling of High-Temperature Superconductors

<u>Erik Schnaubelt</u>^{1,2}, Mariusz Wozniak¹ and Sebastian Schöps² ¹CERN ²TU Darmstadt

June 14, 2022 | CERN & TU Darmstadt | HTS Modelling Workshop 2022 | Erik Schnaubelt | 1

Motivation: Thin Layers in HTS Applications

Example: HTS Pancake

Motivation: Thin Layers in HTS Applications

Example: HTS Pancake

Thin insulation, contact res., supercond. layer of coated conductors...

June 14, 2022 | CERN & TU Darmstadt | HTS Modelling Workshop 2022 | Erik Schnaubelt | 2

Influence of Slither Elements on Accuracy

Influence of Slither Elements on Accuracy

Influence on Numerical Solution

Structured mesh (1400 DoF)

Influence on Numerical Solution

Influence on Numerical Solution

(CEM

Benefits of Thin Shell Approximations

Thin shell approximation does not require volumetric mesh!

Benefits of Thin Shell Approximations

- Thin shell approximation does not require volumetric mesh!
- Better condition number of finite element matrices
- Potentially fewer degrees of freedom

Benefits of Thin Shell Approximations

- Thin shell approximation does not require volumetric mesh!
- Better condition number of finite element matrices
- Potentially fewer degrees of freedom
- Simplification of geometry
 - Less effort for user and/or mesh software

Table of Contents

1 Introduction and Motivation

- 2 Derivation of the Thin Shell Formulation
- 3 Numerical Experiments
- 4 Conclusion and Outlook

Table of Contents

1 Introduction and Motivation

2 Derivation of the Thin Shell Formulation

- 3 Numerical Experiments
- 4 Conclusion and Outlook

June 14, 2022 | CERN & TU Darmstadt | HTS Modelling Workshop 2022 | Erik Schnaubelt | 7

1. Replace volumetric layer Ω_i by surface Γ

Need to represent discontinuous temperatures across Γ

• Duplicate $\Gamma \to \Gamma^+ \neq \Gamma^- \to T^+ \neq T^-$

3. Additional integral with jump operator $[b] := b|_{\Gamma^+} - b|_{\Gamma^-}$

$$\begin{split} \left(\kappa \operatorname{\mathsf{grad}} \mathsf{T}, \operatorname{\mathsf{grad}} \mathsf{T}'\right)_{\Omega_{\mathsf{CC}}} &+ \left(\rho \operatorname{\mathsf{C}_{\mathsf{p}}} \partial_t \mathsf{T}, \mathsf{T}'\right)_{\Omega_{\mathsf{CC}}} \\ &+ \left\langle \begin{bmatrix} \vec{n} \cdot \kappa \operatorname{\mathsf{grad}} \mathsf{T} \end{bmatrix}, \mathsf{T}' \right\rangle_{\Gamma} = \left(\mathsf{Q}, \mathsf{T}'\right)_{\Omega_{\mathsf{CC}}} \quad \forall \mathsf{T}' \in \mathit{H}^1_{\mathsf{dir}}\left(\Omega_{\mathsf{CC}}\right) \end{split}$$

3. Additional integral with jump operator $[b] := b|_{\Gamma^+} - b|_{\Gamma^-}$ $(\kappa \operatorname{grad} T, \operatorname{grad} T')_{\Omega_{CC}} + (\rho C_p \partial_t T, T')_{\Omega_{CC}}$ $+ \langle [\vec{n} \cdot \kappa \operatorname{grad} T], T' \rangle_{\Gamma} = (Q, T')_{\Omega_{CC}} \quad \forall T' \in H^1_{\operatorname{dir}}(\Omega_{CC})$

4. Virtual discretization of Ω_i : $\hat{\Omega}_i$

 $\left\langle \left[\vec{n} \cdot \kappa \operatorname{grad} T\right], T'\right\rangle_{\Gamma} = \left(\kappa \operatorname{grad} T, \operatorname{grad} T'\right)_{\hat{\Omega}_{i}} + \left(\rho \operatorname{C}_{\mathsf{P}} \partial_{t} T, T'\right)_{\hat{\Omega}_{i}}$

5. $\hat{\Omega}_{i}$ split into N slabs $\hat{\Omega}_{i}^{(k)} := \Gamma \times [w_{k-1}, w_{k}]$ $\left\langle \left[\vec{n} \cdot \kappa \operatorname{grad} T \right], T' \right\rangle_{\Gamma} = \sum_{k=1}^{N} \left(\kappa \operatorname{grad} T, \operatorname{grad} T' \right)_{\hat{\Omega}_{i}^{(k)}} + \sum_{k=1}^{N} \left(\rho \, C_{p} \, \partial_{t} T, T' \right)_{\hat{\Omega}_{i}^{(k)}}$

6. 1D discretization of T along normal direction \vec{w}

 $T|_{\hat{\Omega}_{i}^{(k)}}(u,v,w,t) = \sum_{j=k-1}^{k} T|_{\Gamma_{j}}(u,v,t) N_{j}(w) \quad \text{with, e.g., } N_{j} \text{ first-order Lagrange basis}$

7. Decomposition into surface integrals and 1D matrices

$$\left(\rho \, C_{\mathsf{p}} \, \partial_t T, T'\right)_{\hat{\Omega}_i} = \sum_{k=1}^N \sum_{j=k-1}^k \left\langle \mathcal{M}_{lj,C_{\mathsf{V}}}^{(k)} \, \partial_t T|_{\Gamma_j}, T'|_{\Gamma_l} \right\rangle_{\Gamma} \text{ with } \mathcal{M}_{lj,C_{\mathsf{V}}}^{(k)} := \int_{\mathsf{w}_{k-1}}^{\mathsf{w}_k} \rho \, C_{\mathsf{p}} N_l \, N_j \, \mathrm{d} \mathsf{w}$$

Thin Shell Approximation: Summary and Remarks

No volumetric mesh representation needed!

Thin Shell Approximation: Summary and Remarks

- No volumetric mesh representation needed!
- Generality due to FE and choice of N
 - Multi-layered domains (e.g., HTS coated conductors)
 - Discretization of eddy current¹ (and coupled!) problems

B. de Sousa Alves et al. "Thin-shell approach for modeling superconducting tapes in the H- ϕ finite-element formulation". In: Supercond Sci Technol (2021).

Thin Shell Approximation: Summary and Remarks

- No volumetric mesh representation needed!
- Generality due to FE and choice of N
 - Multi-layered domains (e.g., HTS coated conductors)
 - Discretization of eddy current¹ (and coupled!) problems

B. de Sousa Alves et al. "Thin-shell approach for modeling superconducting tapes in the H- ϕ finite-element formulation". In: Supercond Sci Technol (2021).

Table of Contents

1 Introduction and Motivation

2 Derivation of the Thin Shell Formulation

3 Numerical Experiments

4 Conclusion and Outlook

June 14, 2022 | CERN & TU Darmstadt | HTS Modelling Workshop 2022 | Erik Schnaubelt | 11

Simple Quench Model

- Insulated, adiabatic HTS pancake
 - Homogenized Shanghai Creative Superconductor Technologies 2G HTS
 - Bare CC thickness $t_{CC} = 121 \, \mu m$
 - Ins. thickness betw. turns,

 $t_{
m ins} = 40\,\mu{
m m}$ or $80\,\mu{
m m}$ or $120\,\mu{
m m}$

Simple Quench Model

Insulated, adiabatic HTS pancake

- Homogenized Shanghai Creative Superconductor Technologies 2G HTS
- Bare CC thickness $t_{CC} = 121 \, \mu m$
- Ins. thickness betw. turns, to the up or so up or 120 cm
 - $t_{\text{ins}} = 40 \,\mu\text{m} \text{ or } 80 \,\mu\text{m} \text{ or } 120 \,\mu\text{m}$
- 21 turns (fig. shows 8 to ease illustration)
- Constant transport current, *l*_t = 210 A (≈ 60% of short sample)

Simple Quench Model

- Insulated, adiabatic HTS pancake
 - Homogenized Shanghai Creative Superconductor Technologies 2G HTS
 - Bare CC thickness $t_{CC} = 121 \, \mu m$
 - Ins. thickness betw. turns, $t_{ins} = 40 \,\mu m \text{ or } 80 \,\mu m \text{ or } 120 \,\mu m$
 - 21 turns (fig. shows 8 to ease illustration)
 - Constant transport current, *l*_t = 210 A (≈ 60% of short sample)
 - External field: $B_{\text{ext}} = 5 \text{ T} ||$ to coil axis
 - At B_{ext} : $T_{\text{cs}} = 25 \text{ K}$ and $T_{\text{c}} = 85 \text{ K}$
- Transient thermal simulation considered
 - Local defect with $I_{c, defect} = 0 A$
 - \blacksquare Linear scaling of I_c between T_c and T_{cs}

Simple Quench Model

- Insulated, adiabatic HTS pancake
 - Homogenized Shanghai Creative Superconductor Technologies 2G HTS
 - Bare CC thickness $t_{CC} = 121 \, \mu m$
 - Ins. thickness betw. turns, $t_{ins} = 40 \,\mu m \text{ or } 80 \,\mu m \text{ or } 120 \,\mu m$
 - 21 turns (fig. shows 8 to ease illustration)
 - Constant transport current, $I_t = 210 \text{ A}$ ($\approx 60\%$ of short sample)
 - External field: $B_{\text{ext}} = 5 \text{ T} ||$ to coil axis
 - At B_{ext} : $T_{\text{cs}} = 25 \text{ K}$ and $T_{\text{c}} = 85 \text{ K}$
- Transient thermal simulation considered
 - Local defect with $I_{c, defect} = 0 A$
 - **D** Linear scaling of I_c between T_c and T_{cs}
- NB: scaling of κ and ρCp of insulation due to increased volume of ΩCC

Local Defect

Resulting Hot Spot for $t_{ins} = 40 \, \mu m$

June 14, 2022 | CERN & TU Darmstadt | HTS Modelling Workshop 2022 | Erik Schnaubelt | 14

Influence of the Insulation Thickness

Influence of the Insulation Thickness

Influence of the Insulation Thickness

Table of Contents

1 Introduction and Motivation

2 Derivation of the Thin Shell Formulation

3 Numerical Experiments

4 Conclusion and Outlook

June 14, 2022 | CERN & TU Darmstadt | HTS Modelling Workshop 2022 | Erik Schnaubelt | 16

Agreement with meshed counterpart but no volumetric mesh needed

- Agreement with meshed counterpart but no volumetric mesh needed
- Generality due to 1D FE discretization of the thin shell

- Agreement with meshed counterpart but no volumetric mesh needed
- Generality due to 1D FE discretization of the thin shell
- Implemented in open-source software Gmsh and GetDP²
 - Part of Finite Elements Quench Simulator (FiQuS) in the STEAM framework³ in active development

²onelab.info ³cern.ch/steam

- Agreement with meshed counterpart but no volumetric mesh needed
- Generality due to 1D FE discretization of the thin shell
- Implemented in open-source software Gmsh and GetDP²
 - Part of Finite Elements Quench Simulator (FiQuS) in the STEAM framework³ in active development
- Outlook: quench simulation of no-insulation HTS coil
 - Thin shell used to model contact resistance
 - Coupling of thermal and electromagnetic thin shell

²onelab.info ³cern.ch/steam

- Agreement with meshed counterpart but no volumetric mesh needed
- Generality due to 1D FE discretization of the thin shell
- Implemented in open-source software Gmsh and GetDP²
 - Part of Finite Elements Quench Simulator (FiQuS) in the STEAM framework³ in active development
- Outlook: quench simulation of no-insulation HTS coil
 - Thin shell used to model contact resistance
 - Coupling of thermal and electromagnetic thin shell

Thank you for your attention!

²onelab.info ³cern.ch/steam

